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1. Introduction

Accurately quantifying uncertainties in the lifetime of systems is of importance for engineers
involved in survival analysis. It is widely acknowledged that systems with longer lifetimes and lower
uncertainty are considered superior, while system reliability diminishes as uncertainties increase (refer
to Ebrahimi and Pellery [1] for further details). Now, let us consider a nonnegative random variable
X that is absolutely continuous, characterized by its probability density function (PDF) denoted as f .
The Renyi entropy, which measures the uncertainty in a system, can be defined as

Hγ(X) = ε(γ) log
∫ ∞

0
f γ(x)dx, (γ > 0, γ , 1), (1.1)
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where “log(·)” means natural logarithm and ε(γ) = 1/(1 − γ). The Shannon differential entropy,
introduced by Shannon [2], has been acquired through H(X) = lim

γ→1
Hγ(X) = −E[log f (X)]. It is

important to note that the Shannon differential entropy serves as a measure of the uniformity of
a probability density function. The highest entropy value is achieved when the density function
is uniformly distributed. Consequently, large values of entropy indicate higher uncertainty in the
probability density function f and less capacity to anticipate future outcomes of X.

In the context of assessing the lifetime of a new system, the Renyi entropy Hγ(X) serves as a
valuable metric for quantifying uncertainty. However, there are scenarios where operators possess
knowledge about the system’s current age. In some situations, it is often necessary to assess the
uncertainty associated with system’s residual lifetime, denoted as Xt = [X − t|X > t]. This implies
that the system’s lifetime extends beyond a certain time period t, and it raises the question of the
remaining uncertainty associated with it. This situation arises when individuals or organizations seek
to make informed decisions or predictions based on the remaining system’s lifespan. In this case, the
conventional Renyi entropy is no longer suitable for measuring uncertainty. To handle this restriction,
the notion of the residual Renyi entropy (RRE) has been raised, which is defined as follows (refer to
Gupta and Nanda [3] for further details):

Hγ(X; t) = ε(γ) log
∫ ∞

0
f γt (x)dx,= ε(γ) log

∫ ∞

t

(
f (x)

F(t)

)γ
dx (1.2)

= ε(γ) logE[ f γ−1
t (Xt)] = ε(γ) log

∫ 1

0
f γ−1
t (F

−1
t (u))du, γ > 0, (1.3)

where ft(x) = f (x + t)/F(t), x, t > 0, denotes the PDF of Xt, F(t) = P(X > t) stands for the survival
function of X, and F

−1
t (u) = inf{x; F t(x) ≥ u} is known as the quantile function of F t(x) = F(x +

t)/F(t), x, t > 0. The concept of Hγ(X; t) holds significant interest among researchers from diverse
scientific and engineering disciplines. It stands as a generalization of the classical Shannon differential
entropy, offering a range of valuable properties and applications. Scholars such as [3–5] and numerous
others have extensively explored the properties of Hγ(X; t). Recently, Mesfioui et al. [6] investigated
a coherent system’s residual lifetime by using the notion of the Renyi entropy when all components
of the system are alive until time t using the system signature and provided several findings for it.
Their contributions have significantly contributed to the understanding and utilization of this entropy
measure.

The study of record values has witnessed a sustained increase in interest since its inception by
Chandler [7]. Record value data finds application in diverse practical scenarios, including destructive
stress testing, sporting events, meteorological analysis, oil and mining surveys, hydrology, seismology,
and more. A specific example can be found in Glick [8], where the breaking strength of wooden
beams is tested. For a comprehensive overview of the theory and application of record values, refer to
Ahsanullah [9], Arnold et al. [10], and the references provided therein.

Statistical inference based on record data encounters significant challenges due to the rarity of
record occurrences in practical situations, coupled with the fact that the expected waiting time for
subsequent records is infinite after the first record. In certain scenarios, the focus may shift to the
second or third largest values, presenting further complexities. For instance, in the field of actuarial
science, when examining insurance claims in nonlife insurance (refer to Kamps [11]), the conventional
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record model proves inadequate. To address these issues, the model of k-record statistics, introduced
by Dziubdziela and Kopocinski [12], offers a suitable alternative.

Zarezadeh and Asadi [13] conducted an investigation into the properties of the Renyi entropy
pertaining to order statistics and record values. Habibi et al. [14] examined the Kullback-Leibler
information of such records, while Abbasnejad and Arghami [15] focused on Renyi information.
Baratpur et al. [16] recently studied information properties of records using Shannon entropy and
mutual information, providing entropy bounds. Recently, Jose and Sathar [17] comprehensively
discussed the Renyi entropy and important properties of k-records derived from continuous
distributions. They also represented noteworthy applications of Renyi entropy for k-records and
proposed a simple estimator along with a numerical illustration using real-life data. Moreover, Asha
and Chacko [18] explored and investigated several properties of the RRE of k-record values originating
from an absolutely continuous distribution including representation, bounds, and stochastic orders. In
contrast, Asha and Chacko [19] conducted a study exploring the properties of Verma entropy, which
serves as a broader framework encompassing Renyi’s entropy. Their investigation focused on k-record
values derived from an absolutely continuous distribution, aiming to uncover key characteristics and
insights within this context. Furthermore, Shrahili and Kayid [20] conducted a study on the residual
Tsallis entropy of upper record values obtained from independent and identically distributed random
variables. Building upon this work, this paper delves into further investigations and presents detailed
results on the Renyi entropy of k-records derived from continuous distributions.

The result of this paper is organized as follows: In Section 2, we discuss the implications of the
Renyi entropy order, considering both the usual stochastic order and dispersive order. We establish
these implications under certain sufficient conditions and apply them to the context of k-record values.
Section 3 presents additional results focusing on the monotonicity properties of the RRE of k-record
values, specifically considering the aging properties of the component lifetimes. Moving to Section 4,
we explore and derive various properties of the Renyi entropy for the residual n-th upper k-records
when the first record exceeds a specified threshold level. In Section 5, we present a parametric estimator
of the Renyi entropy of nth upper k-records. Finally, Section 6 serves as the conclusion of the paper,
summarizing the key findings and contributions.

