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Abstract: The process of identifying the optimal unknown variables for the creation of a precision 

fuel-cell performance forecasting model using optimization techniques is known as parameter 

identification of the proton exchange membrane fuel cell (PEMFC). Recognizing these factors is 

crucial for accurately forecasting and assessing the fuel cell's performance, as they may not always be 

included in the manufacturer’s datasheet. Six optimization algorithms—the Walrus Optimizer (WO), 

the Tunicate Swarm Algorithm (TSA), the Harris Hawks Optimizer (HHO), the Heap Based Optimizer 

(HBO), the Chimp Optimization Algorithm (ChOA), and the Osprey Optimization Algorithm (OOA) 

were used to compute six unknown variables of a PEMFC. Also, the proposed WO method was 

compared with other published works’ methods such as the Equilibrium Optimizer (EO), Manta Rays 

Foraging Optimizer (MRFO), Neural Network Algorithm (NNA), Artificial Ecosystem Optimizer 

(AEO), Slap Swarm Optimizer (SSO), and Vortex Search Approach with Differential Evolution (VSDE). 

Minimizing the sum squares error (SSE) between the estimated and measured cell voltages requires 

treating these six parameters as choice variables during optimization. The WO algorithm yielded an 

SSE of 1.945415603, followed by HBO, HHO, TSA, ChOA, and OOA. Given that WO accurately 

forecasted the fuel cell’s performance, it is appropriate for the development of digital twins for fuel 

cell applications and control systems for the automobile industry. Furthermore, it was shown that the 

WO convergence speed was faster than the other approaches studied. 
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1. Introduction 

Sustainable energy sources are becoming more and more crucial for both small-scale power 

applications and big industrial uses due to the rapid depletion of fossil fuel supplies and the growing 

demand for electricity. Metaheuristic algorithms are applied to solve in several applications [1–11]. 

Renewable energy sources, such as wind and solar power, are frequently reliant on their surroundings. 

Fuel cells were developed as a result to complement the available green energy sources. Fuel cells have 

historically been divided into three categories: transportation-related, stationary, and portable [12]. The 

growing usage of fuel cells for large land vehicles, such as public buses, has led to a rapid advancement 

in the automotive fuel cell technology field. Furthermore, stationary fuel cells for use in homes and 

workplaces are becoming more common [13]. Stationary fuel cells have various applications. In recent 

years, many businesses and researchers have been interest in fuel cells. The chemical energy produced 

by the reaction of oxygen and hydrogen, or ambient air, can be quickly converted into electrical energy 

using fuel cells [14]. Phosphoric acid, solid oxide, alkaline, and proton exchange membrane fuel cells 

are only a few of the many types of fuel cells [15]. PEMFC fuel cells are the most often used fuel 

cell type in the automotive sector, despite the fact that each of these fuel cell types has a distinct 

purpose [16,17]. 

Currently, there are a number of well-established concepts in the literature that can be utilized to 

determine the exact PEMFC parameters. Most of these optimization-based methods are considered to 

be simple, dependable, and uniform [18]. The optimal PEMFC parameters have been the subject of 

numerous studies that have been published in the literature. For instance, a study was carried out to 

ascertain the parameters of a circuit that is comparable to a PEMFC utilizing a multiverse optimizer [19]. 

For the investigation, a total of seven criteria were taken into account. Numerous optimization 

parameters that ensure convergence were found in reports similar to this one from other authors [20]. 

With an emphasis on evolutionary techniques, swarm physics, and nature, the numerous approaches 

were neatly categorized. Furthermore, several metaheuristics for microgrid optimization were 

evaluated by Hegazy et al. [21]. In an attempt to reduce the sum squared error (SSE), adaptive sparrow 

search strategies were also explored to evaluate the discrepancy between the measured and computed 

voltage [22]. Yousri et al. [23] determined that the fractional-order modified Harris hawk optimizer 

was the best algorithm for mathematical modeling of PEMFCs. Other authors were able to further 

reduce the discrepancy between the estimated and empirical values by using a novel optimization 

strategy that they developed [20]. Experiment in [24] made use of two distinct types of fuel cells. 

Using an enhanced monarch butterfly optimizer has also been looked into as a way to ensure a 

reduction in the integral time absolute error [25]. The enhanced Chimp Optimizer was also used to test 

three commercial fuel cells. The study used a 15-nature strategy to confirm its conclusions. The 

artificial ecosystem-based algorithm beat the grey wolf, particle swarm, slime mold, and Harris hawk 

optimizers in terms of outcomes, according to Tabbi et al. [26]. 

The literature has also proposed a hybrid method that combines a vortex search algorithm and 

differential evolution to find the optimal parameters for PEMFCs [27]. According to theoretical 

inferences made from the experimental findings, the SSE was considered to be the best fitness function 

between the voltages created for the stack. Additionally, a monarch butterfly optimizer was tested in a 

range of settings using a 250 W PEMFC stack [28]. Using a sunflower optimizer, Yuan et al. [29] 

calculated the unknown parameters for PEMFCs. A converged moth search technique has also been 

reported in the literature to be effective in reducing the SSE between the measured and experimental 
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voltages [30]. Syah et al. [31] used a balanced strider approach to reduce the total squared difference 

between the experimental and numerical voltages. The goal was also to determine the cost of the stack 

using a modified grass fibrous root technique [32]. Mossa et al. [33] mainly used the Atom Search 

Algorithm and the Harris Hawk optimizers to estimate the unknown values for PEMFCs. The SSE 

value for the measured and mathematical data was used to calculate the fitness function. Rezk et al. [34] 

used a gradient-based strategy and compared it with alternative ways to find the ideal parameters 

between three distinct types of fuel cells. A chaos owl search optimizer has also been utilized to reduce 

the sum squared deviation for both measured and mathematically generated voltages [35]. A chaotic 

binary shark scent optimizer was also used to estimate the unknown data for a PEMFC [36]. 

Additionally, the unknown parameters of the fuel cell were found using a heterogeneous, 

comprehensive learning Archimedes optimizer [37]. 

Additionally, it has been reported that SSE is the goal of a semi-empirical model for PEMFCs [38]. 

Lu et al. [39] used the crow search approach to determine unknown parameters by reducing the integral 

absolute error across the various voltage types. Similar to this, fuel cell unknown values have been 

estimated using an equilibrium optimizer [40]. The best parameters for polarization curve creation can 

be estimated using a satin bowerbird method, per published research [41]. The L-SHADE-EpSin 

technique was used in the literature to construct a model for PEMFC estimation [42]. Isa et al. [43] 

investigated the use of an antlion algorithm and a dragonfly algorithm to predict unknown parameters 

for PEMFCs. Song et al. utilized Harris Hawk algorithms in their study on detecting fuel PEMFC 

parameters [44]. A barnacles mating optimizer was also used to study an accurate fuel-cell behavior 

model [45]. An Archimedes optimizer was also used in the literature, mostly to reduce the disparity 

between the data derived from the experimental and mathematical models [46]. It was also mentioned 

that an efficient way to estimate the unknown parameters for PEMFCs would be to employ a transient 

search optimizer [47]. 

