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Abstract: Typically, in high dimensional data sets, many covariates are not significantly associated 

with a response. Moreover, those covariates are highly correlated, leading to a multicollinearity 

problem. Hence, the model is sparse since the coefficient of most covariates are likely to be zero. The 

classical frequentist or likelihood-based variable selection via any criterion such as Bayesian 

Information Criteria (BIC) and Akaike Information Criteria (AIC) or a stepwise subset selection 

becomes infeasible when the number of variables are large. An alternative solution is a Bayesian 

variable selection. In this study, we used a variable selection via a Bayesian variable selection and the 

least absolute shrinkage and selection operator (LASSO) method in the logistic regression model. 

Moreover, those methods were expanded to be applied to real datasets. 
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1. Introduction  

Bayesian variable selection (BVS) provides intuitive probabilistic interpretations and effectively 

explores the model space in a stochastic way to find the model with higher posterior probabilities. This 

approach is called stochastic search variable selection (SSVS). There are many stochastic searching 

schemes that have been developed such as the Gibbs variable selection, Geweke’s BVS with block 

updates [1], and the reverse jump Markov Chain Monte Carlo (MCMC) algorithm [2]. Moreover, the 

application of BVS in the setting of n << p has appeared when analyzing genetic data from the early 
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2000s. Most methods use hierarchical Bayesian modeling to combine the empirical variance with a 

local background variance associated with neighboring genes [3]. BVS has been applied to data from 

genome wide association studies (GWAS) that contained millions of genetic variants or single 

nucleotide polymorphisms (SNPs) [4].  

GWAS are a type of experiment that aims to detect genetic variation that may be linked to a type 

of disease. The main aims of GWAS are to try to determine the genetic risk factors for a disease and 

to make predictions about who may be at risk of developing a particular disease [5]. One of the biggest 

challenges of GWAS is the extremely large potential set of variants (in millions), but with a limited 

sample size (typically thousands) [6]. There are many areas for applications, such as estimating the 

heritability, calculating genetic correlations, making clinical risk predictions, and informing drug 

development. The details of GWAS and the relevant biological backgrounds are explained in many 

textbooks on genetics. The general purpose of GWAS is to identify genomic sequence differences 

among individuals that phenotypically differ [6]. A genotype is the genetic makeup of an individual, 

whereas a phenotype is a feature (of interest) that may be a result of the physical expression of genes. 

The most common sequence variations in the human genome are SNPs. SNPs are defined as loci with 

alleles that differ at a single base, with the rarer allele having a frequency of at least 1% in a random 

set of individuals in a population [7]. The aim of GWAS is to detect SNPs that have a statistically 

significant association with the trait of interest. These SNPs are called genomic risk loci. 

Variable selection involves selecting a subset of the p variables of size p’ such that p < < n and 

the matrix inverse exists. It is a challenge to either construct the model from small subsets of all 

variables or to choose the covariates that are associated with the response due to the small number of 

covariates that are likely to be associated with the response in GWAS applications. Traditional variable 

selection methods such as forward, backward, and stepwise selections cannot be used in this situation. 

Due to the multicollinearity of X (when p >> n), this leads to the objective function not being unimodal. 

Hence, there are many different models that would equally fit the data set. The rest of paper is 

organized as follows. The following sections present an overview of the Bayesian variable selection 

in a logistic regression model. We present the model and MCMC algorithm for the Bayesian variable 

selection. A simulation study is reported to investigate the selection ability in both under independent 

data and correlated cases. This model is applied to a real data set, and concluding remarks are given in 

the last section. 

2. Materials and methods 

2.1. The Bayesian variable selection in logistic regression model 

Now, we discuss the binary regression model. The standard form is discussed here, where iy  is 

a binary variable ( 0,1iy  ; i = 1,..., n) and has a Bernoulli distribution for a collection of n objects. 

Additionally, we have measurements on p covariates 1( ,..., )i i ipx x x . The parameter in the logistic 

model can be denoted as 
1( )ig 

, where g  is a link function, i  is the linear predictor that equals 

ix  , and   is a 1p  column vector of regression coefficients. 

Albert and Chib introduced a latent variable ( iy ) that has a normal prior distribution, and hence 
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a conjugate normal posterior distribution, where i iy X    , and the error term ( i ) has a standard 

normal distribution [8]. If   is specified through a prior distribution with a probit link, then it leads to 

probit regression. A conjugate normal prior distribution is selected for  , p( ) = N(b,  ), where b is 

the prior mean vector and   is the prior covariance matrix. Usually, a zero vector b = 0 is chosen for the 

prior mean and either the prior covariance matrix   = 
2

pc I  (independent) or the g-prior   = 
2 1( )c X X  . 