“ Throughout this paper, we consider nonnegative random variables denoted by X and Y . These
variables have absolutely continuous cumulative distribution functions (CDFs) denoted by F(x) and
G(x), survival functions denoted by F(x) and G(x), and PDFs denoted by f (x) and g(x), respectively.
The terms “increasing” and “decreasing” are used in a non-strict sense. We adopt the following notions:
The increasing failure rate (IFR) and decreasing failure rate (DFR), the new worse than used (NWU),
the usual stochastic order denoted by X ≤st Y , the hazard rate order denoted by X ≤hr Y , and the
dispersive order denoted by X ≤d Y . For informal definitions and properties of these notions, we refer
readers to the work of Shaked and Shanthikumar [21]. ”

2. Results on Renyi entropy of k-records

Here, we present additional findings concerning the Renyi entropy of k-records. Let us consider a
sequence of independent and identically distributed (i.i.d.) random variables denoted by {Xi, i ≥ 1},
with a CDF of F(x) and a PDF of f (x). An observation X j is termed an upper record value if it is greater
than Xi for every j > i. To quantify these upper record values, Dziubdziela and Kopocinski [12]
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introduced the indices {Rk(n), n ≥ 1}, which represent the times of the n-th upper k-record for the
sequence {Xi, i ≥ 1}, defined by

Rk(1) = 1, Rk(n + 1) = min{ j : j > Rk(n), X j: j+k−1 > XRk(n):Rk(n)+k−1},

where X j:m represents the j-th order statistic coming from i.i.d. random variables of size m. So, one
can define Un(k) as a sequence of n-th upper k-record values of the sequence {Xi, i ≥ 1}, given by
Un(k) = XRk(n):Rk(n)+k−1. It follows that

fn(k)(x) =
kn

Γ(n)
[F(x)]k−1[− log F(x)]n−1 f (x), x > 0, (2.1)

Fn(k)(x) = [F(x)]k
n−1∑
i=0

[−k log F(x)]i

i!
=

Γ(n,−k log F(x))
Γ(n)

, x ≥ 0, (2.2)

where
Γ(a, x) =

∫ ∞

x
ua−1e−udu, a, x > 0, (2.3)

is known as the incomplete gamma function and Γ(n) = Γ(n, 0) is known as the complete gamma
function. The Renyi entropy of n-th upper k-record values can be defined as

Hγ(Un(k)) = ε(γ) log
∫ ∞

0
f γn(k)(x)dx, (2.4)

for all γ > 0, γ , 1. In their comprehensive study, Jose and Sathar [17] extensively explored the
Renyi entropy of k-records originating from continuous distributions, including deriving expression
and bounds for the Renyi entropy of k-records. Furthermore, the study presented several fundamental
properties associated with the Renyi entropy of k-records. Building upon the aforementioned research,
this study extends the investigation into the Renyi entropy of k-records. Let us first introduce the
following theorem.

Theorem 2.1. Let us suppose nonnegative random variables X and Y, where their PDFs are provided
by f (x) and g(x), respectively. Additionally X ≤st Y and Y is DFR, thenHγ(X) ≤ Hγ(Y), for all γ > 1.

Proof. Let us assume that Y is DFR and X is stochastically smaller than Y , represented as X ≤st Y .
Consequently, we can derive the following:∫ ∞

0
gγ(x)dx =

∫ ∞

0
g(x)gγ−1(x)dx

≤

∫ ∞

0
f (x)gγ−1(x)dx

≤

(∫ ∞

0
f γ(x)dx

) 1
γ
(∫ ∞

0

(
gγ−1(x)

) γ
γ−1 dx

) γ−1
γ

=

(∫ ∞

0
f γ(x)dx

) 1
γ
(∫ ∞

0
gγ(x)dx

) γ−1
γ

.

(2.5)
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To establish the inequality presented in (2.5), we begin by observing that the stochastic ordering
X ≤st Y yields EX[gγ−1(X)] ≥ EY[gγ−1(Y)] for γ > 1. This inequality arises from the fact that g(x)
decreases in x since Y is DFR. Applying Hölder’s inequality, we derive the second inequality. By
utilizing Eqs (1.1) and (2.5), we can conclude that the desired result is obtained. �

It is important to highlight that DFR distributions encompass significant examples such as the
gamma and Weibull distributions with shape parameters less than one, the Pareto distribution, and
mixtures of exponential distributions. The applicability of Theorem 2.1 extends to these DFR
distributions as well as others. Additionally, we present another valuable theorem in the following.

Theorem 2.2. Let us suppose nonnegative random variables X and Y where their PDFs are provided
by f (x) and g(x), respectively. If f (x) is increasing in x and X ≤st Y, thenHγ(X) ≥ Hγ(Y) for γ > 1.

Proof. Assume that the PDF f (x) is increasing in x, and X ≤st Y . Utilizing analogous reasoning to the
proof of Theorem 2.1, we can establish the following deduction:∫ ∞

0
f γ(x)dx ≤

(∫ ∞

0
gγ(x)dx

) 1
γ
(∫ ∞

0
f γ(x)dx

) γ−1
γ

. (2.6)

By applying Eqs (1.1) and (2.6), we can derive the desired result. �

The following corollary applies the above theorem to the k-record values.

Corollary 2.1. Let X be a non negative random variable in which f (x) is increasing in x. For a fixed
n, k ≥ 1, if X ≤st Un(k), thenHγ(X) ≥ Hγ(Un(k)) for γ > 1.

Proof. Since X has an increasing probability density function, we can readily obtain the desired results
by applying Theorem 2.2. �

The following example delivers an application of Corollary 2.1 which demonstrates that the Renyi
entropy in the original random variable is greater than that of n-th upper k-records derived from the
original random variable. Furthermore, we provide a counterexample to demonstrate that Corollary 2.1
does not hold for all values of 0 < γ < 1.

Example 2.1. Let’s consider a random variable X that follows a uniform distribution on (2, 7),
characterized by a PDF given by f (x) = 1

5 for 2 < x < 7. We utilize the Renyi entropy as a measure
of uncertainty associated with the random variable X. Applying Eq (1.1), we find that Hγ(X) = log 5.
Next, we determine the Renyi entropy of Un(k) using Eq (2.4), which can be calculated as follows:

Hγ(Un(k)) = ε(γ) log
[

knγ

Γγ(n)5γ−1

Γ(γ(n − 1) + 1)
(γ(k − 1) + 1)γ(n−1)+1

]
.

It is obvious that the Renyi entropy of X does not depend on the parameter γ. In this case, since
f (x) is an increasing function of x, we can proceed with the analysis. Assuming n = 10, we plotted
the graph of Fn(k)(x) − F(x) for various values of k = 1, 2, . . . , 8 in Figure 1. The graph shows that
F10(k)(x) − F(x) ≥ 0 for all values of 2 < x < 7 when k = 1, 2, 3, 4. However, this inequality does
not hold for all values of 2 < x < 7 when k = 5, 6, 7, 8. Hence, we can conclude that X ≤st U10(k) for
k = 1, 2, 3, 4. Consequently, the assumption of Corollary 2.1 holds true, allowing us to conclude that
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Hγ(X) ≥ Hγ(U10(k)) for k = 1, 2, 3, 4 and γ > 1. We further plotted the graph of Hγ(X) − Hγ(U10(k)),
for k = 1, 2, 3, 4 in the left panel and for k = 5, 6, 7, 8 in the right panel in Figure 2. It is evident from
the graph thatHγ(X) − Hγ(U10(k)) ≥ 0, for k = 1, 2, 3, 4 and γ > 1, while the same inequality does not
hold for k = 5, 6, 7, 8. So, one can result that the uncertainty of X, as measured by the Renyi entropy,
is greater than that of U10(k) for k = 1, 2, 3, 4 and γ > 1. Furthermore, as depicted in Figure 3, we can
observe that the inequality Hγ(X) − Hγ(U10(k)) ≥ 0, does not hold for k = 1, 2, 3, 4 when 0 < γ < 1,
despite the fact that X ≤st U10(k) holds true for k = 1, 2, 3, 4.
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Figure 1. The F10(k)(x) − F(x) for k = 1, 2, 3, 4 (left panel) and k = 5, 6, 7, 8 (right panel)
with respect to 2 < x < 7.
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Figure 3. The values ofHγ(X) −Hγ(U10(k)) for k = 1, 2, . . . , 8 when 0 < γ < 1.