The work’s main objective and contribution can be summed up as follows: 

• The Walrus Optimizer (WO) method, a recent metaheuristic technique, is being evaluated for its 

performance in resolving PEMFC issues.  

• Using the suggested WO method, the six PEMFC parameters are estimated. 

• The proposed WO algorithm is compared with the Osprey Optimization Algorithm (OOA), the 

Harris Hawks Optimizer (HHO), the Heap Based Optimizer (HBO), the Chimp Optimization 

Algorithm (ChOA), and the Tunicate Swarm Algorithm (TSA). 

• The fitness function applied in the identification problem is the sum of square error. 

• Ned Stack PS6, an actual PEM fuel cell model, is used to confirm that all comparator methods 

including the recommended WO method work as expected. 

• Based on the convergence and robustness statistics, all algorithms are evaluated over the course of 

thirty separate runs. 

• Also, the proposed WO method is compared with methods in others, published works, such as the 

Equilibrium Optimizer (EO), Manta Rays Foraging Optimizer (MRFO), Neural Network 

Algorithm (NNA), Artificial Ecosystem Optimizer (AEO), Slap Swarm Optimizer (SSO), and 

Vortex Search approach with Differential Evolution (VSDE). 

The present work is structured in the following manner: Section 1 introduces the general 

background for the problem, a discussion of previous work, and contribution outlines. PEMFC 

modeling is covered in Section 2. The problem formulation for calculating PEMFC parameters is 

explained in Section 3. We examine the WO technique in Section 4. The PEMFC results will be 
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addressed in Section 5. Section 6 contains the work's conclusion. 

2. Analysis of the PEM fuel cell 

The importance of renewable energy sources is growing for both small-scale power applications 

and large-scale industrial uses due to the quick depletion of fossil fuel supplies and the increased 

demand for electricity [48]. Although renewable energy sources are widely employed, fuel cells have 

been developed as a means of supplementing the currently accessible green energy sources due to their 

susceptibility to environmental conditions. Fuel cells have historically been divided into three 

categories: transportable, portable, and stationary [49,50]. 

The polarization curve of a fuel cell running at 80 ℃ is displayed in Figure 1. There are three 

obvious main zones on the polarization curve. The terms concentration losses, ohmic losses, and 

activation losses are frequently used to describe these regions [51]. There is a nonlinear activation 

zone. The activation zone provides detailed information about the electrochemical process that is 

taking place inside the cell. Usually, ohmic losses are found in the membrane. The final part [52] 

discusses the mass concentration losses brought on by modifications to the concentration gradient 

inside the cell. The entire cell voltage is represented as 𝑉𝑓𝑐 in Eq (1) [51]. 

𝑉𝑓𝑐 = 𝐸𝑐𝑒𝑙𝑙 − 𝑉𝑎𝑐𝑡 − 𝑉𝑜ℎ𝑚𝑖𝑐 − 𝑉𝑐𝑜𝑛𝑐.        (1) 

 

Figure 1. Losses of fuel cell. 

The activation polarization is represented by 𝑉𝑎𝑐𝑡, the ohmic loss is presented by 𝑉𝑜ℎ𝑚𝑖𝑐, the 

concentration loss is presented by 𝑉𝑐𝑜𝑛𝑐  , and the open circuit voltage is presented by 𝐸𝑐𝑒𝑙𝑙 [52]. It is 

also evident that the current density affects the output voltage in the ohmic part. As was already 

mentioned, the ionic resistance of the electrolyte also affects the slope. The concentration loss is 

brought on by the mass transfer limitations that cause the voltage to decrease precipitously to zero. 

The number of cells (𝑋𝑛) connected in series determines how much the cell's total output voltage (𝑉𝑡) 

can increase, as demonstrated by Eq (2) [48]. 

𝑉𝑡 = 𝑋𝑛 − 𝑉𝑐𝑒𝑙𝑙.          (2) 

Equation (3) [48] shows how other parameters that take into consideration the variation in 
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temperature surrounding the cell are also taken into account. 𝐸𝑐𝑒𝑙𝑙  is essentially the open circuit 

voltage [53]. 

𝐸𝑐𝑒𝑙𝑙 = {

1229 −
44.43

𝑧∗𝐹
(𝑇 − 298.15) +

𝑟∗𝑇

𝑧∗𝐹
𝑙𝑛(𝑃𝐻2√𝑃𝑜2)          ∀𝑇 ≤ 273

1229 −
44.43

𝑧∗𝐹
(𝑇 − 298.15) +

𝑟∗𝑇

𝑧∗𝐹
𝑙𝑛 (

𝑃𝐻2√𝑃𝑜2

𝑃𝐻2𝑂
𝑆𝑎𝑡 )                 

,    (3) 

where in this work, r, F, and z stand for the ideal gas constant, the Faraday constant, and the number 

of moving electrons (in this case, two) respectively. The temperature of the cell is indicated by T, and 

the partial pressures of hydrogen (𝑃𝐻2 ) and oxygen (𝑃𝑂2 ) are shown. Eqs (4) and (5) provide a 

quantitative representation of the various partial pressure parameters [44,45]. 

𝑃𝐻2 = 0.5 × 𝑅𝐻𝑎 × 𝑃𝐻2𝑂
𝑆𝑎𝑡 × ((

𝑅𝐻𝑎×𝑃𝐻2𝑂
𝑆𝑎𝑡

𝑃𝑎
× 𝑒𝑥𝑝 (

1.635(
𝑖𝑐𝑒𝑙𝑙

𝐴
)

𝑇1.334 ))

−1

− 1),   (4) 

𝑃𝑜2 = 𝑅𝐻𝑐 × 𝑃𝐻2𝑂
𝑆𝑎𝑡 × ((

𝑅𝐻𝑐×𝑃𝐻2𝑂
𝑆𝑎𝑡

𝑃𝑐
× 𝑒𝑥𝑝 (

1.635(
𝑖𝑐𝑒𝑙𝑙

𝐴
)

𝑇1.334 ))

−1

− 1).    (5) 

Anodic relative humidity is represented by 𝑅𝐻𝑎, and cathode relative humidity is presented by 

𝑅𝐻𝑐. The anode pressure is 𝑃𝑎 at the inlet and 𝑃𝑐   at the cathode. The area of the cell is recorded as 

A while the current is 𝑖𝑐𝑒𝑙𝑙. The direct relationship between temperature T and the vapor saturation 

parameter of water, 𝑃𝐻2𝑂
𝑆𝑎𝑡   , is expressed in Eq (6). That being said, Eq (7) is used to compute the 

activation losses. Eq (8) is used to compute the oxygen concentration, which is denoted by 𝐶𝑜2 . The 

semi-empirical parametric coefficients 𝛿1, 𝛿2, 𝛿3, 𝑎𝑛𝑑 𝛿4  are employed. The ohmic losses can be 

computed by using Eq (9) [50]. 