However, the logistic regression is often more widely used over the probit model when applied 

to biostatistical data sets; however, due to the lack of conjugacy, this is computationally more 

expensive. Holmes and Held introduced a latent variable z with the conjugate normal prior that led to 

a simpler conjugate formulation for the logistic regression model [9]. This version of the logistic 

regression model is discussed below: 

1jy  if 0jz  , 

0jy   otherwise, 

j j jz x   
, 

(0, )j jN 
, 

2(2 )j j 
, 

( . . .)j KS i i d
, 

( )j p 
. 

The auxiliary variables j  are independent random variables from the Kolmogorov-Smirnov (KS) 

distribution [10]. Andrews and Mallows proved that 2AB had a logistic distribution, where A was the 

normal distribution and B was the Kolmogorov-Smirnov distribution [11]. In this case, j   is 

generated from the independent of KS; then, 
2(2 )j is set as j  and j  is the variance in the normal 

distribution. It leads to a normal scale mixture distribution for j  in a marginal logistic distribution. 

Hence, this model is equivalent to a Bayesian logistic regression model [11]. The prior distribution of β 

is assumed to be a normal ( , )N b  . Then, the posterior distribution of β is normal, with the mean B  

and the covariance matrix V  as the standard for Bayesian modelling [9]: 

| , ( , )z j N B V , 

1 1( )B V b X z   
, 

1 1 1( )V X X    
, 

1 1 1

1( ,..., )ndiag    
. 

Holmes and Held extended the Bayesian logistic regression model to incorporate variable selection 
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by including a vector of covariate indicator variables 1( ,..., )p    , where {0,1}( 1,..., )j j p  

corresponds to the indicator variable in the hierarchical model for variable selection [9]. 

The hierarchical model setup for variable selection is described below: 

1jy  if 0jz  , 

0jy   otherwise, 

j j jz x    
, 

(0, )j jN 
, 

2(2 )j j 
, 

( . . .)j KS i i d
, 

( , )j N b  
, 

( )p  . 

The prior distribution ( )p   is the product of Bernoulli distributions of the variables i  with prior 

probabilities i . This is given by 
1

1

( ) (1 )i i

p

i i

i

p
    



  . 

For   , the Bernoulli prior is set with small prior probabilities since the expected number of 

selected SNPs on the GWAS are small. Under the simulation studies, we choose the small constant 

prior probabilities 
* /i p p   for 1,...,i p . The expected number of covariates, denoted as 

*p , 

is set to be small (e.g., either three or five). However, in real data sets, we do not know the exact true 

number of SNPs. Instead of fixing the prior probabilities, we can choose a more flexible Beta-Binomial 

distribution for    using the identity ( ) ( | ) ( )p p p d       , where 
1

1

( | ) (1 )i i

p

i i

i

p
     



   , 

and with a hyper-prior distribution for    that is denoted by 
1 1( ) (1 ) / ( , )a bp B a b      , where 

( , )B a b  is a Beta function. 

The prior distribution of the regression coefficient   is defined for the variables for which 1i  , 

where ( 10pb
  ) and 

2

pc I  , 2c  is the normalizing constant, and pI  is the identity matrix of the 

size p p   . The hierarchical logistic regression model gives a joint posterior distribution for 

{ , , , }z     that can be written as ( , , , | , ) ( | ) ( | , , ) ( | ) ( ) ( )p z X y p y z p z X p p p              , 

where ( ) 1/ 4 (0.5 )i i ip KS    and ( | , , ) ( , )p z X N X       . 

2.2. MCMC algorithm for Bayesian variable selection 

Since there is a high correlation between parameters in a single updating, which leads to the slow 
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mixing of the Markov chains, Zucknick and Richardson proposed jointly updating z and λ from this 

model [12]. 

2.2.1. Updating z and λ 

The first update is drawn from ( , | , , , ) ( | , , , ) ( | , , , )p z X y p z X y p z X        . 

1) The inversion method can be used to draw ( | , , , )p z X y  , the steps of which are given below: 

(a) 1,...,i n , ( | , , , ) ( ,1) ( 0)i i ip z X y Logistic x I z     if 1iy   and 

( | , , , ) ( ,1) ( 0)i i ip z X y Logistic x I z     if 0iy  . 

(b) Calculate the Cumulative Distribution Function (CDF) ( )F x  of the logistic distribution above. 

Sample [0,1]iu U  and solve for 
1( ( ))i iF F u u  . 

2) Rejection sampling can be applied to the sample ( | , , , )p z X    . Those steps consist of the 

following: 

(a) Sample [0,1]iu U . 