Let us consider the random variable UX
n(k1), which represents the n-th upper k1-record value made of

i.i.d. sequence of {Xi, i ≥ 1} with a common CDF F. Additionally, we define UY
n(k2) as the n-th upper

k2-record value in the i.i.d. sequence {Yi, i ≥ 1} having the common CDF G, satisfying the condition
k1 ≥ k2. In the next theorem, we establish sufficient conditions for ordering the Renyi entropy of two
records in relation to the dispersive order of the parent distribution and under sufficient conditions.

Theorem 2.3. In the case where either X or Y is DFR and if X ≤d Y, then Hγ(UX
n(k1)) ≤ Hγ(UY

n(k2)) for
γ > 0 when k1 ≥ k2.

Proof. The result can be derived from Part (c) of Theorem 2.1 in the work of Khaledi and Shojaei [22]
and Theorem 2.1 presented by Abbasnejad and Arghami [23]. �

Example 2.2. Consider a sequence of i.i.d. random variables {Xi, i ≥ 1} following the Makeham
distribution. The survival function of X is given by F(x) = e−x+θ(x+e−x−1), where x > 0, and θ > 0.
The hazard rate of X is λX(x) = f (x)/F(x) = 1 + θ(1 − e−x). Similarly, let {Yi, i ≥ 1} be another
sequence of i.i.d. random variables following an exponential distribution with the survival function
G(x) = g(x)/G(x) = e−x, where x > 0, and the hazard rate function λY(x) = 1. It can be shown
that X ≤hr Y for θ > 0, and Y is DFR. Therefore, we conclude that X ≤d Y based on the result
established by Bagai and Kochar [24]. As a consequence, Theorem 2.3 becomes applicable, implying
thatHγ(UX

n(k1)) ≤ Hγ(UY
n(k2)) for γ > 0 when k1 ≥ k2.

3. Results on RRE of k-record values

In the subsequent analysis, we focus shifts toward investigating the RRE of the random variable
Un(k). This quantity quantifies the uncertainty present in the density of [Un(k) − t|Un(k) > t] and provides
insights into residual lifetime’s predictability of n-th upper k-records. Asha and Chacko [18] studied
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several properties of the RRE of k-record values arising from an absolutely continuous distribution. In
this regard, they obtained the following representation:

Hγ(Un(k); t) = Hγ(U?
n(k); F(t)) + ε(γ) logE[ f γ−1(F−1(1 − e−Vn(k)))], t > 0, (3.1)

where U?
n(k) denotes the nth upper k-record of uniform distribution over (0, 1) and Vn(k) ∼ Γ− log F(t)(γ(n−

1)+1, γ(k−1)+1). Here, the notation V ∼ Γτ(b, d) indicates that the random variable V has a truncated
Gamma distribution with the following PDF:

fV(z) =
db

Γ(b, τ)
zb−1e−dz, z > τ > 0, (3.2)

such that b > 0 and d > 0. The aging property of the random variable X has a vital role in shaping the
behavior of its RRE for a given order γ > 0. To establish this connection, we present the following
theorem, which demonstrates how the IFR (DFR) property of the parent distribution impacts the
characteristics of the RRE for record values.

Theorem 3.1. Let X have IFR(DFR) property, thenHγ(X; t) is decreasing (increasing) in t.

Proof. We specifically concentrate on the scenario where X has IFR property, although a similar
approach can be applied when X is DFR. It is worth noting that ft(F

−1
t (u)) = uλt(F

−1
t (u)) for 0 < u < 1,

where λt(x) = ft(x)/F t(x) represents the hazard rate of the conditional distribution [X − t|X > t]. This
relationship allows us to express Eq (1.3) as follows:

e(1−γ)Hγ(X;t) =

∫ 1

0
uγ−1

(
λt(F

−1
t (u))

)γ−1
du, t > 0, (3.3)

for all γ > 0. We can easily verify that

λt(F
−1
t (u)) = λ(F

−1
t (u) + t) = λ(F

−1
(uF(t))), 0 < u < 1. (3.4)

For t1 ≤ t2, we have F
−1

(uF(t1)) ≤ F
−1

(uF(t2)). Consequently, in the case where X exhibits an IFR
property, for all γ > 1 (0 < γ ≤ 1), we obtain the following inequality:∫ 1

0
uγ−1

(
λt1(F

−1
t1 (u))

)γ−1
du =

∫ 1

0
uγ−1

(
λ(F

−1
(uF(t1)))

)γ−1
du

≤ (≥)
∫ 1

0
uγ−1

(
λ(F

−1
(uF(t2)))

)γ−1
du

=

∫ 1

0
uγ−1

(
λt2(F

−1
t2 (u))

)γ−1
du,

for all t1 ≤ t2. Using (3.3), we get

e(1−γ)Hγ(X;t1) ≤ (≥)e(1−γ)Hγ(X;t2),

when γ > 1(0 < γ ≤ 1), and this completes the proof by recalling (1.2). �

The subsequent theorem establishes the impact of the IFR property on the behavior of the RRE of
k-record values.

Theorem 3.2. Assume X to be IFR. Thus, for all γ > 0,Hγ(Un(k); t) is decreasing in t.
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Proof. The assumption that X is IFR leads to the conclusion that Un(k) also possesses an IFR property,
as indicated in the remark provided by Raqab and Amin [25]. Consequently, we can deduce that the
RRE Hγ(Un(k); t), for all γ > 0, exhibits a decreasing behavior in t in accordance with the findings
presented in Theorem 3.1. �

The next example demonstrates how to use Theorem 3.2.

Example 3.1. Assume a sequence of i.i.d. random variables {Xi, i ≥ 1} that follows a common Weibull
distribution with the CDF as

F(x) = 1 − e−x3
, x > 0. (3.5)

It is not hard to see that f (F−1(1 − e−u)) = 3u
2
3 e−u, 0 < u < 1, then, we can calculate

E[ f γ−1(F−1(1 − e−Vn(k)))] =
3γ−1(γ(k − 1) + 1)γ(n−1)+1Γ(γ(n − 1

3 ) + 1
3 , γkt3)

(γk)γ(n− 1
3 )+ 1

3 Γ(γ(n − 1) + 1, t3(γ(k − 1) + 1))
,

and

Hγ(U?
n(k); F(t)) = ε(γ) log

knγΓ(γ(n − 1) + 1, t3(γ(k − 1) + 1)))
(γ(k − 1) + 1)γ(n−1)+1Γγ(n, kt3)

.

