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Abstract: Finite-time synchronization is a critical problem in the study of neural networks. The
primary objective of this study was to construct feedback controllers for various models based on
fuzzy shunting inhibitory cellular neural networks (FSICNNs) and find out the sufficient conditions for
the solutions of those systems to reach synchronization in finite time. In particular, by imposing global
assumptions of Lipschitz continuous and bounded activation functions, we prove the existence of finite-
time synchronization for three basic FSICNN models that have not been studied before. Moreover,
we suggest both controllers and Lyapunov functions that would yield a feasible convergence time
between solutions that takes into account the chosen initial conditions. In general, we consecutively
explore models of regular delayed FSICNNs and then consider them in the presence of either inertial or
diffusion terms. Using criteria derived by means of the maximum-value approach in its different forms,
we give an upper bound of the time up to which synchronization is guaranteed to occur in all three
FSICNN models. These results are supported by 2D and 3D computer simulations and two respective
numerical examples for 2 × 2 and 2 × 3 cases, which show the behavior of the solutions and errors
under different initial conditions of FSICNNs in the presence and absence of designed controllers.
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1. Introduction

To date, neural networks have become more important due to their high processing speeds, which
help to solve complex problems in various fields. Being composed of a large number of single yet
interconnected cellular units called neurons, neural networks have a lot of applications, such as image
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and signal processing, combinatorial optimization, associative memories, fault diagnosis, ocean remote
sensing, and pattern recognition. Therefore they can be specifically defined from the prism of the
subject of interest. We, however, will focus on their role in the construction of principles based on
which the human brain operates. For that purpose, we will also be required to introduce time-varying
delay to the neural networks because of the additional dynamical behaviors its presence grants the
model [1]. It would particularly help to improve the modeled system’s approximated accuracy because
it takes into account the strong connection of neurons, which is not surprising as the state of the
preceding unit should affect the state of the following one. To make one’s model more suited to
characterize the actual processes occurring between neurons, one should add one or more hidden layers
that comprise shunting neurons so that their linear combination would enable control of the output
values of the produced inhibition [2]. Consequently, the basic synaptic interaction of hidden units
is often used to build cellular neural networks (CNNs) as it has been proven to be an effective tool
in robotics as well as in different vision problems. For example, it helps to enhance edges, visual
selectivity of small objects, and contrast [3]. The introduction of fuzzy terms and time-varying delays
is essential for challenging problems because of their effects on the ability to mimic human thinking
and perception [4].

The importance of the synchronization concept has been recognized already by Huygens [5].
However, there has been increasing interest recently due to its role in complex systems and its
versatile applications in cryptography, pseudo random number generators, secure communication,
power convertors, and information processing [6]. While dealing with such problems, the goal of
increasing importance is to create a synchronization procedure which converges in either finite or fixed
time. It is also well-known that in the resultant master-slave configuration the slave state is expected
to constantly follow the master’s trajectory. The development of special controllers and different
Lyapunov functionals allows for the development of sufficient conditions to observe synchronization
at some point in time. Finite-time synchronization is considered to be practical as it would be feasible
to calculate the maximum convergence time in advance unlike the rest of the synchronization classes
that can typically only be realized as time tends to infinity. This is the major reason why many studies
have focused on this problem. Moreover, since the primary requirement is to have a finite settling time,
several helpful lemmas and techniques that encompass robustness and disturbance rejection properties
shall be used in this paper [7]. Liu et al. [8] explained the importance of finite-time synchronization by
stating that the solutions must realize it, as one would consequently possess the precise data needed for
the successful completion of a lot of tasks. This characteristic is fundamental to the comprehension of
more complex systems.

In this study, we intended to work with the aforementioned constructs by using the maximum
principle. This substantial tool gained its popularity for allowing the user to obtain crucial pieces
of information about solutions to differential equations and inequalities in the absence of the demand
to explicitly derive them. Consequently, physicists, chemists, engineers, and economists have found
suitable applications of this method thanks to its ability to be adapted to suit manifold problems [9].
Such a procedure was utilized in a series of modern papers in various forms [10, 11]. As for our
problem, the described tool is preferred because it allows us to examine the model on a deeper level as
well as to receive approximate solutions to nonlinear networks. Furthermore, since we are treating the
equation as a biological pattern, we are solely interested in its positive solutions and in this setup, the
maximum principle approach can be used most efficiently.
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It should be emphasized that so far only well-posedness types of the introduced model have been
studied [12]. However, this neither covers the controller design for the finite-time synchronization
of its solutions nor includes time-dependent delays. Still, recently, many researchers have been
attracted to the issue of control of networks. Considering neural networks as a whole, some
scholars [13, 14] analyzed the synchronization of simpler neural networks by applying varying
techniques to construct Lyapunov functions and perform its subsequent analysis to prove the solutions’
convergence. Alternatively, studies have been concentrating solely on the synchronization of discrete-
time fuzzy networks [15], memristive inertial networks [16], or the ones containing stochastic
perturbations [17]. There have also been investigations of prescribed-time synchronization in networks
of piecewise smooth systems that employ the linear matrix inequality based on a feedback control
scheme as well as in the presence of impulse effects [18, 19]. Furthermore, pinning control of the
robust synchronization of a class of nonlinearly coupled complex networks has been addressed by
using the adaptive method as well [20]. It is worth mentioning that some recent papers focused on
Hopf bifurcation analysis for chaotic CNNs [21] and adaptive finite-time synchronization of fractional-
order delayed fuzzy CNNs [22]. Despite that, to the best of our knowledge, no one has considered
neural networks with delays, shunting inhibition processes among neurons, and function fuzziness in
the presence of either inertial or diffusion terms at the same time. The approaches to such problems
include, for example, pinning control strategies for pinned nodes of nonlinear complex networked
systems that rely on more traditional lemmas [23, 24]. On the other hand, specifically designed
controllers that will be suitable for employing the maximum principle and chosen Lyapunov functions
are presented in this paper. Such a combination will demonstrate the convenient and computationally
favorable way of proving the occurrence of synchronization between solutions of the model that
involves various parameters and phenomena in finite time. This is the main reason why we intend to
analyze these described network configurations. As a result, we chose to employ techniques based on
the maximum principle and several relevant inequalities. This work provides different controllers for
the given models under realizable preliminary assumptions that lead to synchronization in finite time.
Furthermore, the obtained theoretical results are supported by illustrative examples and numerical
simulations.