𝑙𝑜𝑔10(𝑃𝐻2𝑂
𝑆𝑎𝑡) = 2.95 × 10−2 × (𝑇 − 273.15) − 9.19 × 10−5 × (𝑇 − 273.15)2, (6) 

𝑉𝑎𝑐𝑡 = −[𝛿1 + 𝛿2𝑇 + 𝛿3𝑇𝑙𝑛(𝐶𝑜2) + 𝛿4𝑇𝑙𝑛(𝐼𝑓𝑐)],     (7) 

𝐶𝑜2 =
𝑃𝑜2

5.08×106 𝑒𝑥𝑝 (
498

𝑇
),         (8) 

𝑉𝑜ℎ𝑚𝑖𝑐 = 𝑖 (𝑅𝑚 + 𝑅𝑐).         (9) 

The symbols for the electrical and ionic resistance are 𝑅𝑚 and 𝑅𝑐, respectively. Eq (10) [50] is 

used to compute the electronic resistance, which is ascribed to the smallest variations with respect to 

the current and voltage, and Eq (11) is employed to ascertain the membrane parametric coefficient. 

Mathematical computation of the concentration polarization is done using Eq (12) [49]. The maximum 

current density is 𝐽𝑚𝑎𝑥 , whereas 𝐽  is the actual current density, and 𝐵 is the parametric coefficient, 

also known as the diffusion parameter. 
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𝑅𝑚 = 𝜌𝑚 (
𝑙

𝐴
),          (10) 

𝜌𝑚 =
181.6[1+0.03(

𝑖

𝐴
)+0.062(

𝑇

303
)
2
(

𝑖

𝐴
)
2.5

]

[𝛾−0.634−3(
𝑖

𝐴
)]×𝑒𝑥𝑝(4.18(

𝑇−303

𝑇
))

,       (11) 

𝑉𝑐𝑜𝑛𝑐 = −𝐵 × 𝑙𝑛 (1 −
𝐽

𝐽𝑚𝑎𝑥
).        (12) 

3. Fuel cell problem formulation of estimating PEM fuel cell parameters 

It is essential to compute the six model parameters (𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝐵, 𝑎𝑛𝑑 𝛾) while developing a 

mathematical computational model for PEMFCs. The model parameters can be deduced from the 

measured data by using the SSE as an objective function for both the measured and estimated datasets. 

The objective function and the variable boundaries are the two primary components of 

optimization algorithms. The decision variables’ limitations are displayed in Table 1. The primary goal 

function is to minimize the sum of square error (SSE). The following formula is used to analyze SSE: 

𝑆𝑆𝐸 = ∑ (𝑉𝑚 − 𝑉𝑓𝑐)
2𝑁

𝑖=1 ,         (13) 

where 𝑉𝑚 is the measured voltage and N is the number of data readings. 

Table 1. The limits of variables. 

Parameters Upper bound Lower bound 

𝛿1 −1.19969 −0.8532 

𝛿2 0.0022 0.0043 

𝛿3 0.000034 0.000098 

𝛿4 −0.00026 −0.0000954 

𝐵 0 0.2 

𝛾 23 13 

4. Walrus optimizer 

This section will describe the mathematical model for the Walrus Optimizer (WO) [54]. 

4.1. Initialization 

Equation (14) illustrates how the optimization process begins with a collection of randomly 

generated candidate solutions (X). 

𝑋 = 𝐿𝐵 + rand(𝑈𝐵 − 𝐿𝐵),        (14) 

where rand is a uniform random vector in the range of 0 to 1, and 𝐿𝐵 and 𝑈𝐵 are the lower and 

upper limits of the problem parameters. 
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Agents that carry out the optimization process are called walruses. Iterations are used to 

continuously update their positions. 

X =

[
 
 
 
 
𝑋1,1𝑋1,2 ⋯𝑋1,𝑑

𝑋2,1𝑋2,2 ⋯𝑋2,𝑑

⋮⋮⋮
⋮⋮⋮

𝑋𝑛,1𝑋𝑛,2 ⋯𝑋𝑛,𝑑]
 
 
 
 

𝑛×𝑑

,        (15) 

where 𝑑 is the dimension of the design variables, and 𝑛 is the population size. 

All search agents' matching fitness values are kept as follows: 

F =

[
 
 
 
 
 
(𝑓1,1𝑓1,2 ⋯𝑓1,𝑑)

(𝑓2,1𝑓2,2 ⋯𝑓2,𝑑)

⋮⋮⋮
⋮⋮⋮

(𝑓𝑛,1𝑓𝑛,2 ⋯𝑓𝑛𝑑)]
 
 
 
 
 

𝑛×𝑑

.        (16) 

Adult and juvenile walrus populations comprise 90% and 10% of the total population, 

respectively. The male to female ratio in adult walruses is 1:1. 

4.2. Safety and danger signals 

When it comes to roosting and foraging, walruses are extremely vigilant. One or two walruses 

will be on patrol as guardians, and as soon as any unforeseen circumstances are discovered, warning 

signals will be launched. The following is a definition of the danger and safety signals in WO: 

𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐴 ∗ 𝑅,         (17) 

𝛼 = 1 − 𝑡/𝑇 ,          (18) 

𝐴 = 2 × 𝛼,           (19) 

𝑅 = 2 × 𝑟1 − 1.          (20) 

where 𝑇 is the maximum iteration, 𝐴 and 𝑅 are danger factors, and α declines from 1 to 0 with the 

number of iterations 𝑡. 

The following is the definition of the safety signal in WO that corresponds to the danger signal: 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟2,         (21) 

where 𝑟2 and 𝑟1 are random values that fall in the interval (0,1). 

4.3. Migration 

Herds of walruses will move to locations better suited for population survival when danger factors 

become too great. The walrus position is updated in this phase as follows: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + migration step,        (22) 
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𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 = (𝑋𝑚
𝑡 − 𝑋𝑛

𝑡) ∙ 𝛽 ∙ 𝑟3
2,      (23) 

𝛽 = 1 −
1

1+exp (−
𝑡−

𝑇
2

𝑇
×10)

,        (24) 

where the current location of the 𝑖th walrus in the 𝑗th dimension is represented by 𝑋𝑖,𝑗
𝑡  , and the new 

position is represented by 𝑋𝑖,𝑗
𝑡+1 . Migration_step is the walrus movement’s step size; two vigilantes 

are chosen at random from the population. Their positions match 𝑋𝑚
𝑡  and 𝑋𝑛

𝑡 . 𝛽 is the migration 

step control factor, this factor varies iteratively as a smooth curve. 𝑟3 is a random number that falls 

between 0 and 1. 