Using (3.1), we get

Hγ(Un(k); t) = ε(γ) log
3γ−1knγΓ(γ(n − 1

3 ) + 1
3 , γkt3)

(γk)γ(n− 1
3 )+ 1

3 Γγ(n, kt3)

 , n ≥ 1. (3.6)

To investigate the behavior of the RRE Hγ(Un(k); t), we consider the case where n = 5. We plotted
Hγ(U5(k); t), with respect to t for γ = 0.5 and γ = 2 and considering different values of k = 1, 2, · · · , 5.
The resulting plots are presented in Figure 4. The observed trends in the plots align with the findings
of Theorem 3.2, which establishes that the RRE decreases as t increases when the random variable X
exhibits an IFR property.
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Figure 4. The graph of Hγ(U5(k); t) for γ = 0.5 (left panel) and γ = 2 (right panel) as a
function of t.
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The following theorem explores the relationship between the RRE functions of two random
variables and the proportional hazard rates model.

Theorem 3.3. Assume that X and Y are two absolutely continuous nonnegative random variables with
survival functions F(t) and G(t), and hazard rate functions λX(t) and λY(t), respectively. Additionally,
let θ(t) be a nonnegative increasing function satisfying the condition λY(t) = θ(t)λX(t) for t > 0, where
0 ≤ θ(t) ≤ 1. IfHγ(X; t) is a decreasing function of t, thenHγ(Y; t) is also decreasing in t for all γ > 0,

provided that lim
t→∞

G(t)

F(t)
< ∞.

Proof. We provide a proof specifically for the case where γ > 1, noting that the case 0 < γ < 1 follows
a similar reasoning. Considering Eq (1.3), it is evident that Hγ(Y; t) decreases with t if, and only if,
E[gγ−1

t (Yt)] increases with t. Let us set δ1(t) = E[ f γ−1
t (Xt)] and δ2(t) = E[gγ−1

t (Yt)]. From the derivatives
δ′1(t) = λX(t)[γδ1(t) − λγ−1

X (t)] and δ′2(t) = λY(t)[γδ2(t) − λγ−1
Y (t)], it follows that δ2(t) increases with t if

γδ2(t) ≥ λγ−1
Y (t) = θγ−1(t)λγ−1

X (t),

which holds if δ2(t) ≥ θγ−1(t)δ1(t), t > 0. Let us define the function ζ(t) as

ζ(t) = Gγ(t)
[
θγ−1(t)δ1(t) − δ2(t)

]
,

where Gγ(t) = [G(t)]γ. Next, we will demonstrate that ζ(t) ≤ 0. To begin, let us differentiate ζ(t) with
respect to t and carry out some algebraic manipulations, resulting in

ζ′(t) = −gγ(t)
(
θγ−1(t)δ1(t) − δ2(t)

)
+ Gγ(t)

{
(γ − 1)θ′(t)θγ−2(t)δ1(t) + θγ−1(t)δ′1(t) − δ′2(t)

}
= Gγ(t)

{
(γ − 1)θ′(t)θγ−2(t)δ1(t) + (1 − θ(t))θγ−1(t)δ′1(t)

}
.

Since 0 ≤ θ(t) ≤ 1 and δ1(t) is an increasing function of t, we can conclude that for γ > 1, ζ′(t) > 0,

which means that ζ(t) increases when t increases. Now, considering that lim δt→∞
G(t)

F(t)
< ∞, we obtain

lim
t→∞

ζ(t) = lim
t→∞


G(t)

F(t)

γ ∫ ∞

t
θγ−1(t) f γ(x)dx


− lim

t→∞

{∫ ∞

t
gγ(x)dx

}
= 0.

Consequently, we have ζ(t) ≤ 0 for all t, implying that θγ−1(t)δ1(t) ≤ δ2(t). This completes the proof of
the theorem. �

The following theorem gives an important result concerning the closure property of decreasing
RRE of distributions under the formation of k-record values. Hereafter, we assume that {Xi, i ≥ 1} is a
sequence of i.i.d. random variables with CDF F and PDF f , and Un(k) denotes the n-th upper k-record
values.

Theorem 3.4. If Hγ(X; t) is decreasing in t, then Hγ(Un(k); t) is also decreasing in t for all γ > 0.
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Proof. From (2.1) and (2.2), the hazard rate function of Un(k) can be written as

λn(k)(t) =
fn(k)(t)

Fn(k)(t)
= Ψn(k)(t)λ(t) (3.7)

where

Ψn(k)(t) =
[− log F(t)]n−1/Γ(n)∑n−1

i=0
[−k log F(t)]i

i!

.

It is evident that Ψn(k)(t) increases monotonically with respect to t and takes values within the range
(0, 1). Moreover, it can be readily observed that

lim
t→∞

Fn(k)(t)

F(t)
= 0.

Consequently, the assumptions of Theorem 3.3 are satisfied, thereby establishing that Hγ(Un(k); t)
decreases with respect to t for all γ > 0. �

The following example illustrates the application of Theorem 3.4.

Example 3.2. Let us consider a sequence of i.i.d. random variables {Xi, i ≥ 1} that follow a uniform
distribution on the interval [0, 1]. It is straightforward to observe that

Hγ(X; t) = log(1 − t), 0 < t < 1,

which clearly decreases with increasing t. Additionally, employing (3.1), we can derive the following
expression

Hγ(Un(k); t) = ε(γ) log
knγΓ(γ(n − 1) + 1,− log(1 − t)(γ(k − 1) + 1)))

(γ(k − 1) + 1)γ(n−1)+1Γγ(n,−k log(1 − t))
, 0 < t < 1.

To investigate the behavior of the RRE Hγ(Un(k); t), we consider the case where n = 5. We plot
the graph of Hγ(Un(k); t) for different values of γ = 0.5 and γ = 2, while varying t, and considering
different values of k = 1, 2, · · · , 5. The resulting plots are presented in Figure 5. It shows that the RRE
decreases as t increases.

The following example shows that if Hγ(X; t) is increasing in t, then Hγ(Un(k); t) need not to be
increasing in t for all γ > 0.
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Figure 5. The graph of Hγ(Un(k); t) for γ = 0.5 (left panel) and γ = 2 (right panel) as a
function of t.

Example 3.3. Let us consider a sequence of i.i.d. random variables {Xi, i ≥ 1} that follow a Pareto
distribution with the survival function F(x) = 1/(1+x), x > 0. The hazard rate of X is λX(x) = 1/(1+x),
which is a decreasing function of x. So, X is DFR and, hence, Hγ(X; t) is an increasing function of t.
Additionally, employing (3.1), we can derive the following expression:

Hγ(Un(k); t) = ε(γ) log
knγΓ(γ(n − 1) + 1, log(1 + t)(γ(k + 1) − 1)))

(γ(k + 1) − 1)γ(n−1)+1Γγ(n, k log(1 + t))
, t > 0.