By pointing out the correlation between different processes in time, synchronization itself is
regarded as one of the most complicated but also efficient dynamics present in CNNs, as compared to
the well-studied stability analysis or periodic oscillations. The advanced model we investigate is very
close to a real system, as it resembles an electric circuit with synaptic activity that transmits a signal
across a large set of cells. Moreover, it should be noted that to include any oscillation phenomena or
network instability that can occur in such circuit representations due to the finite switching speed of
amplifiers and the inherent communication time of neurons, interactive time delays have been added to
the model equation [25]. As a consequence, the system that is currently under consideration includes
delays that would improve otherwise robust interactions between nodes in the presence of a strange
attractor. It also features an effective and easily implementable feedback controller that allows us to
use versatile approaches of the classical maximum principle. The main idea of this powerful yet easily
adaptable method is that functions that satisfy the condition of a differential inequality in a domain
D achieve their maxima at its boundary [26]. To the best of our knowledge, nobody has used this to
prove solution convergence in more complex networks, especially in the presence of fuzziness. These
challenges are included in the basic problem, given in matrix form as follows:
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dx(t)
dt

= −Dx(t) + Ag(x(t)) + B f (x(t − τ)) + I(t),

where x(t) = [x1(t), ..., xn(t)]T ,D = diag{d1, ..., dn}, dk > 0, A = (akl), B = (bkl),
k, l = 1, 2, ..., n, g(x) = [g1(x1), ..., gn(xn)]T , f (x(t − τ)) = [ f1(x1(t − τ)), ..., fn(xn(t − τ))]T and I(t) =

[I1(t), ..., In(t)]T . It is then extended by adding an amplification gain as below.

ẋi(t) = −di

ci(xi(t)) −
n∑

j=1

ai j f jx j(t) +

n∑
j=1

bi j f j(x j(t − τ)) + Ji

 , i = 1, ..., n

Others proceeded with an even more comprehensive formulation involving a coupling delay, as shown
below.

dxi(t)
dt

= −Cxi(t) + A f (xi(t)) + B f (xi(t − τ)) + I(t) +

N∑
j=1

Gi jDx j(t)

+

N∑
j=1

Gi jDτx j(t − τ), i = 1, 2, ...,N

We, on the other hand, further extend the formulation by adding fuzzy operations to represent the
transmission between cells and differentiate between external input and external force applied to a
particular cell.

Motivated by the above discussion, we organized our paper to comprise three parts. We will start by
analyzing the synchronization of the solutions to the regular FSICNNs and proceed by consecutively
adding the inertial and diffusion terms to the existing model. Finally, numerical examples together with
simulations confirming the proofs will be provided as well.

2. Synchronization of the FSICNN

By taking into account the phenomenon of fuzziness and fuzzy logic theory, one would have the
mathematical strength to handle uncertainties occurring in neural networks. This was manifested in
the introduction of fuzzy CNNs (FCNNs), which can be regarded as a representation of CNNs from
the perspective of fuzzy operator usage in the synaptic computation [27]. Furthermore, the design
of FCNNs that preserves both local connectedness between neurons and simple cell structures is
of great importance in the image-processing paradigm, including in edge detection and medial axis
transformation [28]. Moreover, cognitive science has proven to be a field in which FCNNs can be
extensively applied because human cognitive processes and neural systems involve a lot of ambiguities.
As a result, modern scientists have become very interested in studying the dynamics of FCNNs. To
be more precise, their scientific value lies in the ability to simulate typical human reasoning ability
in a computationally efficient way [29]. That is the primary reason why we would like to analyze
the synchronization of regular delayed shunting inhibitory cellular neural networks in the presence of
fuzziness, which are widely spread among medical diagnosis problems [30]. As for the emergence of
the concept of a fuzzy neuron, as inspired by the McCulloch-Pitts model, it improves the adaptability
better the systems’ overall behavior as they can often be defined imprecisely because of their high
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degree of complexity [31]. Therefore, the incredible flexibility and adaptability of biological neuronal
control mechanisms that are provided by the fuzzy terms in the system equation are considered to
be a convincing source of motivation and framework for the design of intelligent and autonomous
robots [32].

The presented first-order linear differential equation will describe the change of the voltage input to
the cells inside the neural network, which can be represented as an electrical circuit. The mathematical
model can be derived by using techniques from electrical engineering, such as Kirchhoff’s current and
voltage laws. We begin with the consideration of the network in the following form:

ẋi j(t) = − ai j(t)xi j(t) −
∑

Ckl∈Nr(i, j)

Ckl
i j(t) fi j(xkl(t))xi j(t) + Li j(t) +

∑
Ckl∈Nr(i, j)

Bkl
i j(t)Ui j(t)

−
∧

Ckl∈Nr(i, j)

Dkl
i j(t) fi j(xkl(t − τkl(t)))xi j(t) −

∨
Ckl∈Nr(i, j)

Ekl
i j(t) fi j(xkl(t − τkl(t)))

× xi j(t) +
∧

Ckl∈Nr(i, j)

T kl
i j (t)Ui j(t) +

∨
Ckl∈Nr(i, j)

Hkl
i j (t)Ui j(t), (2.1)

where Ci j, i = 1, 2, . . . , z, j = 1, 2, . . . , n, denotes the cell at the (i, j) position of the lattice; the
r−neighborhood of Ci j is Nr(i, j) = {Ckl : max {|k − i|, |l − j|} ≤ r, 1 ≤ k ≤ z, 1 ≤ l ≤ n}; xi j

represents the activity of the cell Ci j at time t; the positive functions denoted by ai j(t) represent the
passive decay rate of the cell activity; Ui j(t) denotes the external input, whereas Li j(t) reflects the
external force applied on the (i, j)th cell; the non-negative functions Ckl

i j(t), Dkl
i j(t), Ekl

i j(t), T kl
i j (t), and

Hkl
i j (t) represent the connection or coupling strength of the postsynaptic activity, the fuzzy feedback

MIN template, fuzzy feedback MAX template, fuzzy feed forward MIN template, and fuzzy feed
forward MAX template of the cell Ckl transmitted to the cell Ci j at time t, respectively;

∧
is the fuzzy

AND operation whereas
∨

is the fuzzy OR operation; the functions denoted by f (xkl) represent the
measures of activation to the output or firing rate of the cell Ckl; and τkl corresponds to the transmission
delay along the axon of the (k, l)th cell from the (i, j)th cell, Γ1 = {1, 2, . . . , z} and Γ2 = {1, 2, . . . , n}.

In addition to that, it will be required to include the following generalized assumptions listed below.

(A1) The function f (·) = [ f11(·), . . . , fzn(·)] is Lipschitz continuous on R with the Lipschitz constant L f

i.e., | f (x) − f (y)| ≤ L f |x − y|;
(A2) There exists a constant M such that | f (x)| ≤ M;
(A3) Introducing the parameters

σ =max
(i, j)
{|xi j(0)|}, υ = sup

Li j(t) + Ui j(t)
∑

Ckl∈Nr(i, j)

(
Bkl

i j(t) + T kl
i j (t) + Hkl

i j (t)
) ,

κ =σ

1 − M sup
∑

Ckl∈Nr(i, j)

(
Ckl

i j(t) + Dkl
i j(t) + Ekl

i j(t)
) ,

the inequality υ < κ must hold.