4.4. Reproduction 

When danger variables are low, walrus herds typically reproduce in currents as opposed to 

migrating. The lead walrus (𝑋best
𝑡 ) and the male walrus (Male  𝑖,𝑗

𝑡 )  have an influence on the female 

walrus during reproduction, according to the position update of female walruses. Over the course of 

the iteration, the female walrus becomes increasingly influenced by the leader and less by her mate. 

Female𝑖,𝑗
𝑡+1 = Female𝑖,𝑗

𝑡 + 𝛼 ∙ (Male𝑖,𝑗
𝑡 − Female𝑖,𝑗

𝑡 ) + (1 − 𝛼) ∙ (𝑋best
𝑡 − Female𝑖,𝑗

𝑡 ),  (25) 

where Male𝑖,𝑗
𝑡  and Female𝑖,𝑗

𝑡   are the positions of the 𝑖 th male and female walruses in the 𝑗 th 

dimension, and Female𝑖,𝑗
𝑡+1 is the new position for the 𝑖th female walrus in the 𝑗th dimension. 

Then, killer whales and polar bears frequently hunt juvenile walruses near the periphery of the 

population. Juvenile walruses must therefore adjust to their new position in order to evade predators. 

Juvenile𝑖,𝑗
𝑡+1 = (𝑂 −Juvenile𝑖,𝑗

𝑡 ) ∙ 𝑃,       (26) 

Juvenile𝑖,𝑗
𝑡+1 = (𝑂 −Juvenile𝑖,𝑗

𝑡 ) ∙ 𝑃,       (27) 

where 𝑃 is the juvenile walrus’s distress coefficient, which is a random number between 0 and 1, 𝑂 

is the reference safety position, 𝐿𝐹 is a vector of random values that represent Lévy movement based 

on a Lévy distribution, and Juvenile𝑖,𝑗
𝑡+1  is the new position for the 𝑖 th juvenile walrus in the 𝑗 th 

dimension. 

Levy (𝑎) = 0.05 ×
𝑥

|𝑦|
1
𝑎

,         (28) 

where 𝑦 and 𝑥 are two normally distributed parameters, 𝑥 N(0, 𝜎𝑥
2), 𝑦 N(0, 𝜎𝑦

2). 

𝜎𝑥 = [
Γ(1+𝛼)sin (

𝜋𝛼

2
)

Γ(
1+𝛼

2
)𝛼2

(𝛼−1)
2

]

1

𝛼

, 𝜎𝑦 = 1, 𝛼 = 1.5 ,     (29) 

where 𝜎𝑦 and 𝜎𝑥 are the standard deviations, Γ(𝑥) = (𝑥 + 1)!. 

Natural predators also target walruses during their underwater feeding behavior, and the animals 

will depart their current activity area in response to warnings from their fellows of impending danger. 

This behavior is seen in the late WO iteration, and walruses' ability to explore the world is aided by a 

certain amount of population disturbance. 
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𝜎𝑥 = [
Γ(1+𝛼)sin (

𝜋𝛼

2
)

Γ(
1+𝛼

2
)𝛼2

(𝛼−1)
2

]

1

𝛼

, 𝜎𝑦 = 1, 𝛼 = 1.5 ,      (30) 

where the distance between the best and current walrus is shown by |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖,𝑗

𝑡 |, and 𝑟4 is a random 

value that falls between 0 and 1. 

Additionally, as part of their social gathering behavior, walruses can work together to forage and 

migrate based on the whereabouts of other walruses in the group. By exchanging location data, 

walruses can assist the entire herd in locating areas of the sea where there is a greater amount of food. 

𝑋𝑖,𝑗
𝑡+1 = (𝑋1 + 𝑋2)/2,         (31) 

{
𝑋1 = 𝑋best

𝑡 − 𝑎1 × 𝑏1 × |𝑋best 
𝑡 − 𝑋𝑖,𝑗

𝑡 |

𝑋2 = 𝑋second
𝑡 − 𝑎2 × 𝑏2 × |𝑋second 

𝑡 − 𝑋𝑖,𝑗
𝑡 |

,      (32) 

𝑎 = 𝛽 × 𝑟5 − 𝛽,          (33) 

𝑎 = 𝛽 × 𝑟5 − 𝛽,          (34) 

𝑏 = tan(𝜃),           (35) 

where 𝑋second
𝑡   represents the position of the second walrus in the current iteration, |𝑋second

𝑡 − 𝑋𝑖,𝑗
𝑡 | 

indicates the distance between the current walrus and the second walrus, a and b are the gathering 

coefficients, and 𝑋1  and 𝑋2  are two weights influencing the walrus’s gathering behavior. The 

random number 𝑟5 is between 0 and 1, while the values of 𝜃 span from 0 to π. 

4.5. WO code 

When it comes to roosting and foraging, walruses are extremely vigilant. One or two walruses 

will be on patrol as guardians, and as soon as any unforeseen circumstances are discovered, warning 

signals will be launched. The following is a definition of the danger and safety signals in WO. 

The pseudo code and flowchart of WO are described in detail in Algorithm 1 and Figure 2, 

respectively. 

Algorithm 1. This is the WO algorithm pseudocode. 

1) Adjust the population and describe the related variables.  

2) Estimate the fitness function and extract the best solutions.  

3) While 𝑡 < 𝑇 

4)       If |𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 > 1| 

5)         Update each walrus position using Eq (22) 

6)     Else  

7)       If 𝑆𝑎𝑓𝑒𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 ≥  0.5  

8)         For walrus is male  

9)           Apply Halton sequence to update new position. 

10)         For walrus is female  

11)           Apply Eq (25) to update new position. 

12)       For walrus is juvenile  

13)         Apply Eq (26) to update new position. 

14)           End 
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15)     Else If |𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙|  ≥  0.5  

16)         Apply Eq. (30) to update new position. 

17)     Else  

18)         Apply Eq. (31) to update new position. 

19)           End 

20)         Update the position of walrus. 

21) Calculate the fitness function and extract the best solutions.  

22)         t = t + 1  

23)       End 

 

Figure 2. Flow chart of WO algorithm [54]. 