We plotted the RRE Hγ(Un(k); t) for n = 5 and values of γ = 0.5 and γ = 2, while varying t
and considering different values of k = 1, 2, · · · , 5 in Figure 6. Although the function Hγ(X; t) is an
increasing function of t,Hγ(Un(k); t) need not be an increasing function of t, as shown in Figure 6.
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Figure 6. The graph of Hγ(Un(k); t) for γ = 0.5 (left panel) and γ = 2 (right panel) as a
function of t.
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Stochastic comparisons of record values have been considered in Kochar [26], Raqab and
Amin [25], Khaledi [27], and Khaledi and Shojaei [22], among others. Gupta and Kirmani [28] have
proved that the record values from an IFR distribution have IFR distribution. Kochar [26] has shown
that Un+1(1) is IFR if Un(1) is IFR, and Un(1) is DFR if Un−1(1) is DFR. Kamps [29] has also observed that
Un+1(k) is IFR if Un(k) is IFR, and that Un(k) is DFR whenever Un−1(k) is DFR. Now, using Theorem 3.3,
we compare the n-th upper k-record values in the sense of decreasing property of RRE. Let {Xi, i ≥ 1}
be a sequence of i.i.d. random variables with CDF F and PDF f . Let Un(k j), j = 1, 2, denote the n-th
upper k j-record values. Let λn(k1)(t) and λn(k2)(t) denote the hazard rates of Un(k1) and Un(k2), respectively.
It can be shown that

λn(k2)(t) = R(t)λn(k1)(t), (3.8)

where

R(t) =

(
k2

k1

)n ∑n−1
i=0

[−k1 log F(t)]i

i!∑n−1
i=0

[−k1 log F(t)]i

i!

, t > 0.

In this case, Raqaband and Amin [25] proved that for k1 > k2, the function R(t) is increasing in t and
its range is a subset of (0, 1). So, we have the following theorem.

Theorem 3.5. IfHγ(Un(k1); t) is decreasing in t, thenHγ(Un(k2); t) is also decreasing for all γ > 0 when
k1 > k2.

4. Conditional Renyi entropy of k-records

In this section, we focus on the evaluation of the residual nth upper k-records denoted as Un(k)−t, t ≥
0, under the premise that all units exceed the threshold t > 0. We define U1(1) as U1, representing the
first records. Consequently, the survival function of U t

n(k) = [Un(k)− t|U1 > t] can be expressed as (refer
to Raqab and Asadi [30])

Fn(k),t(x) = P(Un(k) − t > x|U1 > t),

=
Γ(n,−k log F t(x))

Γ(n)
, x, t ≥ 0, (4.1)

and it follows that
fn(k),t(x) =

kn

Γ(n)
[F t(x)]k−1[− log F t(x)]n−1 ft(x), x, t ≥ 0. (4.2)

In the subsequent analysis, the primary objective is to investigate the Renyi entropy associated
with the random variable U t

n(k), which quantifies the level of uncertainty inherent in the density of
[Un(k) − t|U1 > t]. To achieve this aim, the probability integral transformation Vn(k) = F t(U t

n(k)) assumes
a pivotal role in this approach. The transformation Vn(k) = F t(U t

n(k)) is of significant importance, which
has the PDF as follows:

gn(k)(u) =
kn

Γ(n)
uk−1(− log u)n−1, 0 < u < 1, n ≥ 1. (4.3)

The next theorem presents a derived expression for the Renyi entropy of U t
n(k) utilizing the

aforementioned transforms.
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Theorem 4.1. The Renyi entropy of U t
n(k) can be expressed as follows:

Hγ(U t
n(k)) = ω(γ) log

[∫ 1

0
gγn(k)(u) f γ−1

t (F
−1
t (u))du

]
, t > 0, (4.4)

for all γ > 0.

Proof. Applying u = F t(x) and recalling relations (1.2) and (4.2), it holds that

Hγ(U t
n(k)) = ω(γ) log

[∫ ∞

0

(
fU t

n(k)
(x)

)γ
dx

]
= ω(γ) log

[∫ ∞

0

(
kn

Γ(n)
[F t(x)]k−1[− log F t(x)]n−1 ft(x)

)γ
dx

]
= ω(γ) log

[∫ 1

0

(
kn

Γ(n)
(1 − u)k−1(− log(1 − u))n−1

)γ (
ft(F

−1
t (u))

)γ−1
dx

]
= ω(γ) log

[∫ 1

0
gγn(k)(u)

(
ft(F

−1
t (u))

)γ−1
du

]
.

The final equality is established by considering gn(k)(u) as the PDF of Vn(k), as given in Eq (4.3). By
incorporating this result, the proof is successfully concluded. �

The forthcoming theorem delves into the examination of how the RRE of k-record values is
influenced by the aging effects of their components.

Theorem 4.2. Let X have IFR(DFR) property. So, Hγ(U t
n(k)) is decreasing (increasing) in t for all

γ > 0.

Proof. Let X be IFR. Applying analogous reasoning to that of Theorem 3.1, we can conclude that∫ 1

0
gγn(k)(u)uγ−1

(
λt1(F

−1
t1 (u))

)γ−1
du =

∫ 1

0
gγn(k)(u)uγ−1

(
λ(F

−1
(uF(t1)))

)γ−1
du

≤ (≥)
∫ 1

0
gγn(k)(u)uγ−1

(
λ(F

−1
(uF(t2)))

)γ−1
du

=

∫ 1

0
gγn(k)(u)uγ−1

(
λt2(F

−1
t2 (u))

)γ−1
du,

for all γ > 1(0 < γ ≤ 1), and t1 ≤ t2. Using (4.4), we get

e(1−γ)Hγ(U t1
n(k)) ≤ (≥)e(1−γ)Hγ(U t2

n(k)),

when γ > 1(0 < γ ≤ 1). Consequently, for all γ > 0, it holds that Hγ(U
t1
n(k)) ≥ Hγ(U

t2
n(k)). Hence, the

theorem holds. �

The following example demonstrates the outcomes derived from Theorems 4.1 and 4.2.
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Example 4.1. Suppose we have a sequence of random variables {Xi, i ≥ 1} that are i.i.d. with a
common power function distribution. The survival function of this distribution is

F(x) = 1 − x2, 0 < x < 1. (4.5)

Using this, we can show that

Hγ(U t
n(k)) = log

(
1 − t2

2

)
+ ε(γ)

[∫ 1

0
(1 − u(1 − t2))

γ−1
2 gγn(k)(u)du

]
, t > 0.

Figure 7 illustrates the plot of the RRE Hγ(Un(k); t) for n = 5, with γ values set to 0.5 and 2. The plot
considers various values of k ranging from 1 to 5 and varying values of t. The results demonstrate that
the Renyi entropy of U t

n(k) decreases as time t increases. It is noteworthy that the distribution under
consideration exhibits the property of DFR.
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Figure 7. The values ofHγ(U t
5(k)) for the power distribution with respect to t for γ = 0.5 and

γ = 2 for k = 1, 2, 3, 4, 5.