The next lemma will also be of significant importance throughout the whole analysis.

Lemma 1 ( [33]). If both x, y ∈ R solve the network (2.1), then the following pair of inequalities is
valid: ∣∣∣∣ ∧

Ckl∈Nr(i, j)

Dkl
i j(t) fi j(x) −

∧
Ckl∈Nr(i, j)

Dkl
i j(t) fi j(y)

∣∣∣∣ ≤ ∑
Ckl∈Nr(i, j)

∣∣∣Dkl
i j(t)

∣∣∣ ∣∣∣ fi j(x) − fi j(y)
∣∣∣ ,
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Ckl∈Nr(i, j)

Ekl
i j(t) fi j(x) −

∨
Ckl∈Nr(i, j)

Ekl
i j(t) fi j(y)

∣∣∣∣ ≤ ∑
Ckl∈Nr(i, j)

∣∣∣Ekl
i j(t)

∣∣∣ ∣∣∣ fi j(x) − fi j(y)
∣∣∣ .

For convenience, one can rewrite (2.1) in the following form:

ẋi j(t) = −ai j(t)xi j(t) + Ri j(x(t), t), (2.2)

where

Ri j(x(t), t) =Li j(t) +
∑

Ckl∈Nr(i, j)

Bkl
i j(t)Ui j(t) −

∧
Ckl∈Nr(i, j)

Dkl
i j(t) fi j(xkl(t − τkl(t)))xi j(t)

−
∨

Ckl∈Nr(i, j)

Ekl
i j(t) fi j(xkl(t − τkl(t)))xi j(t) +

∧
Ckl∈Nr(i, j)

T kl
i j (t)Ui j(t)

+
∨

Ckl∈Nr(i, j)

Hkl
i j (t)Ui j(t) −

∑
Ckl∈Nr(i, j)

Ckl
i j(t) fi j(xkl(t))xi j(t).

The response is consequently denoted by

ẏi j(t) = −ai j(t)yi j(t) + Ri j(y(t), t) + pi j(t) (2.3)

and the error system is just the difference, i.e.,

ėi j(t) = −ai j(t)ei j(t) + ∆Ri j(x(t), y(t)) + pi j(t)

provided that

∆Ri j(x(t), y(t)) = −
∑

Ckl∈Nr(i, j)

Ckl
i j(t)

(
fi j(ykl(t))yi j(t) − fi j(xkl(t))xi j(t)

)
−

∧
Ckl∈Nr(i, j)

Dkl
i j(t)

(
fi j(ykl(t − τkl(t)))yi j(t)

− fi j(xkl(t − τkl(t)))xi j(t)
)
−

∨
Ckl∈Nr(i, j)

Ekl
i j(t)

×

(
fi j(ykl(t − τkl(t)))yi j(t) − fi j(xkl(t − τkl(t)))xi j(t)

)
.

The proof of the lemma below is identical to the one from the source paper and will be omitted.

Lemma 2 ( [34]). Supposing that (A1)–(A3) are valid, if |xi j(0)| ≤ σ, it follows that |xi j(t)| ≤ σ

whenever t ≥ 0, 1 ≤ i ≤ z and 1 ≤ j ≤ n.

Recalling that, according to the definition, our goal is to show that there exists T > 0 such that
lim
t→T
|yi j(t) − xi j(t)| = 0 and |yi j(t) − xi j(t)| = 0,∀t > T, and denoting inf ai j(t) = a, sup

∑
(i, j)
|Ckl

i j(t)| =

C̄, sup
∑
(i, j)
|Dkl

i j(t)| = D̄, sup
∑
(i, j)
|Ekl

i j(t)| = Ē, the theorem below can be formulated.
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Theorem 1. Assuming that a > 1+
(
C̄ + D̄ + Ē

) (
M + L fσ

)
, for the Lyapunov function M(t) =

∑
(i, j)

e2
i j(t)

and controller pi j(t) =


e2

i j(t)−ei j(t)+
g

2
√

t+m
− d+H

2

ei j(t)
if g,m,H > 0, d > 1

2(a−1−(C̄+D̄+Ē)(M+L fσ))
0, whenever ei j(t) = 0

, (2.2) and (2.3)

achieve finite-time synchronization at t0 =
2g2+M(0)H+2g

√
g2+(M(0)+mH)H

H2 .

Proof. First, we can express the following:

|∆Ri j(x, u)| =
∑

Ckl∈Nr(i, j)

Ckl
i j(t)

(
fi j(xkl(t))xi j(t) − fi j(ukl(t))ui j(t)

)
+

 ∨
Ckl∈Nr(i, j)

Ekl
i j(t) +

∧
Ckl∈Nr(i, j)

Dkl
i j(t)

 ( fi j(xkl(t − τkl(t)))xi j(t)

− fi j(ukl(t − τkl(t)))ui j(t)
)

≤
∑

Ckl∈Nr(i, j)

Ckl
i j(t)

[
fi j(xkl(t))xi j(t) −

 ∨
Ckl∈Nr(i, j)

Ekl
i j(t) +

∧
Ckl∈Nr(i, j)

Dkl
i j(t)


× fi j(ukl(t))xi j(t) + fi j(ukl(t))xi j(t) − fi j(ukl(t))ui j(t)

]
+

 ∑
Ckl∈Nr(i, j)

Ekl
i j(t) +

∑
Ckl∈Nr(i, j)

Dkl
i j(t)

 ( fi j(xkl(t − τkl(t)))xi j(t)

− fi j(ukl(t − τkl(t)))xi j(t) + fi j(ukl(t − τkl(t)))xi j(t)

− fi j(ukl(t − τkl(t)))ui j(t)
)

≤

( ∑
Ckl∈Nr(i, j)

Ckl
i j(t) +

∑
Ckl∈Nr(i, j)

Ekl
i j(t) +

∑
Ckl∈Nr(i, j)

Dkl
i j(t)

)
×

(
L f |xi j(t)| + M

)
|xi j(t) − ui j(t)|. (2.4)

One can also observe the following:

M′(t) ≤ 2
∑
(i, j)

ei j(t)[−ai j(t)ei j(t) + ∆Ri j(x(t), y(t)) + pi j(t)]

≤ 2
∑
(i, j)

(
− ai j(t)e2

i j(t) +
(
C̄ + D̄ + Ē

) (
M + L f |x|

)
e2

i j(t) + pi j(t)ei j(t)
)

≤
∑
(i, j)

(
2e2

i j(t)
(
1 − a +

(
C̄ + D̄ + Ē

) (
M + L fσ

))
− 2ei j(t) − d − H +

g
√

t + m

)
.