5. Results 

5.1. Analysis of results for PEMFC 

The optimal variables of a Ned stack PS6 have been defined by using the WO algorithm. The proposed 

WO method is compared with other techniques such as the Tunicate Swarm Algorithm (TSA) [55], the 

Harris Hawks Optimizer (HHO) [56], the Heap Based Optimizer (HBO) [57], the Chimp Optimization 

Algorithm (ChOA) [58], and the Osprey Optimization Algorithm (OOA) [59]. Experimental data of 

Ned stack PS6 have been applied to measure the reliability and accuracy of all algorithms. The 

identified variables at the best SSE for PEMFC are illustrated in Table 2. Based on Table 2, the best 

SSE is achieved by the WO algorithm with the value 1.945415603, then HBO, HHO, TSA, ChOA, 

and OOA, respectively. The estimated parameters for each algorithm over 30 runs are described in 

Tables 3–8 for WO, OOA, TSA, ChOA, HHO, and HBO, respectively. The identified value of voltage 

for all techniques at the best run is reported in Table 9 compared to the measured value. 

Each algorithm is evaluated once it has been run thirty times on its own. Accuracy and reliability 

are the metrics used to evaluate each algorithm. The standard deviation of the SSE value and the lowest 

SSE value associated with the accuracy of the algorithm are indicated for every method that is 
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described in terms of reliability. Table 10 provides more clarity on the statistical analysis of PEMFC 

for all running algorithms. Based on these data, the recommended WO method achieves the highest 

accuracy, followed by HHO, HBO, TSA, ChOA, and OOA. 

The convergence of the iteration in each run is the primary criteria used to categorize the 

performance of the algorithms, and the behavior of each algorithm is compared with the robustness 

data of each of the thirty distinct runs. The robustness and convergence of each PEMFC algorithm are 

shown in Figures 3 and 4, respectively. These figures demonstrate the great degree of resilience, 

dependability, and convergence of quicker performance of the proposed WO method. 

Table 2. The parameters identified for PEMFC at the best SSE. 

Method WO OOA TSA ChOA HHO HBO 

𝜹𝟏 −0.853200569 −0.959544011 −1.19978 −1.19978 −0.8532 −1.070939173 

𝜹𝟐 0.002354536 0.003156872 0.003915906 0.003378166 0.002353465 0.002997364 

𝜹𝟑 0.000034100 0.000067400 0.0000717 0.0000340 0.0000340 0.00003400 

𝜹𝟒 −0.000095400 −0.000099700 −0.0000954 −0.0000954 −0.0000954 −0.00009540 

𝛄 13 16.4290859 13 13 13 13 

𝐁 0.001879210 0.040533253 0.001726088 0.002323305 0.001895643 0.001881396 

Table 3. Decision variables based on WO method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−0.853566554 0.002465614 0.0000418 −0.0000954 13 0.001875769 

−0.860055821 0.002409862 0.0000365 −0.0000954 13 0.001877519 

−0.854034366 0.002465031 0.0000417 −0.0000954 13.35302298 0.007404403 

−0.853244703 0.002475315 0.0000425 −0.0000954 13.04761331 0.002715849 

−0.878601137 0.002517158 0.0000403 −0.0000954 14.90291269 0.02757478 

−0.853352949 0.002438533 0.0000400 −0.0000954 14.07170862 0.017467133 

−1.00879319 0.00281544 0.0000341 −0.0000954 13 0.001879238 

−0.914605236 0.002559889 0.0000358 −0.0000954 13.6461961 0.011697043 

−0.853210792 0.002640961 0.0000542 −0.0000954 14.25241647 0.019757951 

−0.856139511 0.002426655 0.0000385 −0.0000954 13.29215144 0.006492031 

−0.951294729 0.002772022 0.0000430 −0.0000954 13.00018172 0.001907953 

−0.853202153 0.002452071 0.0000409 −0.0000954 13 0.001875291 

−0.911720781 0.00277847 0.0000517 −0.0000954 13.15255592 0.004358724 

−0.853216948 0.002369916 0.0000352 −0.0000954 13.40237971 0.008111968 

−0.855282035 0.00235925 0.0000340 −0.0000954 13.67445541 0.012109187 

−0.853251916 0.00237229 0.0000353 −0.0000954 13.06371306 0.002942062 

−0.890303859 0.002486264 0.0000356 −0.0000954 13 0.001877507 

−0.853207846 0.002492915 0.0000438 −0.0000954 13.83465142 0.014295513 

−0.907495971 0.002945623 0.0000645 −0.0000954 17.73888927 0.053307413 

−0.853200569 0.002354536 0.0000341 −0.0000954 13 0.00187921 

−1.076368584 0.003028541 0.0000355 −0.0000954 21.88758647 0.076779435 

−0.853313815 0.002459558 0.0000414 −0.0000954 13.08302722 0.00324834 

Continued on next page 



12737 

AIMS Mathematics  Volume 9, Issue 5, 12726–12750. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−0.8532 0.002367934 0.0000350 −0.0000954 13 0.001878355 

−0.85320016 0.002612978 0.0000522 −0.0000954 13.32724572 0.007028232 

−1.043821036 0.002922534 0.0000344 −0.0000954 13 0.001878723 

−0.989700863 0.00289034 0.0000433 −0.0000954 13 0.001872944 

−0.866615934 0.002718634 0.0000569 −0.0000954 13.45797988 0.008943924 

−0.853690792 0.002399199 0.0000371 −0.0000954 13 0.001877249 

−0.859230426 0.002481247 0.0000418 −0.0000954 15.34033061 0.032242822 

−0.882443934 0.00243979 0.0000340 −0.0000954 13.35344806 0.007430101 

Table 4. Decision variables based on OOA method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−0.876868537 0.002493939 0.0000356 −0.000106684 13.74027463 0.012771761 