Theorem 4.3. Let X have IFR(DFR) property, soHγ(U t
n(k)) ≤ (≥)Hγ(Un(k)) for all γ > 0.

Proof. By utilizing Theorem 4.2, we can establish that if X possesses the IFR or DFR property, then
Hγ(U t

n(k)) exhibits a decreasing or increasing behavior, respectively, with respect to the time t for any
γ > 0. Consequently, we can infer that Hγ(U t

n(k)) ≤ (≥)Hγ(U0
n(k)) = Hγ(Un(k)) for any t ≥ 0. This

observation concludes the proof. �

In the following theorem, we establish the upper and lower bounds of RRE of the lifetime of the
n-th upper k-records expressed regarding the RRE of the parent distribution denoted asHγ(X; t).

Theorem 4.4. When γ > 1 (0 < γ < 1), we have

Hγ(U t
n(k)) ≥ (≤)

γ

1 − γ
log gn(k)(v?) +Hγ(X; t), (4.6)

where gn(k)(v?) and v? = e−
n−1
k−1 .
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Proof. The mode of gn(k)(v) can be readily observed to be v? = e−
n−1
k−1 , then, we obtain gV(v) ≤

gn(k)(v?), 0 < v < 1. Thus, for γ > 1 (0 < γ < 1), we have

Hγ(U t
n(k)) = ε(γ) log

∫ 1

0
gγV(v)

(
ft(F

−1
t (u))

)γ−1
dv

≥ (≤)ε(γ) log
∫ 1

0

(
gn(k)(v?)

)γ ( ft(F
−1
t (u))

)γ−1
dv

=
γ

1 − γ
log gn(k)(v?) +Hγ(X; t).

The final equality is obtained by utilizing (1.3), leading to the desired result. �

Theorem 4.5. A lower bound forHγ(U t
n(k)) can be given as

Hγ(U t
n(k)) ≥ log F(t) +Hγ(Un(k)), (4.7)

for all γ > 0, provided that X is DFR.

Proof. Since X possesses the DFR property, it can be inferred that it is NWU, which means that F t(x) ≥
F(x), x, t ≥ 0. Consequently, we can deduce the inequality

F
−1
t (u) + t ≥ F

−1
(u), t ≥ 0, 0 < u < 1.

Furthermore, it is known that for DFR random variables, the PDF f is decreasing. This property of the
PDF implies that

f γ−1(F
−1
t (u) + t) ≤ (≥) f γ−1(F

−1
(u)), 0 < u < 1,

for all γ > 1 (0 < γ < 1). Now, Eq (4.4) yields

Hγ(U t
n(k)) = log F(t) + ε(γ) log

∫ 1

0
gγV(u) f γ−1(F

−1
t (u) + t)du

≥ log F(t) + ε(γ) log
∫ 1

0
gγV(u) f γ−1(F

−1
(u))du = log F(t) +Hγ(Un(k)),

for all γ > 0, and this completes the proof. �

When computing the lower bounds of Theorems 4.4 and 4.5 for γ > 1, it is possible to determine
the maximum value among the lower bounds.

Example 4.2. Let {Xi, i ≥ 1} be a sequence of i.i.d. random variables having a common Weibull
distribution with the survival function F(x) = e−

√
x, x > 0. It is not hard to see that

Hγ(X; t) =
γ

1 − γ

√
t + log(2) + ε(γ) log

Γ(2 − 0.5γ, γ
√

t)
γ1−0.5γ , t > 0.

The objective is to establish lower and upper bounds for the Renyi entropy of U t
8(4). It is easy to

verify that v? = e−
n−1
k−1 = 0.09697197 and, hence, g8(4)(v?) = 4.465042. Hence, based on the findings
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of Theorem 4.4, we can derive bounds for the Renyi entropy of U t
8(4) for γ > 1 (0 < γ < 1) in the

following manner:

Hγ(U t
8(4)) ≥ (≤)

γ

1 − γ

(
log g8(4)(v?) +

√
t
)

+ log(2) + ε(γ) log
Γ(2 − 0.5γ, γ

√
t)

γ1−0.5γ , (4.8)

for all t > 0. Furthermore, we can derive the lower bound, as expressed in (4.7), in the following
manner:

Hγ(U t
8(4)) ≥ ε(γ) log

∫ 1

0
gγ8(4)(u)uγ−1(− log u)1−γdu + log 2 −

√
t, t > 0, (4.9)

for all γ > 0. Under the assumption of a Weibull distribution, we have computed the bounds for
Hγ(U t

8(4)) using (4.8) (dashed line) and (4.9) (dotted line). Additionally, we obtained the exact value
of Hγ(U t

8(4)) directly from (4.4). The results are depicted in Figure 8. Upon examination, we observe
that the lower bound given by (4.9) (dotted line) outperforms the lower bound provided by (4.8) for
γ > 1. The graphical representation in Figure 8 visually demonstrates the superiority of the lower
bound obtained from (4.9) over (4.8) for γ > 1.
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Figure 8. Exact bounds ofHγ(U t
n(k)) for the Weibull distribution with respect to time t.

In the context of considering the uncertainties associated with two k-records, we investigate the
ordering of Renyi entropies of k-records under the condition that, in the first record, in both records
there are greater unspecified thresholds of t > 0. In this regard, we present a theorem that compares
the residual Renyi entropies of these two records.

Theorem 4.6. Let UX,t
n(k) and UY,t

n(k) denote two residual records coming from i.i.d. sequences {Xi, i ≥ 1}
and {Yi, i ≥ 1} having the common CDFs F and G, respectively. When X ≤d Y and either X or Y
possesses the IFR property, we can establish thatHγ(UX,tn(k)) ≤ Hγ(UY,t

n(k)) holds true for all γ > 0.

Proof. By utilizing the relationship defined in Eq (4.4), it reduces to demonstrating that Xt is smaller
than Yt in the dispersive order, i.e., Xt ≤d Yt. Given the assumption that X is less than Y in the dispersive
order and that either X or Y possesses the IFR property, by applying the proof provided in Theorem 5
of the reference [31], we can establish that Xt ≤d Yt. Hence, the theorem holds. �
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Example 4.3. Let us consider residual k-records UX,t
n(k) and UY,t

n(k) based on sequences of i.i.d. residual
random variables, denoted as {Xi, i ≥ 1} and {Yi, i ≥ 1}, having the common survival functions F and
G, respectively. Consider the scenario where X pursues a Weibull distribution with shape parameter 3
and scale parameter 1 (i.e., X ∼ W(3, 1)), and Y pursues a Weibull distribution with shape parameter 2
and scale parameter 1 (i.e., Y ∼ W(2, 1)). It is evident that X is stochastically smaller than or equal to Y
in the dispersive order, i.e., X ≤d Y . Additionally, both X and Y are characterized by the IFR property.
By applying Theorem 4.6, we can conclude that for any γ > 0, the Renyi entropy of UX,t

n(k) is less than
or equal to the Renyi entropy of UY,t

n(k), i.e.,Hγ(UX,t
n(k)) ≤ Hγ(UY,t

n(k)).