Now we need to introduce the equation

G(e) = 2e2
i j(t)

(
1 − a +

(
C̄ + D̄ + Ē

) (
M + L fσ

))
− 2ei j(t) − d
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so that its critical point is located at

e0 =
1

2
(
1 − a +

(
C̄ + D̄ + Ē

) (
M + L fσ

)) .
Besides, the substitution of

J =
(
C̄ + D̄ + Ē

) (
M + L fσ

)
would, in turn, yield

d2G
de2

i j

= 4
(
1 − a + J

)
< 0,

suggesting that the extreme point is a maximum. As a consequence,

G(e0) =
1

2
(
a − 1 − J

) − d < 0.

This is used to claim that this function does not exceed the value of zero, i.e.,

G(ei j(t)) ≤ max G(e(t))
e(t)∈R

≤ 0.

So we are left with

M′(t) ≤
g

√
t + m

− H.

By integrating both sides of the obtained inequality, we find that

0 ≤ M(t) ≤ M(0) − Ht + 2g
√

t + m ≤ 0 at t = t0

which can be calculated by solving the following equation:

H2t2 + M2(0) − 2HtM(0) = 4g2(t + m).

Therefore,

lim
t→t0

M(t) = lim
t→t0
|ei j(t)| = 0, t ∈ (t0,+∞).

3. Synchronization of inertial FSICNN

Inertial manifolds are widely known for being positively invariant Lipschitz spaces and having a
global attractor inside them so that they can become exponentially stable in the presence of exterior
perturbations [35]. For these properties, the inclusion of the corresponding term in the equation is
common in nonlinear dissipative evolutionary partial differential equations(PDEs), which are often a
primary choice to model actual physical systems and allow us to understand their dynamics in both
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finite- and infinite-dimensional spaces [36]. For instance, phase transitions, convection, reaction-
diffusion equations, and hydrodynamic instability problems were in fact based on inertial forms [37].
The advantageous aspect is the existence of numerous techniques that show that the whole system’s
analysis can be reduced to the study of the dynamics of ordinary differential equations. It is also
essential to understand the significance of inertia in studies of neural networks, especially the fact that
such a term’s presence provides the foundation for the further inclusion of both chaotic phenomena
and bifurcation behavior due to its inductive properties [38], which cannot be found in first-order
systems [39]. One of the first acknowledged models is given by

x′′i (t) = − ai(t)x′i(t) − bi(t)xi(t) +

n∑
j=1

ci jF j(x j(t)) +

n∑
j=1

di jD j(x j(t − τ j)) + Ji(t),

i ∈ {1, 2, ..., n}.

which, as it can clearly be seen, unlike the purely first order derivative states of neurons, includes the
influence of inductors in the artificial model. By adding inertial terms in electronic neural networks,
we have better control over possible complicated behaviors, whether it is instability or spontaneous
oscillation about fixed points [40]. As a result, consideration of inertial networks facilitates a clearer
reflection of the characteristics of biological systems and automated control [41]. We now begin by
defining explicitly an inertial FSICNN:

d2xi j(t)
dt2 = −bi j(t)x′i j(t) − ai j(t)xi j(t) + Ri j(x(t)). (3.1)

It can be represented as a system of first-order linear equations:

yi j(t) = x′i j(t) + xi j(t) =⇒ x′i j(t) = yi j(t) − xi j(t).
y′i j(t) = x′′i j(t) + x′i j(t) = yi j(t) − xi j(t) + R(xi j(t)) − ai j(t)xi j(t) − bi j(t)

(
yi j(t) − xi j(t)

)
.

Adding the respective controllers, one gets the following system:x′i j(t) = yi j(t) − xi j(t) + pi j(t)
y′i j(t) = xi j(t)(bi j(t) − ai j(t) − 1) + yi j(t)(1 − bi j(t)) + R(xi j(t)) + qi j(t),

(3.2)

while the drive system of (3.2) is thenu′i j(t) = vi j(t) − ui j(t)
v′i j(t) = ui j(t)(bi j(t) − ai j(t) − 1) + vi j(t)(1 − bi j(t)) + R(ui j(t)).

(3.3)

Thus, the error system is represented ase′i j(t) = ri j(t) − ei j(t) + pi j(t)
r′i j(t) = ei j(t)(bi j(t) − ai j(t) − 1) + ri j(t)(1 − bi j(t)) + ∆Ri j(x, u) + qi j(t).

(3.4)

We first need an additional lemma that can be stated in the following way:

Lemma 3 ( [42]). If A > e−1, x > 0, then −Ax + ln x ≤ 0.
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Remark 1. It is straightforward enough to prove that −Ax + ln(ln x) ≤ 0, which is considered to be a
corollary to the above lemma.

Theorem 2. Given the controllers pi j(t) = sgn
(
ei j(t)

) (
|ei j(t)| + ln |ei j(t)|

)
and

qi j(t) = sgn
(
ri j(t)

) (
|ri j(t)| − ln(t + s) − l + ln

(
ln |ri j(t)|

))
, s, l > 0, then (3.3) and (3.2) achieve finite-

time synchronization at t1 = max
{∑

(i, j)

(|ei j(0)| + |ri j(0)|)

l , e − s
}

if bi j(t) ∈
(
3 + 1

e , a − J + e−1
e

)
.

Proof. Let K(t) =
∑
(i, j)

(|ei j(t)| + |ri j(t)|), so its differentiation yields

K′(t) =
∑
(i, j)

{
sgn(ei j(t))

(
−ei j(t) + ri j(t) + pi j(t)

)
+ sgn(ri j(t)

×
(
−(bi j(t) − 1)ri j(t) + ei j(t)

(
bi j(t) − ai j(t) − 1

)
+ ∆Ri j(x, u) + qi j(t)

) }
≤

∑
(i, j)

{
ri j(t)sgn(ei j(t)) + ln |ei j(t)| − |ri j(t)|(bi j(t) − 1) +

∣∣∣∆Ri j(x, u)
∣∣∣

+ |ei j(t)|(bi j(t) − ai j(t) − 1) + |ri j(t)| + ln(ln(|ri j(t)|)) − ln(t + s) − l
}

≤
∑
(i, j)

{
− |ei j(t)|

(
ai j(t) + 1 − bi j(t)

)
− J + ln |ei j(t)| − (bi j(t) − 3)|ri j(t)|

+ ln(ln(|ri j(t)|)) − ln(t + s) − l
}

This means that K′(t) ≤ −l− ln(t + s) and 0 ≤ K(t) ≤ K(0) + t(1− l)− t ln(t + s); thus, one can conclude
that lim

t→t1
K(t) = lim

t→t1
|ei j(t)| = lim

t→t1
|ri j(t)| = 0.