(b) Sample i   from the candidate density 
2( ) (0.5,1, )

(1, )

i
i i

i

r
g GIG r

IG r
   , where IG   is an 

Inverse Gaussian distribution with 
2

3

( 1)
( ) exp( ), 0

2 2

i ir r x
p x x

x x


   , where 

2 2( )i i ir z x   . 

(c) If ( )i iu    , then accept i  , where 
2( , ) ( )

( )
( )

i i i
i

i

l r p

Mg

 
 


  with

2( , ) ( | , , ) ( , )i i i i i i il r p z x N x         , ( )ip   being the IG distribution. 

Otherwise, reject i  and go back to step (a). 

Moreover, the use of an alternative series expansion of (0.5 )iKS   in [10] gives the following:  

1
( ) ( , ) (0.5 )

4
i i i i

i

N x KS     


 . 

2.2.2. Updating z and λ 

( , )   are updated jointly using the following identity: 

( , | , , ) ( | , , ) ( | , , , )p z X p z X p z X         . 

1) With a starting value of 
0  ,   can be directly sampled from 

* *( , )N B V  , where 

*

* * / 1B V x z  
   and * * *

* / 1 1( )V x x   
    . 

2) Then,   is updated using the following steps of a Metropolis-Hastings algorithm: 

(a) (Add/delete step) At the t-th iteration, a single covariate is selected at random and the proposal 

distribution is given by 
*( ) 1jq   if 0j   and 

*( ) 0jq   if 1j  . 
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(b) The acceptance probability for updating   is given by the following:  

* * * *

*

1/2 1/2
1

1/21/2 1

exp(0.5 )(1 )
( ) min(1, )

exp(0.5 )

i

i

B B

B B

   

   

   
 

   





 



, 

where j is the prior probability that j takes the value 1. 

(c) Set 
*t  if 0j   with probability ( )  and 

1t t    otherwise. 

3. Results 

3.1. Simulation study 

The section will describe investigations into the performance of the Bayesian variable selection 

in logistic regression models, where the response is binary (categorical) and the covariate settings are 

discussed. 

3.1.1. Simulation setup 

The simulation consists of p =500, 1000, and 2000 covariates alongside n =500 observations. The 

Binomial probability (for covariates) is set to 0.1. We set the effect size of regressors as 1, 1.5, and 2. 

At each setting, we generate 10 data sets. In each case, we find that the inclusion probability is very 

low. Hence, we set higher values in each case. The simulation involves 3 scenarios, similar to the linear 

regression model. 1x , 2x , and 3x  are assumed to be associated with the response, while the others 

are not. For the variable selection, we use the logisticVS function in the bvsflex package, setting the 

number of iterations as 200,000 based on the pilot runs, thus indicating that a longer time is needed for 

MCMC convergence. There are several parameters in the package. The prior mean for   is set to 0. 

We conduct sensitivity studies by changing the values of many hyper-parameters, where g for the prior 

covariance matrix of   is set to 0.1, 1, 10, and 100, the prior precision for   is set to 100, and the 

prior mean of Beta prior distribution is set to 0.06. Under the package, the additional hyper-prior 

distribution for p  is given by ( , )p Beta a b . In addition, there are 3 classes of prior distributions 

for the hyper-parameter g: Inverse-gamma, hyper-g, and none. We choose none, which implies that g 

is assumed to be fixed at the specified value. The bvsflex package on R-forge is used for the variable 

selection in logistic regression models that is based within R, version 4.2.2 (http://bvsflex.r-forge.r-

project.org) [13]. 

We consider a simulation scenario where we have p = 500, 1000, and 2000 covariates alongside 

n = 500 observations. Each explanatory variable is generated from a Binomial distribution with 

parameters (2, p), where p takes the value 0.01. The effect size for the regressor is 2. The dependent 

variable is generated from the Binomial distribution with n=1 (for the binary values). Prior to 

generating the response variables, the input variables ( ix ) are centered to the mean 0, as this model 

does not contain an intercept. 

With many possible combinations of settings, a few cases are chosen and are presented below. 

These results are shown in terms of the inclusion probability of each covariate for the logistic 

regression model with g = 1, both under independent and correlated cases (Tables 1 and 2).  
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Table 1. The inclusion probability for each covariate for the logistic regression model when 

g = 1 and under the independent case. 