−0.887931097 0.002639118 0.0000421 −0.000106279 14.38230501 0.037357767 

−0.853410829 0.002484147 0.0000385 −0.000104000 14.93221095 0.057048747 

−0.931995177 0.002718515 0.0000392 −0.000107726 14.29361053 0.024945846 

−1.100061194 0.003260373 0.0000424 −0.000104569 15.63284192 0.0489365 

−1.000440472 0.003099187 0.0000518 −0.0000996 15.48566937 0.060832688 

−1.022011441 0.003453348 0.0000678 −0.000123604 16.56981686 0.044582211 

−0.854635589 0.002464316 0.0000353 −0.000112881 15.21003277 0.041000782 

−0.911314079 0.002800247 0.0000483 −0.000107 14.56339828 0.039082666 

−0.890187675 0.002821552 0.0000535 −0.000105545 15.42780591 0.059397543 

−0.888751818 0.002775527 0.0000486 −0.000117576 15.54415574 0.044937602 

−0.8532 0.002781281 0.0000509 −0.000142982 15.97168209 0.040706577 

−0.8532 0.002770209 0.0000568 −0.000118277 16.29152661 0.040778951 

−0.876764731 0.002710289 0.0000491 −0.000106873 15.43076484 0.049481236 

−0.8532 0.002732368 0.0000534 −0.000119425 15.0627159 0.034286176 

−0.886317363 0.00271603 0.0000484 −0.00010398 15.20572317 0.045709089 

−0.860594658 0.002556515 0.0000440 −0.000100955 14.4467673 0.033637808 

−0.919600216 0.002864965 0.0000531 −0.000103218 16.46197817 0.049430129 

−0.8532 0.002782358 0.0000607 −0.000114 14.95320092 0.012091416 

−0.882103162 0.002670587 0.0000473 −0.000100466 14.86506182 0.041740177 

−0.8532 0.002900991 0.0000690 −0.000106347 15.65852255 0.038243091 

−0.881280378 0.002763002 0.0000507 −0.000106617 15.33934736 0.060479061 

−0.8568493 0.002491801 0.0000357 −0.000116573 14.45140644 0.033262212 

−0.8532 0.002720026 0.0000546 −0.000118757 15.49541598 0.020134576 

−0.920261639 0.003034928 0.0000643 −0.000105418 14.4716418 0.029886722 

−0.853349402 0.00289854 0.0000664 −0.000115299 17.3251641 0.056397862 

−0.87241851 0.002643922 0.0000424 −0.000116 15.01868166 0.046869631 

−0.8532 0.003087222 0.0000781 −0.000130457 17.95015698 0.042465833 

−0.959544011 0.003156872 0.0000674 −0.0000997 16.4290859 0.040533253 

−0.8532 0.002600618 0.0000412 −0.000135935 16.01642909 0.025500384 
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Table 5. Decision variables based on TSA method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−0.8532 0.002839092 0.0000681 −0.0000954 14.91980312 0.029388202 

−1.142296738 0.003215667 0.0000348 −0.0000954 17.17361894 0.048467835 

−1.19978 0.00403395 0.0000807 −0.0000954 22.15688282 0.076245532 

−1.108021609 0.003914985 0.0000909 −0.0000954 13.41737676 0.007438607 

−1.153828831 0.003474449 0.0000505 −0.0000954 14.38133988 0.020308248 

−0.855646951 0.002447642 0.0000403 −0.0000954 13 0 

−0.87493782 0.002871171 0.0000661 −0.0000954 17.41755797 0.050509 

−1.061939659 0.003882615 0.0000980 −0.0000954 13.50364601 0.009268655 

−1.114356868 0.004036595 0.0000980 −0.0000954 17.52147507 0.052757555 

−1.019017486 0.003013811 0.0000462 −0.0000954 20.24849866 0.068429609 

−1.19978 0.003915906 0.0000717 −0.0000954 13 0.001726088 

−1.118857297 0.003331782 0.0000476 −0.0000954 16.01563608 0.0395123 

−0.934872392 0.003503072 0.0000980 −0.0000954 18.80475917 0.060819979 

−0.867129294 0.003198632 0.0000905 −0.0000954 15.97861925 0.039666553 

−1.040580141 0.003819591 0.0000980 −0.0000954 13.77398628 0.013174976 

−1.11635963 0.003461507 0.0000575 −0.0000954 22.45766349 0.079334084 

−1.19978 0.003466757 0.0000404 −0.0000954 16.37706932 0.041086981 

−1.138949003 0.003221227 0.0000357 −0.0000954 16.67579986 0.045452198 

−1.008924887 0.002897987 0.0000400 −0.0000954 15.66553156 0.034779811 

−0.916855394 0.002537812 0.0000340 −0.0000954 17.77717367 0.053749874 

−1.062643103 0.003159506 0.0000470 −0.0000954 13.44544609 0.009590924 

−0.906778667 0.003058066 0.0000724 −0.0000954 13.43040137 0.008133108 

−0.859437007 0.002862126 0.0000687 −0.0000954 17.64720308 0.052016151 

−1.19978 0.004193075 0.0000911 −0.0000954 15.02724831 0.030428843 

−1.19978 0.004029188 0.0000800 −0.0000954 16.91836486 0.046340119 

−1.017962231 0.003665253 0.0000920 −0.0000954 16.58982553 0.043855626 

−1.117924404 0.003496244 0.0000592 −0.0000954 14.97252518 0.02937587 

−1.162769702 0.003876079 0.0000766 −0.0000954 13.80542143 0.012966984 

−0.8532 0.002507507 0.0000448 −0.0000954 13.86181084 0.014771008 

−0.921134326 0.002912696 0.0000593 −0.0000954 14.79524293 0.026513575 
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Table 6. Decision variables based on ChOA method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−1.007481827 0.002965622 0.0000449 −0.0000954 13 0 

−1.19978 0.003374559 0.0000340 −0.0000954 13 0 

−1.19978 0.003479361 0.0000412 −0.0000954 13.03311646 0 

−0.948627412 0.002981715 0.0000585 −0.0000954 13 0 

−1.19978 0.003375464 0.0000340 −0.0000954 13 0.00000000403 

−1.19978 0.003380732 0.0000340 −0.0000954 13 0.002932141 

−1.19978 0.003427353 0.0000376 −0.0000954 13 0 

−1.19978 0.003373077 0.0000340 −0.0000954 13 0 

−0.990867704 0.003195103 0.0000647 −0.0000954 13 0.00000147 

−0.878968003 0.002557823 0.0000431 −0.0000954 13 0 

−1.19978 0.003375677 0.0000340 −0.0000954 13 0.00000679 

−0.8532 0.002519756 0.0000459 −0.0000954 13 0.000132683 

−0.8532 0.002350225 0.0000340 −0.0000954 13 0 

−1.19978 0.003373885 0.0000340 −0.0000954 13 0.0000000673 

−1.102853196 0.003255721 0.0000456 −0.0000954 13 0.00000163 

−1.166241947 0.003831538 0.0000730 −0.0000954 13 0 

−1.19978 0.003630332 0.0000519 −0.0000954 13 0.00000354 

−1.132352423 0.004023098 0.0000934 −0.0000954 13 0 

−1.19978 0.003378166 0.0000340 −0.0000954 13 0.002323305 

−1.19978 0.003553335 0.0000465 −0.0000954 13 0 

−0.971360092 0.002769616 0.0000389 −0.0000954 13 0 

−1.19978 0.003375375 0.0000340 −0.0000954 13 0 

−1.19978 0.003375794 0.0000340 −0.0000954 13 0 

−0.888689573 0.002608552 0.0000448 −0.0000954 13 0 

−0.8532 0.002349652 0.0000340 −0.0000954 13 0 

−0.8532 0.00235057 0.0000340 −0.0000954 13 0 

−1.19978 0.00337634 0.0000340 −0.0000954 13 0 

−1.19978 0.003376093 0.0000340 −0.0000954 13 0 

−1.19978 0.003952869 0.0000744 −0.0000954 13 0 

−1.19978 0.003377145 0.0000340 −0.0000954 13 0 
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Table 7. Decision variables based on HHO method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−0.8532 0.002508947 0.0000449 −0.0000954 14.47508168 0.022847632 