4. Synchronization of the FSICNN with diffusion

As for the last case, it is necessary to take into account a diffusion term too, because it describes
the interaction between cells at a completely new level. To be more precise, whenever an electron
moves in a nonuniform electromagnetic field, in order to see a full picture of the dynamic features
of a network consisting of multiple layers, thereby visualizing it in 3 dimensions, the evolution time
and spatial position of the node state should be considered [43]. This statement can be supported
by noting that the diffusion phenomenon must always be taken into account whenever electrons enter
asymmetric electromagnetic fields. This is considered to be the main motivation to start taking a
closer look at reaction-diffusion systems [44]. We can encounter its manifestations in many natural
fields, particularly in chemistry, biology, and engineering, as it is an integral part of the reactions
between elements [45]. Lastly, our model should contain this term because whether it is an artificial
or biological neural network, consideration of the variation of states in both space and time is vital in
the design of more complex systems like firing processes in brain neurons and fibrillation [46]. This
paper will address the controlling issue by proposing a feedback controller that would be suitable for
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PDEs based on an FSICNN. This challenge should be overcome to make full use of the advantages of
introducing the diffusion term following an improvement of the approximation for a neural network
in theory and applications. As a consequence, if left neglected, it may lead to such unwanted or even
harmful processes as bifurcation, oscillation, divergence, or instability [47]. One of the most studied
models that describe the neural dynamics’ spatiotemporal properties is presented as follows:

∂zi j(t, x)
∂t

= d j∆zi j(x, t) −
M∑

k=1

a jkzik(x, t) +

M∑
k=1

b jk fk(zik(x, t)).

Since there are insufficient studies focusing on proving synchronization in finite time of a neural
network that feature diffusion and fuzzy terms using the computationally fast maximum-value
approach, we are now going to study a more general problem. Here we are dealing with the modified
nonlinear system of PDEs:

∂χi j(t, x)
∂t

= bi j(t)
∂2χi j(t, x)
∂x2 − Zi j(χ(t, x), t)χi j(t, x) + Fi j(t), (4.1)

provided that

Zi j(x(t), t) = ai j(t) +
∧

Ckl∈Nr(i, j)

Dkl
i j(t) fi j(χkl(x, t − τkl(t)))

+
∨

Ckl∈Nr(i, j)

Ekl
i j(t) fi j(χkl(x, t − τkl(t))) +

∑
Ckl∈Nr(i, j)

Ckl
i j(t) fi j(χkl(t, x)),

Fi j(t) = Li j(t) +
∑

Ckl∈Nr(i, j)

Bkl
i j(t)Ui j(t) +

∧
Ckl∈Nr(i, j)

T kl
i j (t)Ui j(t)

+
∨

Ckl∈Nr(i, j)

Hkl
i j (t)Ui j(t).

On the other hand, the slave system is as follows:

∂yi j(t, x)
∂t

= bi j(t)
∂2yi j(t, x)
∂x2 − Zi j(y(t, x), t)yi j(t, x) + Fi j(t) + ri j(x, t) (4.2)

The error equation is then

∂ei j(t, x)
∂t

=bi j(t)
∂2ei j(t, x)
∂x2 −

(
Zi j(y(t, x), t)yi j(t, x) − Zi j(χ(t, x), t)χi j(t, x)

)
+ ri j(x, t). (4.3)

Initial and boundary conditions will take the following form:

ei j(t, x) =0, (t, x) ∈ [−τ,+∞) × ∂Ω,

ei j(s, x) =φi j(s, x) − µi j(s, x), (s, x) ∈ [−τ, 0] ×Ω, where Ω = {hg ≤ x ≤ hG} ⊂ Rm.

Additionally, the following three lemmas will be of much use in the proof of the next theorem.
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Lemma 4 ( [48]). Assume that V(t) is continuous and non-negative and p1(t) and p2(t) are both

integrable. Then, if additionally for α ∈ (0, 1) and t ≥ t0,V ′(t) ≤ (p1(t) + p2(t))Vα(t),

+∞∫
t0

p1(s)ds ≤ P,

t∫
t0

p2(s)ds ≤ −λ(t − t0), such that P and λ > 0, it is possible to show that

V1−α(t) ≤ V1−α(t0) + (1 − α)(P − λ(t − t0)),∀t ∈
[
t0,T = t0 +

V1−α(0)+(1−α)P
λ(1−α)

]
as well as V(t) = 0 as long

as t ≥ T.

Lemma 5 ( [49]). If a real-valued function w(x) is defined on w(x) ∈ C1(Ω), then∫
Ω

m∑
k=1

(
w(x)

∂2w(x)
∂x2

k

)
dx ≤

m∑
k=1

−π2

hG
k − hg

k

∫
Ω

w2(x)dx.

Lemma 6 ( [50]). Suppose that a = (a1, a2, ..., an)T and ai > 0; then, together with 0 < r < q, one has

||a||q ≤ ||a||r ≤ n
1
r −

1
q ||a||q, in which ||a||q =

 n∑
k=1

aq
k


1
q

, while ||a||r =

 n∑
k=1

ar
k


1
r

.

Throughout the rest of this paper, the notation of ||ei j(t, x)||k =


∫
Ω

∑
(i, j)

e2
i j(t, x)dx


1
k

will be used. Our

aim is then to prove the following theorem.

Theorem 3. If Lemmas 4–6 are all valid with

+∞∫
t0

ρ+(s)ds ≤ P,

t∫
t0

ρ−(s)ds ≤ −λ(t−t0), and the controller

is defined as ri j(x, t) =
ρ(t)
2 ||ei j(t, x)||α−1

2 ei j(t, x) − cei j(t, x) − sgn(ei j(t, x)),where ρ(t) = ρ+(t) + ρ−(t),
that is, the sum of the right and left limits at some point t, then there is a finite-time synchronization

between (4.1) and (4.2) at the time T =

2


∑
(i, j)

∫
Ω

e2
i j(0, x)dx


1−α

2

+P(1−α)

λ(1−α) .

Proof. At first, note that

Zi j(y(x, t), t)yi j(t, x) − Zi j(χ(t, x), t)χi j(t, x) = ∆Z(χ) ≤
(
C̄i j(t) + Ēi j(t) + D̄i j(t)

)
×

[
M + L f |χi j(x, t)|

]
,

the proof of which is very similar to (2.4). Then construct the following Lyapunov function:

V(t) =
∑
(i, j)

∫
Ω

e2
i j(t, x)dx =⇒ V ′(t) = 2

∑
(i, j)

∫
Ω

ei j(t, x)
[
ei j(t, x)

]
t
dx.