5. Numerical computations

Numerical studies have always played a complementary role to the theoretical approach in the
literature. In this section, we conduct a simulation study to estimate the Renyi entropy of the nth upper
k-record based on the maximum likelihood estimator (MLE) of a random sample in the parametric case.
First, we obtain the MLE of the Renyi entropy of the nth upper k-record based on a simulated random
sample from the exponential distribution with mean 1

λ
. Consider a random sample X1, X2, . . . , Xn drawn

from an exponential distribution with mean 1
λ

with PDF

f (t) = λe−λt, t ≥ 0, λ > 0.

By using (2.4), it is obvious that the Renyi entropy of the nth upper k-record can be expressed as
follows:

Hγ(Un(k)) =
1

1 − γ
log

[
knγ

Γγ(n)
λγ−1Γ(γ(n − 1) + 1)

(kγ)γ(n−1)+1

]
. (5.1)

The MLE for λ is obtained as

λ̂ =
n∑n

i=1 Xi
=

1

X
.

To evaluate the performance of the proposed MLE for Hγ(Un(k)) on simulated exponential data, we
calculate the average bias and mean square error (MSE) of the estimator. Since the MLE is an invariant
estimator, we can estimate Hγ(Un(k)) for an exponential distribution using the MLE of λ, which is
expressed as follows:

Ĥγ(Un(k)) =
1

1 − γ
log

 knγ

Γγ(n)
λ̂γ−1Γ(γ(n − 1) + 1)

(kγ)γ(n−1)+1


=

1
1 − γ

log

 knγ

Γγ(n)
Γ(γ(n − 1) + 1)

X
γ−1

(kγ)γ(n−1)+1

 , (5.2)

for k = 1, 2, · · · , n. The bias and MSE of the estimates are computed for different sample sizes (n =

20, 30, 40, 50) and various values of the parameters λ, γ, and k. The estimates are obtained from 5000
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repetitions. The results are presented in Tables 1–3. It is evident from the tables that the bias and MSE
of the estimator for the Renyi entropy of the nth upper k-record decrease as the sample size increases.
This indicates that as the sample size becomes larger, the accuracy of the estimator improves.

Table 1. The bias and MSE of the estimate of Renyi entropy of the nth upper k-record value
for different choices of γ when λ = 0.5.

γ = 0.25 γ = 0.5 γ = 1.5 γ = 2
n k Bias MSE Bias MSE Bias MSE Bias MSE
20 1 -0.723572 0.568931 -0.722112 0.563712 -0.719403 0.572620 -0.714141 0.573233

5 -0.716497 0.568104 -0.714180 0.571727 -0.718204 0.570663 -0.719447 0.563243
8 -0.716839 0.567735 -0.711634 0.572746 -0.714919 0.569857 -0.717714 0.561210
10 -0.720055 0.569197 -0.719609 0.565455 -0.724326 0.569313 -0.718558 0.566871
15 -0.716368 0.563779 -0.720652 0.581269 -0.714743 0.570726 -0.716109 0.567842

25 1 -0.710577 0.554173 -0.705725 0.560503 -0.712234 0.551846 -0.713835 0.553181
5 -0.711691 0.556429 -0.709240 0.547388 -0.713106 0.546327 -0.711553 0.552503
8 -0.711625 0.555559 -0.712987 0.552518 -0.712949 0.545672 -0.713238 0.554599
10 -0.706001 0.552868 -0.712386 0.547289 -0.713963 0.552246 -0.710721 0.550837
15 -0.710208 0.552865 -0.713606 0.548887 -0.717116 0.554143 -0.717924 0.547950

30 1 -0.705337 0.536905 -0.712371 0.541493 -0.710517 0.533954 -0.706567 0.533200
5 -0.706220 0.534238 -0.712157 0.536727 -0.713667 0.542586 -0.708138 0.538059
8 -0.706371 0.537250 -0.708027 0.538675 -0.712718 0.538023 -0.708954 0.538286
10 -0.709739 0.532792 -0.708000 0.539679 -0.705055 0.536008 -0.710137 0.538086
15 -0.712938 0.534418 -0.709319 0.535311 -0.709323 0.535483 -0.709814 0.536602

50 1 -0.699265 0.519117 -0.703930 0.516939 -0.703269 0.514384 -0.706338 0.516335
5 -0.703137 0.513672 -0.704965 0.512922 -0.701257 0.518997 -0.699364 0.516436
8 -0.702592 0.518221 -0.705283 0.515041 -0.704264 0.514328 -0.703589 0.518070
10 -0.702760 0.518590 -0.704987 0.514618 -0.704003 0.514521 -0.703010 0.508464
15 -0.702423 0.509657 -0.701563 0.515991 -0.703708 0.514922 -0.702866 0.513654

Table 2. The bias and MSE of the estimate of Renyi entropy of the nth upper k-record value
for different choices of γ when λ = 1.

γ = 0.25 γ = 0.5 γ = 1.5 γ = 2
n k Bias MSE Bias MSE Bias MSE Bias MSE
20 1 -0.020759 0.053079 -0.023149 0.050987 -0.027957 0.051829 -0.030385 0.055046

5 -0.028763 0.051505 -0.026178 0.050486 -0.020245 0.051568 -0.023435 0.052691
8 -0.032085 0.051423 -0.033675 0.050485 -0.027125 0.051564 -0.027220 0.052493
10 -0.025197 0.052157 -0.029183 0.052112 -0.022448 0.052150 -0.025951 0.052020
15 -0.026822 0.052507 -0.018934 0.052625 -0.023091 0.051922 -0.023160 0.052353

25 1 -0.018420 0.042192 -0.018407 0.041429 -0.023150 0.041449 -0.022388 0.041553
5 -0.021719 0.041065 -0.017738 0.041917 -0.022827 0.040748 -0.017727 0.040347
8 -0.021331 0.042071 -0.021282 0.039726 -0.020575 0.041062 -0.018686 0.041289
10 -0.018933 0.040485 -0.023537 0.041685 -0.025199 0.041462 -0.018041 0.040687
15 -0.018747 0.041590 -0.021664 0.039868 -0.025146 0.040042 -0.022504 0.040269

30 1 -0.017938 0.033794 -0.016626 0.034327 -0.016713 0.033391 -0.017305 0.034871
5 -0.011626 0.034420 -0.016033 0.034685 -0.019911 0.034814 -0.017391 0.035195
8 -0.012365 0.033793 -0.017986 0.033753 -0.019336 0.033837 -0.021089 0.033500
10 -0.020154 0.032541 -0.015602 0.033992 -0.019249 0.034011 -0.017132 0.034425
15 -0.016845 0.033864 -0.016096 0.034972 -0.015493 0.034529 -0.017059 0.034555

50 1 -0.006822 0.020029 -0.009460 0.020310 -0.011465 0.021160 -0.012787 0.019426
5 -0.008034 0.020381 -0.007225 0.020042 -0.009197 0.020205 -0.010454 0.020537
8 -0.009479 0.020006 -0.010698 0.021015 -0.012118 0.020140 -0.009141 0.020919
10 -0.009439 0.019920 -0.009974 0.020340 -0.009807 0.021056 -0.012961 0.020056
15 -0.010529 0.020523 -0.013843 0.019692 -0.009743 0.020506 -0.009763 0.020715
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Table 3. The bias and MSE of the estimate of Renyi entropy of the nth upper k-record value
for different choices of γ when λ = 2.