−0.8532 0.00278092 0.0000643 −0.0000954 18.77462834 0.059957609 

−0.853938468 0.003127229 0.0000886 −0.0000954 21.15061860 0.072837725 

−0.8532 0.00306406 0.0000839 −0.0000954 13.12590230 0.003933532 

−0.8532 0.002448545 0.0000408 −0.0000954 14.61429442 0.024135781 

−1.065675163 0.003373452 0.0000554 −0.0001177 19.37768932 0.061682283 

−0.877225152 0.002586985 0.0000442 −0.0000982 13.90782264 0.018923601 

−0.853346084 0.002383782 0.0000360 −0.0000954 13.68772648 0.013348001 

−0.8535834 0.002825701 0.0000676 −0.0000954 21.99718801 0.076501157 

−0.853216313 0.002408132 0.0000379 −0.0000954 14.51426962 0.02307025 

−0.8532 0.002545598 0.0000475 −0.0000954 13.09983751 0.003558152 

−0.8532 0.002394252 0.0000369 −0.0000954 14.18108526 0.018822875 

−0.853375743 0.002480956 0.0000429 −0.0000954 13.87342476 0.015300754 

−0.8532 0.002353465 0.0000340 −0.0000954 13 0.001895643 

−0.871448882 0.002731344 0.0000566 −0.0000960 14.8270774 0.02679571 

−0.853212556 0.002717227 0.0000597 −0.0000954 15.76810724 0.03666253 

−0.854705556 0.00235916 0.0000345 −0.0000956 20.39640625 0.069164604 

−0.8532 0.002837859 0.0000681 −0.0000954 15.51125522 0.03385145 

−0.8532 0.002353139 0.0000342 −0.0000954 16.87360931 0.046475373 

−0.853208767 0.002416617 0.0000382 −0.0000954 13.74456471 0.014972333 

−0.8532 0.002374141 0.0000355 −0.0000954 13.84858962 0.014490863 

-0.8532 0.002606228 0.0000518 −0.0000954 13.39950293 0.007911236 

−0.8532 0.003257447 0.0000976 −0.0000954 13 6.06E-06 

−0.85443684 0.002590895 0.0000505 −0.0000955 15.83576209 0.037406685 

−0.8532 0.002454603 0.0000412 −0.0000954 14.15302645 0.018362267 

−0.867922123 0.00259887 0.0000475 −0.0000971 13.68935123 0.013892949 

−0.8532 0.002440901 0.0000402 −0.0000954 14.60973316 0.024115853 

−0.853206657 0.002785937 0.0000645 −0.0000954 15.43650016 0.033096236 

−0.853238223 0.002535794 0.0000470 −0.0000954 16.99515789 0.047126659 

−0.8532 0.002354485 0.0000343 −0.0000954 13.05041363 0.001129183 
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Table 8. Decision variables based on HBO method over 30 independent runs. 

𝜹𝟏 𝜹𝟐 𝜹𝟑 𝜹𝟒 𝛄 𝐁 

−1.19978 0.003375064 0.0000340 −0.0000954 15.93435562 0.037623165 

−0.8532 0.003161331 0.0000907 −0.0000954 13 0.001637862 

−0.8532 0.002414839 0.0000383 −0.0000954 13 0.001872528 

−0.982774043 0.003137423 0.0000623 −0.0000954 16.12247875 0.039307531 

−1.079699185 0.003018536 0.0000340 −0.0000954 18.13106837 0.055738717 

−0.8532 0.00262885 0.0000535 −0.0000954 16.87587354 0.046953428 

−1.16227075 0.003271385 0.0000344 −0.0000954 15.84740104 0.037386249 

−0.8532 0.002525645 0.0000462 −0.0000954 15.27110773 0.031584571 

−0.8532 0.002639363 0.0000543 −0.0000954 16.87332069 0.046676856 

−1.186418894 0.003338544 0.0000340 −0.0000954 13.00679931 0.001734876 

−0.882468653 0.003301148 0.0000944 −0.0000954 13 0.001938518 

−0.8532 0.002870705 0.0000703 −0.0000954 13 0.001499429 

−0.999643544 0.00296983 0.0000471 −0.0000954 17.54762778 0.051851765 

−1.141584692 0.003706593 0.0000691 −0.0000954 13 0.001876189 

−0.988514778 0.003130083 0.0000604 −0.0000954 13 0.001933796 

−0.853200302 0.003245938 0.0000966 −0.0000954 13 0.001844955 

−1.199759839 0.004208753 0.0000922 −0.0000954 13 0.002104947 

−1.01845926 0.003550067 0.0000836 −0.0000954 13 0.002490088 

−1.034332177 0.002995397 0.0000419 −0.0000954 21.46469936 0.074837822 

−1.027835087 0.003625759 0.0000872 −0.0000954 15.69722095 0.03494139 

−1.19978 0.003987285 0.0000768 −0.0000954 14.27889223 0.020135876 

−1.124194548 0.004067427 0.0000980 −0.0000954 13 0.002056482 

−1.024568268 0.003156432 0.0000548 −0.0000954 13 0.002105551 

−1.070939173 0.002997364 0.0000340 −0.0000954 13 0.001881396 

−1.036228901 0.0029231 0.0000361 −0.0000954 13 0.000607177 

−0.983783132 0.003627683 0.0000963 −0.0000954 13 0.001850845 

−1.159143642 0.003490548 0.0000507 −0.0000954 22.12136763 0.077864772 

−0.866706674 0.002544769 0.0000446 −0.0000954 13.05077882 0.002535624 

−1.004303753 0.002980769 0.0000466 −0.0000954 13 0.002227467 

−0.939330766 0.003222175 0.0000771 −0.0000954 13 0.002001052 
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Table 9. Comparison between estimated and measured voltage at the best solution. 