Thus,

V ′(t) ≤2
∑
(i, j)

∫
Ω

ri j(t, x)ei j(t, x)dx + 2
∑
(i, j)

∫
Ω

(
ei j(t, x)

)
xx

ei j(t, x)bi j(t)dx
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− 2∆Z(χ)
∫
Ω

e2
i j(t, x)dx (4.4)

By Lemma 5, the expression is transformed into

(4.4) ≤2
∑
(i, j)

∫
Ω

(
e2

i j(t, x)
(
ρ(t)
2
||ei j(t, x)||α−1

2 − c
)
− |ei j(t, x)|

)
dx

− 2

∑
(i, j)

π2

hG
i j − hg

i j

+ ∆Z(χ)

∑
(i, j)

∫
Ω

e2
i j(t, x)dx. (4.5)

Next, exploiting Lemma 6 yields the inequality below:

(4.5) ≤ρ(t)

∑
(i, j)

∫
Ω

e2
i j(t, x)dx


α−1

− 2
∑
(i, j)

∫
Ω

e2
i j(t, x)

∑
(i, j)

π2

hG
i j − hg

i j

+ c + ∆Z(χ)

 dx

≤ρ(t)

∑
(i, j)

∫
Ω

e2
i j(t, x)dx


α−1

− 2
∑
(i, j)

∑
(i, j)

π2

hG
i j − hg

i j

+ c + M
(
C̄i j(t) + Ēi j(t) + D̄i j(t)

) ∫
Ω

e2
i j(t, x)dx

− 2L f
∑
(i, j)

∫
Ω

e2
i j(t, x)χi j(x, t)dx ≤ ρ(t)

∑
(i, j)

∫
Ω

e2
i j(t, x)dx


α+1

2

=
(
ρ+(t) + ρ−(t)

)
V

α+1
2 (t).

Hence, by Lemma 4, the time by which both systems should synchronize can consequently be

expressed as T =
2V

1−α
2 (0)+P(1−α)
λ(1−α) .

5. Numerical examples

Finally, we illustrate the results obtained in the previous sections.

5.1. Example 1

Consider (2.1) with r = z = 1, n = 2, fi j(x) = 1
2 (|x + 1| − |x− 1|) =⇒ M = L f = 1, and the functions

ai j(t), Ci j(t), Li j(t), Bi j(t), Ui j(t), Di j(t), Ei j(t), Ti j(t), and Hi j(t) given by[
a11(t) a12(t)

]
=

[
sin(5t) + 50 sin(3t) + 40

]
[
C11(t) C12(t)

]
=

[
cos(4πt)

100 + 0.02 sin(2πt)
100 + 0.025

]
[
E11(t) E12(t)

]
=

[
π
90 sin(2πt) + 0.1 π

120 cos(2πt) + 0.2
]

[
D11(t) D12(t)

]
=

[
cos( πt

2 )
500 + 0.01 sin( πt

2 )
400 + 0.03

]
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H11(t) H12(t)

]
=

[
cos(t)+1

2000
cos(t)
3000 + 0.007

]
[
T11(t) T12(t)

]
=

[
0.7 cos(t) + 1.6 0.9 sin(t) + 4

]
[
B11(t) B12(t)

]
=

[
0.1 sin( πt

30 ) + e 0.2 sin( πt
10 ) + πe

6

]
[
U11(t) U12(t)

]
=

[
cos(πt)
1000 + 1

900
sin(πt)
1000 + 1

800

]
[
L11(t) L12(t)

]
=

[
0.012 sin(t) 0.01 cos(t)

]
[
τ11(t) τ12(t)

]
=

[
0.015 cos(t) 0.017 cos(t)

]
[
x11(0) x12(0)

]
=

[
0.1 0.1

] [
y11(0) y12(0)

]
=

[
0.6 0.105

]
Clearly, (A3) holds as σ is chosen to be 1, d = H = m = 1 > 1

2(a−1.94) ≈ 0.014, and

sup

Li j(t) + Ui j(t)
∑

Ckl∈Nr(i, j)

(
Bkl

i j(t) + T kl
i j (t) + Hkl

i j (t)
) ≈ 0.026,

σ

(
1 − M × × sup

 ∑
Ckl∈Nr(i, j)

Ckl
i j(t) + Dkl

i j(t) + Ekl
i j(t)

 ) ≈ 0.32,

so it is obvious that υ < κ as desired. It is not hard to conclude that then synchronization is going to

take place before t∗ =
2g

(
g+
√

g2+d(M(0)+md)
)
+M(0)d

d2 ,; thus, applying g = 0.5,M(0) = e2
11(0) + e2

12(0) brings
us to the resultant time of about 2.35. In the presence of inertia, let the next controller’s coefficients be
exactly the same as above while adding the following:[

b11(t) b12(t)
]

=
[

sin(t/5)
3 + 5 sin(

√
3t) + 6

]
[
x11(0) x12(0)

]
=

[
0.5 0.8

] [
u11(0) u12(0)

]
=

[
0.1 0.7

]
[
y11(0) y12(0)

]
=

[
0.6 0.8

] [
v11(0) v12(0)

]
=

[
0.3 0.2

]
In this way, 3.37 < bi j(t) < a − J + 0.63 ≈ 38.9, a > 1 + 2(C̄ + D̄ + Ē) ≈ 1.94, so synchronization will
occur by t1 = max{K(0)

l , e − s} = max{0.1 + 0.4 + 0.3 + 0.6, e − 0.1} ≈ 2.62.
As for the last model, the functions remain identical to the cases earlier discussed; its initial

conditions are e1(0, x) = sinh(x) and e2(0, x) = x2; for the controller the variables are α = 0.5, c =

1, ρ(t) = 1
t2+3 − t| cos(t)| =⇒ P ≈ 1.6 and λ ≤ 1. As such, we can expect solutions to synchronize by

the following time:

T =
2V0.5(1−α)(0) + P(1 − α)

λ(1 − α)
≈ 1.64.
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5.2. Example 2

Now let us expand the previous example by taking (2.1) with fi j(x) = tanh(x) =⇒ M = L f = 1,
and the rest of the functions are defined as follows:[

a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)

]
=

[
sin(t) + 3 cos(t) + 4 sin(t) + 5
cos(t) + 6 sin(t) + 7 cos(t) + 8

]
[
C11(t) C12(t) C13(t)
C21(t) C22(t) C23(t)

]
=

[
0.01 cos(t) 0.02 sin(t) 0.05 sin(t)
0.03 cos(t) 0.04 sin(t) 0.025 cos(t)

]
[
E11(t) E12(t) E13(t)
E21(t) E22(t) E23(t)

]
=

[ cos(0.2t)
π3

sin(0.3t)
π4

sin(0.25t)
π5

cos(0.1t)
π2e + 0.01 sin(0.2t)