γ = 0.25 γ = 0.5 γ = 1.5 γ = 2
n k Bias MSE Bias MSE Bias MSE Bias MSE
20 1 0.666239 0.499101 0.666763 0.486859 0.663885 0.492163 0.668948 0.492054

5 0.667630 0.496912 0.669362 0.501246 0.664270 0.497375 0.667801 0.498755
8 0.666578 0.504952 0.669458 0.501003 0.668022 0.489390 0.671396 0.496988
10 0.670596 0.500284 0.667084 0.495751 0.667897 0.492739 0.666356 0.507184
15 0.668470 0.491366 0.673631 0.501388 0.664114 0.499369 0.668836 0.493331

25 1 0.672902 0.490622 0.676473 0.495529 0.670497 0.499717 0.672626 0.493282
5 0.674959 0.492944 0.671622 0.495291 0.669380 0.491898 0.672235 0.498776
8 0.669700 0.495498 0.674938 0.494999 0.675294 0.495822 0.674558 0.497930
10 0.675557 0.499685 0.672397 0.500511 0.671875 0.497052 0.671476 0.498202
15 0.673004 0.496579 0.670080 0.488081 0.675153 0.493800 0.676860 0.495217

30 1 0.676921 0.489142 0.676960 0.490480 0.675866 0.490181 0.677345 0.496267
5 0.679184 0.496520 0.677942 0.490316 0.670262 0.497349 0.675464 0.485984
8 0.676251 0.492185 0.673295 0.492892 0.679993 0.487142 0.670006 0.491588
10 0.678427 0.487291 0.677004 0.493599 0.678527 0.493825 0.676112 0.485600
15 0.677903 0.491908 0.677469 0.487813 0.670491 0.492821 0.676096 0.494919

50 1 0.681410 0.485012 0.681908 0.489576 0.682303 0.485752 0.682743 0.489870
5 0.684103 0.489767 0.683600 0.487172 0.684824 0.482836 0.682178 0.485626
8 0.681539 0.487943 0.686444 0.490705 0.685825 0.489912 0.684794 0.486353
10 0.682694 0.487194 0.683952 0.486003 0.683512 0.489597 0.686123 0.485053
15 0.681053 0.487599 0.680047 0.488736 0.682141 0.484299 0.687791 0.485262

Hereafter, we present the performance of the given estimator on both actual and simulated data,
assuming a standard exponential distribution.

Example 5.1. To examine the spread of the COVID-19 pandemic, Kasilingam et al. [32] utilized
an exponential model. Specifically, they focused on identifying countries that exhibited early signs
of containment measures up until March 26, 2020. The dataset used in their analysis consists of the
percentage of infected cases in 42 countries, which are listed below:
Dataset: 1.56, 8.51, 2.17, 0.37, 1.09, 9.84, 4.95, 3.18, 11.37, 2.81, 6.22, 1.87, 0.00, 0.00, 9.05, 2.44,
1.38, 4.17, 3.74, 1.37, 2.33, 7.80, 2.10, 0.47, 2.54, 4.92, 0.09, 0.18, 1.72, 1.02, 0.62, 2.34, 0.50, 2.37,
3.65, 0.59, 5.76, 2.14, 0.88, 0.95, 4.17, 2.25.

In their paper, Mohammed et al. [33] demonstrated that the provided data exhibits a good fit,
with the exponential distribution having a mean of one. To investigate the relationship between the
parameters γ, k, the theoretical Hγ(U42(k)), and its empirical estimator for the real-life data, Table 4
presents both the theoretical and empirical estimator. It is observed that as the parameter λ increases,
both the theoretical and empirical estimator decrease. Conversely, an increase in k leads to a decrease
in both measures.

AIMS Mathematics Volume 9, Issue 5, 13313–13335.



13333

Table 4. Estimation of Hγ(U42(k)) based on standard exponential distribution for genuine
COVID-19 infection data.

γ 0.25 0.5 1.5 2
k Hγ(U42(k)) Ĥγ(U42(k)) Hγ(U42(k)) Ĥγ(U42(k)) Hγ(U42(k)) Ĥγ(U42(k)) Hγ(U42(k)) Ĥγ(U42(k))
1 3.710080 4.804557 3.474969 4.569445 3.184577 4.279054 3.125347 4.219824
5 2.100642 3.195119 1.865531 2.960008 1.575139 2.669616 1.515909 2.610386
8 1.630638 2.725115 1.395527 2.490004 1.105136 2.199612 1.045905 2.140382
10 1.407495 2.501972 1.172384 2.266860 0.881992 1.976469 0.822762 1.917239
15 1.002030 2.096507 0.766919 1.861395 0.476527 1.571004 0.417297 1.511773

6. Conclusions

In this study, we have emphasized the importance of using k-records to quantify uncertainty through
the use of Renyi entropy. We performed a comparison between the Renyi entropy of k-records and the
Renyi entropy of the original random variables. For the first time, we investigated the implications
and properties of Renyi and RRE in the context of k-records. This study contributes to the growing
literature on the information properties of recorded values. We first discuss the effects of Renyi
entropy ordering under the usual stochastic and dispersive ordering and establish these relationships
under certain conditions. This analysis provides insights into the ordering of record values based
on Renyi entropy. Next, we focus on the monotonicity properties of the RRE of k-record values
considering the aging properties of component lifetimes. This investigation helps us to understand
how the RRE behaves when the component lifetimes change. We also derived an expression for the
Renyi entropy of the residual nth upper k-records, especially when the first record exceeds a certain
threshold. We then investigated several properties of this formula that shed light on the behavior
and properties of Renyi entropy associated with k-record values. In general, these results provide
valuable insights into the information properties of recorded values and extend the understanding of
Renyi and RRE in the context of k-record values. In the last section, we performed a parametric
estimation of the Renyi entropy of nth upper k-records. We found that the proposed estimator
depends on the parameter λ and the sample size, both having a similar influence. We recall that the
results presented in this paper have far-reaching implications for other information measures based on
functional survival functional entropy. These measures include cumulative residual entropy, cumulative
entropy, generalized cumulative residual entropy, and generalized cumulative entropy, among others.
The exploration and extension of these concepts will be a focus of our future research efforts.
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