Measured 

[60] 

WO OOA TSA ChOA HHO HBO 

Estimated 

61.64 62.29744305 62.50342539 62.28630234 62.29273736 62.29798587 62.29770348 

59.57 59.75409932 59.86080435 59.74308000 59.74893550 59.75462526 59.75435757 

58.94 59.03019752 59.11231350 59.01923984 59.02480188 59.03071491 59.03045466 

57.54 57.49139398 57.52896066 57.48062516 57.48529148 57.49188532 57.49164775 

56.8 56.71799092 56.73768097 56.70735138 56.71140739 56.71846454 56.71824240 

56.13 56.04843580 56.05523751 56.03792836 56.04136307 56.04889138 56.04868494 

55.23 55.16506537 55.15852770 55.15476155 55.15724294 55.16549332 55.16531093 

54.66 54.63017328 54.61752516 54.62000903 54.6218400 54.63058240 54.63041640 

53.61 53.64473773 53.62448041 53.63486224 53.63535481 53.64510816 53.64497583 

52.86 52.95647330 52.93349248 52.94682328 52.9462773 52.95681374 52.95670751 

51.91 51.45212335 51.42959800 51.44303190 51.43993605 51.45239036 51.45234802 

51.22 51.03934667 51.01827089 51.03042383 51.02656424 51.03959172 51.03956848 

49.66 49.42878281 49.41757013 49.42057957 49.41348899 49.42893522 49.42899255 

49 48.63648708 48.63196910 48.62867362 48.61985055 48.63658995 48.63669035 

48.15 48.03952436 48.04055011 48.03202028 48.02183023 48.03958820 48.03972254 

47.52 47.64434634 47.64918624 47.63705456 47.62593039 47.64438354 47.64454104 

47.1 47.05473122 47.06534710 47.04776745 47.03520596 47.05472748 47.05492057 

46.48 46.25839538 46.27667866 46.25189652 46.23730955 46.25833404 46.25857720 

45.66 45.45459558 45.48000049 45.44859239 45.43185996 45.45447333 45.45476942 

44.85 44.84079504 44.87087076 44.83518901 44.8167472 44.84062435 44.84096253 

44.24 44.01793820 44.05269188 44.01289131 43.99205647 44.01769978 44.01809681 

42.45 42.97417032 43.01111406 42.96987987 42.94583059 42.97384113 42.97431701 

41.66 42.11693282 42.15133341 42.11330674 42.08645402 42.11652462 42.11706913 

40.68 41.01379005 41.03702440 41.01108293 40.98037953 41.01327354 41.01391211 

40.09 40.34402671 40.35490906 40.34191684 40.30872599 40.34344036 40.34413957 

39.51 39.65120245 39.64376812 39.6497455 39.61384773 39.65054021 39.65130532 

38.73 38.71236587 38.66906359 38.71185798 38.67204638 38.71159406 38.71245429 

38.15 37.99603248 37.91483588 37.99630568 37.95328958 37.99517110 37.99610907 

37.38 37.00844756 36.85607400 37.00989327 36.96209183 37.00745263 37.00850651 

Table 10. Statistical analysis for PEMFC. 

 Min SD Mean Max 

WO 1.945415603 0.124810273 1.997965615 2.574660996 

OOA 2.592017414 11.11761897 17.63689506 54.21971512 

TSA 1.947319234 0.175716922 2.165255368 2.642701240 

ChOA 1.961109131 0.034884510 2.04 2.134193004 

HHO 1.945421572 1.647991725 2.445014898 11.07849906 

HBO 1.945416441 0.174253930 2.059032058 2.594772932 
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Figure 3. Robustness curves for all algorithms. 

 

Figure 4. Convergence curves for all algorithms. 

5.2. Discussion 

The optimal variables of a Ned stack PS6 have been identified by using the WO algorithm. The 

proposed WO method is compared with other techniques such as TSA, HHO, the HBO, ChOA, and 

OOA. These methods are applied for the same problem at the same environmental conditions. Also, 

the proposed WO method is compared with methods of other published works such as the Equilibrium 

Optimizer (EO), manta rays foraging optimizer (MRFO), neural network algorithm (NNA), artificial 

ecosystem optimizer (AEO), slap swarm optimizer (SSO), and vortex search approach with DE 

(VSDE). Table 11 explains the comparative analysis between all algorithms. Based on the data in Table 11, 

the proposed WO technique achieves the best SSE for PEMFC. The relation between the estimated 
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voltage from the WO method and the measured voltage is described in Figure 5. Also, this figure 

contains the absolute error for the voltage. These figures demonstrate the great degree of closeness of 

the identified results from the proposed WO method and the measured results. 

Table 11. Comparison of the best fitness function of WO with other algorithms for PEMFC. 

 Min 

WO 1.945415603 

OOA 2.592017414 

TSA 1.947319234 

ChOA 1.961109131 

HHO 1.945421572 

HBO 1.945416441 

EO [60] 1.9547 

MRFO [60] 2.1360 

NNA [60] 2.1449 

AEO [60] 2.1459 

SSO [60] 2.1807 

VSDE [60] 2.0885 

ISA [60] 1.9564 

ABC [60] 1.9663 

BSA [60] 1.9664 

 

Figure 5. Comparison between identified and measured voltage for PEMFC based on WO method. 

6. Conclusions 

The ideal parameter identification procedure for the Ned Stack PS6 PEM fuel-cell model has been 

investigated in this research work using a number of recent optimization approaches. The six 

optimization strategies listed below have been examined: the Walrus Optimizer, the Osprey 
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Optimization Algorithm, the Tunicate Swarm Algorithm, the Harris Hawks Optimization, the Heap 

Based Optimizer, and the Chimp Optimization Algorithm. Also, the proposed Walrus Optimizer 

method is compared with methods in other published works such as the Equilibrium Optimizer, Manta 

rays Foraging Optimizer, Neural Network Algorithm, Artificial Ecosystem Optimizer, Slap Swarm 

Optimizer, and Vortex Search with DE. The sum square error between the estimated and measured cell 

voltages is the fitness function that must be minimized, and these six parameters act as choice variables 

during optimization. It was discovered that the ideal fitness function fell between 1.945415603 and 

2.779793414. OOA produced the greatest value, 2.779793414, while the WO method produced the 

lowest result, 1.945415603. The standard deviation ranged from 11.11761897 to 0.124810273. With a 

standard deviation of 0.124810273, WO had the lowest value, and OOA had the highest value, 

11.11761897. Using the SSE as the objective function allows the WO to anticipate outcomes more 

accurately, according to the data gathered. It also ensures faster convergence than other metaheuristic 

algorithms studied, which makes it a feasible solution for global optimization problems outside of fuel 

cell-related ones. Also, the great degree of closeness of the identified results from the proposed WO 

method and the measured results is clarified according to the results. Future large-scale, practical 

optimization issues involving power systems and solar energy will be resolved using the WO technique. 

This work was limited to parameter identification for the Ned Stack PS6 PEM fuel-cell model, which 

restricts its applicability to other fuel cell models or uses. The future effort involves expanding the 

study to include various fuel cell models or applications to evaluate the effectiveness and reliability of 

the Walrus Optimizer technique in diverse fields. 
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