π3
cos(0.3t)

π4

]
[
D11(t) D12(t) D13(t)
D21(t) D22(t) D23(t)

]
=

 cos(t2)
600 −

1
400

sin(t2)
700

cos(t)
650

sin(t)
750

cos(t2)
700

sin(t)
650

[
H11(t) H12(t) H13(t)
H21(t) H22(t) H23(t)

]
=

 cos(t)+0.5
2500

cos(t)
3000 + 0.007 cos(t2)

1500
sin(t2)
2000

cos(t2)
2000

sin(t2)
1500

[
T11(t) T12(t) T13(t)
T21(t) T22(t) T23(t)

]
=

[
0.6 cos(t) + 1.5 0.8 sin(t) + 3 0.5 sin(t)
1 − 0.3 cos(t) 0.45 cos(t) 0.4 sin(t)

]
[
B11(t) B12(t) B13(t)
B21(t) B22(t) B23(t)

]
=

[ sin(et)
10

cos(et)
5 sin(et)

cos(et) sin(et)
20

cos(et)
20

]
[
U11(t) U12(t) U13(t)
U21(t) U22(t) U23(t)

]
=

[
sin( t

2 ) ∗ 10−3 1
2 cos( t

2 ) ∗ 10−3 sin( t−1
2 ) ∗ 10−3

1
2 cos( t−1

2 ) ∗ 10−3 sin( t
2 ) ∗ 10−4 cos( t

2 ) ∗ 10−4

]
[
L11(t) L12(t) L13(t)
L21(t) L22(t) L23(t)

]
=

[ sin(tπ)
110

cos(tπ)
120

sin(t(π−1))
90

cos(t(π−1))
95

sin(tπ)
105

cos(tπ)
115

]
[
τ11(t) τ12(t) τ13(t)
τ21(t) τ22(t) τ23(t)

]
=

[
0.015 cos(t) 0.017 cos(t) 0.015 sin(t)
0.017 sin(t) 0.016 sin(t) 0.016 cos(t)

]
[
x11(0) x12(0) x13(0)
x21(0) x22(0) x23(0)

]
=

[
−0.15 0.65 0.3
0.75 0.35 0.4

] [
y11(0) y12(0) y13(0)
y21(0) y22(0) y23(0)

]
=

[
0.1 0.7 0.2
0.7 −0.5 0.15

]
(A3) again takes place because when σ equals to 0.5, d = H = m = 2 > 1

2(a−1−J) ≈
2
3 and

1
95

+ 10−3
(
2 + 0.4 + 0.5 + 1.3 + 3.8 + 2.1 + 0.4 + 0.45 +

1.5
2500

+
7

1000
+

1
3000

+
1

1000
+

1
750

)
≈ 0.022 being less than

0.5
(
1 − 0.04 − 0.05 − 0.03 − 0.01 − 0.02 − 0.025 −

1
325
−

1
750
−

1
600
−

1
350
−

1
400
−

1
π2×(

1
π

+
2
π2 +

2
π3 +

1
e

) )
≈ 0.72.

We can then infer that synchronization happens before t∗ =
2(1+

√
1+2(1.69+4))+2∗1.69

4 ≈ 3.1.
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For the inertial model (3.1) we also consider the modified parameters:[
b11(t) b12(t) b13(t)
b21(t) b22(t) b23(t)

]
=

 sin(2t)
3 + 4 4 +

cos(3t)
5

sin( πt
2 )

6 + 4
4 +

sin(2et)
4 4 + 0.5 sin(t) 4 + 0.55 cos(0.5t)


[
a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)

]
=

[
3 sin(t) + 10 4 cos(t) + 5 2 sin(t) + 8
4 cos(t) + 9 2 cos(t) + 9.5 3.5 sin(t) + 8.5

]
[
x11(0) x12(0) x13(0)
x21(0) x22(0) x23(0)

]
=

[
−0.15 0.65 0.2
0.75 0.35 0.25

] [
u11(0) u12(0) u13(0)
u21(0) u22(0) u23(0)

]
=

[
0.1 0.7
0.7 −0.5

]
[
y11(0) y12(0) y13(0)
y21(0) y22(0) y23(0)

]
=

[
0.0017 0.0043 0.024
0.0032 0.0001 0.0011

] [
v11(0) v12(0) v13(0)
v21(0) v22(0) v23(0)

]
=

[
0.003 0.002 0.001

0.0007 0 0.0018

]
As a result, 3.37 < bi j(t) < 4.38, a > 3; consequently, the solutions are expected to be synchronized by
the time t1 = max{0.1 + 0.4 + 0.3 + 0.6, e − 2} ≈ 2.62.

In the diffusion model, all of the functions stay the same, but its initial conditions are defined to
be e1(0, x) = sinh(x) and e2(0, x) = x. Besides that, α = 0.4, c = 1, ρ(t) = 1

t2+3 − t| cos(t)| =⇒ P ≈
1.6 and λ ≤ 1;therefore, we can expect solutions to synchronize completely at T ≈ 1.32.

Thus, as a consequence, we can see how some random pair of the matching solutions behave in
time with respect to each other in the presence and absence of the proposed designed controller.

6. Discussion

Considering now the obtained graphs, Figures 1(a),(b) and 4(a),(b) demonstrate how the system
behaves in the absence of the designed controllers and we observe that there are no visible signs of the
synchronization’s occurrence up until t = 1. On the other hand, once we append the controller to the
provided master system, it becomes clear that the curves have already been synchronized by at least
t = 0.14, as seen in Figures 1(c),(d) and 4(c),(d), so its influence on the neural network is undeniable.
This result is also consistent with the theoretical maximal value of 2.35 or later by which we should
have seen synchronized curves. In the inertial case (3.1), the situation is more similar to that shown
in Figures 2(a),(b) and 5(a),(b) than Figures 2(c),(d) and 5(c),(d). Having the same initial conditions,
there were not any indications of potential convergence after t = 1. Despite that, after the introduction
of the functions pi j(t) and qi j(t), synchronization is clearly completed by texper < ttheor, as defined
in Theorem 2. Similar to other problems, this is the case because its conditions have been entirely
satisfied with the range of functions bi j(t) fixed on the interval (3,5), as well as the sigmoid activation
functions. In the end, the diffusion case behaves identically by either diverging completely or at least
not synchronizing in Figures 3(a),(b) and 6(a),(b), where after the time t = 1 is passed, the solutions
begin to actually synchronize rapidly up to t = 0.006 and t = 0.3, corresponding to Figures 3(c),(d)
and 6(c),(d), which can be also represented in three dimensions, as seen in Figures 3(e),(f) and 6(e),(f),
respectively. These experimental values of time gained by means of employing the solver of a system of
parabolic and elliptic PDEs with one spatial variable x and time t with the time step of 0.0001 supports
the theoretical investigation of the latest time at which synchronization completes, i.e., about 1.64.
The latter case is displayed in three dimensions including the space variable, where we are looking
at the convergence speed of many error curves from the angle from above. Overall, under specified
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parameters satisfying the global condition of the activation function being Lipschitz continuous and
bounded most of the solutions from drive and response sets are synchronized in finite time and much
earlier than the derived settling time.