Prior 

mean 
1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  11x  12x  

0.2 0.56 0.31 0.53 0.11 0.12 0.13 0.15 0.10 0.14 0.13 0.12 0.12 

0.4 0.49 0.47 0.50 0.23 0.13 0.14 0.14 0.13 0.19 0.16 0.15 0.13 

0.6 0.40 0.42 0.46 0.27 0.19 0.17 0.16 0.24 0.24 0.16 0.19 0.21 

0.8 0.39 0.40 0.45 0.29 0.19 0.24 0.18 0.24 0.25 0.24 0.17 0.19 

Table 2. The inclusion probability for each covariate for the logistic regression model when 

g = 1 under the correlated case. 

Prior 

mean 
1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  11x  12x  

0.2 0.28 0.29 0.30 0.23 0.21 0.19 0.16 0.08 0.06 0.08 0.08 0.07 

0.4 0.27 0.29 0.28 0.21 0.29 0.11 0.19 0.13 0.14 0.06 0.08 0.15 

0.6 0.25 0.21 0.29 0.21 0.17 0.26 0.18 0.16 0.13 0.12 0.17 0.16 

0.8 0.25 0.23 0.27 0.20 0.26 0.19 0.22 0.18 0.13 0.17 0.18 0.17 

As can be seen from Tables 1 and 2, the inclusion probability is high when the effect size is high 

for an associated covariate (i.e., 1x , 2x , and 3x  ), with 500 covariates under the independent case. 

Moreover, the inclusion probability for other covariates is less than those for the associated covariates 

in all situations, since the true model contains all 3 covariates. 

3.2. Application  

This dataset highlights a GWAS of heart disease from Prof. Sandosh Padmanabhan’s lab at 

Cardiovascular Sciences at Glasgow. A partial analysis of the data is covered in Padmanabhan and 

Joe (2017). There are 5312 observations; however, after excluding rows with missing values, 5158 

observations remain. Moreover, there are only 3731 that match the genotype data by the patient ID. 

The covariates measured include the ID, age, sex, body mass index (BMI), smoking behavior, and the 

existence of previous cardiovascular diseases. There are two response variables. The first is severe 

stage 2 hypertension, where a person either has a systolic blood pressure (SBP) greater than or equal to 

140 mmHg or a diastolic blood pressure (DBP) greater than or equal to 90 mmHg. The second outcome 

variable is a “hypertensive crisis”, when a person has a blood pressure higher than 180/120 mmHg, thus 

requiring urgent medical care. There are 15,221 associated covariates of SNP genotype information 

for each individual. 

The results from Table 3 show that some covariates are selected in both methods -  BVS and 

LASSO; a fraction of these overlap and could potentially indicate stronger signals within the data. 

Figure 1 shows the traceplot, autocorrelation for sampled values, and the posterior regression 

coefficient when using a Bayesian variable selection.  As we note, sampled values of the Bayesian 

framework are well mixed and a present satisfactory stability for the autocorrelation.  
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Table 3. The summary of SNP when using Bayesian, glmnet package via .min and .1se . 

SNP Bayesian .min  .1se  

rs12905013    

rs1863464    

rs1619030    

rs10519226    

rs2442464    

rs1055879    

rs745636    

rs1719336    

rs999787    

rs1718939    

rs8039254    

rs2165488    

rs1865923    

rs12902710    

rs8027171    

rs12591031    

rs1392161    

rs1719336    

 

Figure 1. Traceplot and autocorrelation for regression coefficient. 

4. Conclusions 

Computing the marginal inclusion probability of each variable helps determine whether the 

variable should be included in the model. Under the case of independent covariates, the inclusion 

probabilities of the associated covariates appeared to increase when the effect size increased. For 

example, the inclusion probabilities of the associated covariates were about 0.5 when the effect size 

was 1, whereas the inclusion probabilities of the associated covariates were nearly 1 when the effect 

size was 1.5. When the effect size was low (  = 0.5), the inclusion probabilities were also low for the 
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associated covariates. The estimation of the regression coefficients for the associated covariates and 

the non-associated covariate values were accurate (similar to the true effect size). Moreover, we saw 

that when the Binomial proportion of the generative model (p) increased to be closer to 0.5, the 

inclusion probability also increased. Moreover, this study suggested higher inclusion probabilities with 

higher effect sizes ( = 1.5, 2). For the correlated cases, the inclusion probabilities under the low 

correlation were higher than that of the high correlation. For example, when r = 0.1, the inclusion 

probabilities of about 0.6 dropped to inclusion probabilities of about 0.2 when r = 0.8. The inclusion 

probabilities of the associated covariates were increased when the effect size increased. A similar result 

was witnessed when the probability p of the generative Binomial distribution increased. Taken together, 

inclusion probabilities increased as p was increased. 

In the future, we will consider the Fisher information for the variable selection used in ranked set 

sampling from the simple linear regression model [14].  
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