(a) Curves for the drive x11(t) and response y11(t)
systems without the controller applied. As can be seen,
synchronization between (2.2) and (2.3) is not completed
by t = 1.

(b) Curves for the drive x12(t) and response y12(t)
systems without the controller applied. As can be seen,
synchronization between (2.2) and (2.3) is not completed
by t = 1.

(c) Curves for the drive x11(t) and response y11(t) systems
with the controller p11(t) present. From the graph, we can
see that (2.2) and (2.3) are synchronized by t = 0.14.

(d) Curves for the drive x12(t) and response y12(t) systems
with the controller p12(t) present. From the graph, we can
see that (2.2) and (2.3) are synchronized by t = 0.009.

Figure 1. Regular FSICNN (2.1).
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(a) Curves for the drive v11(t) and response y11(t)
systems without the controller applied. As can be seen,
synchronization between (3.3) and (3.2) is not completed
by t = 1.

(b) Curves for the drive v12(t) and response y12(t)
systems without the controller applied. As can be seen,
synchronization between (3.3) and (3.2) is not completed
by t = 1.

(c) Curves for the drive v11(t) and response y11(t) systems
with the controller q11(t) present. From the graph, we can
see that (3.3) and (3.2) are synchronized by t = 0.5.

(d) Curves for the drive v12(t) and response y12(t) systems
with the controller q12(t) present. From the graph, we can
see that (3.3) and (3.2) are synchronized by t = 0.5.

Figure 2. FSICNN with the inertial term (3.1).
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(a) Error curves e11(t, x) for (4.3) without
any controller applied. As can be seen,
synchronization between (4.1) and (4.2) has not
begun by t = 1.

(b) Error curves for e12(t, x) (4.3) without
any controller applied. As can be seen,
synchronization between (4.1) and (4.2) has not
begun by t = 1.

(c) Error curves for e11(t, x) (4.3) with the
controller r11(t) present. From the graph, we can
see that (4.1) and (4.2) start to synchronize at
t = 0.005.

(d) Error curves for e12(t, x) (4.3) with the
controller r12(t) present. From the graph, we can
see that (4.1) and (4.2) start to synchronize at
t = 0.006.

(e) 3D plot corresponding to the case (c) and
showing how error reaches zero in space and
time.

(f) 3D plot corresponding to the case (d) and
showing how error reaches zero in space and
time.

Figure 3. FSICNN with the diffusion term.
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(a) Curves for the drive x21(t) and response y21(t)
systems without the controller applied. As can be seen,
synchronization between (2.2) and (2.3) is not completed
by t = 1.

(b) Curves for the drive x22(t) and response y22(t)
systems without the controller applied. As can be seen,
synchronization between (2.2) and (2.3) is not completed
by t = 1.

(c) Curves for the drive x21(t) and response y21(t) systems
with the controller p11(t) present. From the graph, we can
see that (2.2) and (2.3) are synchronized by t = 0.16.

(d) Curves for the drive x22(t) and response y22(t) systems
with the controller p12(t) present. From the graph, we can
see that (2.2) and (2.3) are synchronized by t = 0.045.

Figure 4. Regular FSICNN (2.1).
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(a) Curves for the drive u21(t) and response x21(t)
systems without the controller applied. As can be seen,
synchronization between (3.3) and (3.2) is not completed
by t = 1.

(b) Curves for the drive v22(t) and response y22(t)
systems without the controller applied. As can be seen,
synchronization between (3.3) and (3.2) is not completed
by t = 1.

(c) Curves for the drive u21(t) and response x21(t) systems
with the controller p21(t) present. From the graph, we can
see that (3.3) and (3.2) are synchronized by t = 0.05.

(d) Curves for the drive v22(t) and response y22(t) systems
with the controller q22(t) present. From the graph, we can
see that (3.3) and (3.2) are synchronized by t = 10−4.

Figure 5. FSICNN with the inertial term (3.1).
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(a) Error curves for e11(t, x) (4.3) without
any controller applied. As can be seen,
synchronization between (4.1) and (4.2) has not
begun by t = 1.

(b) Error curves for e12(t, x) (4.3) without
any controller applied. As can be seen,
synchronization between (4.1) and (4.2) has not
begun by t = 1.

(c) Error curves for e11(t, x) (4.3) with the
controller r11(t) present. From the graph, we can
see that (4.1) and (4.2) start to synchronize at
t = 0.006.

(d) Error curves for e12(t, x) (4.3) with the
controller r12(t) present. From the graph, we can
see that (4.1) and (4.2) start to synchronize at
t = 0.3.

(e) 3D plot corresponding to the case (c) and
showing how error reaches zero in space and
time.

(f) 3D plot corresponding to the case (d) and
showing how error reaches zero in space and
time.

Figure 6. FSICNN with the diffusion term.
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7. Conclusions

In this contribution, we have studied three problems of finite-time synchronization between different
sets of master and slave systems. By constructing appropriate Lyapunov functions for each case,
we could establish a few sufficient criteria for finite-time synchronization to take place in those
drive-response networks, including ordinary FSICNNs and the ones also containing either inertial or
diffusion terms. During the analysis, we applied a quite efficient maximum-value technique to prove
that the time derivative of the introduced continuous function is non-positive thereby showing the
error’s convergence to zero. Additionally, three numerical examples and their graphs related to the
configuration under consideration have all been shown to support theoretical investigations. Based on
all of the facts collected, we were able to infer that under certain controllers after some finite time, the
error function is going to diminish, implying that synchronization between two particular equations has
been achieved. This study had some limitations in terms of application. One of them is that the resulting
synchronization time in those scenarios is not perfect and observation of this time requires much
computational power for large systems. In addition, the assumptions of Lipschitz continuity along
with boundedness significantly reduce the choice for the activation function. Further, we considered
a range of parameters that were not verified by real experiments. Thus, two or more types of mixed
uncertainties should also be taken into account in future studies. Moreover, the studies will be improved
by reducing the maximal time of expected synchronization through the construction of more elegant
Lyapunov functions and controllers, which can result in more relaxed preliminary assumptions along
with the possibility of switching to a more powerful fixed-time synchronization between systems.
Finally, the corresponding fractional-order system can be examined instead, incorporating singularities
to check the optimal order and fractional calculus lemmas, such as the fractional Halanay inequality.
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