
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(5): 12678–12699.
DOI: 10.3934/math.2024620
Received: 24 January 2024
Revised: 04 March 2024
Accepted: 08 March 2024
Published: 02 April 2024

Research article

Hostile-based bipartite containment control of nonlinear fractional
multi-agent systems with input delays: a signed graph approach under
disturbance and switching networks

Asad Khan1,*, Azmat Ullah Khan Niazi2,*, Saadia Rehman2 and Sidra Ahmed3

1 Metaverse Research Institute, School of Computer Science and Cyber Engineering, Guangzhou
University, Guangzhou 510006, China

2 Department of Mathematics and Statistics, The University of Lahore, Sargodha 40100, Pakistan
3 Department of Physics, The University of Lahore, Sargodha 40100, Pakistan

* Correspondence: Email: asad@gzhu.edu.cn, azmatullah.khan@math.uol.edu.pk.

Abstract: This article addresses the hostile-based bipartite containment control of nonlinear fractional
multi-agent systems (FMASs) with input delays. Several fundamental algebraic criteria have been
offered by the use of signed graph theory. To make the controller design more realistic, we assumed
that the controller was under some disturbance. For the analysis of bipartite containment control, we
used a fixed and switching signed network. The commonly used Lyapunov function approach and the
Razumikhin technique were used. The use of these techniques can conquer the challenge brought on
by switching, temporal delays, and fractional mathematics. To better elucidate the theoretical results,
two examples are provided.
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1. Introduction

The cooperative control of multi-agent systems (MASs) has sparked considerable attention in
recent years due to its numerous applications in the formation of multi-vehicle [1], mobile sensors [2],
swarms, and flocks [3, 4]. Consensus has attracted widespread attention as the most significant and
elementary coordination control [5]. Multi-agent systems can either involve agents working together
(cooperative) or against each other (hostile), and most current efforts focus on cooperative systems.
Nonetheless, in certain practical settings, some agents are more likely to engage in competition, while
others may lean towards collaboration. Networks containing hostile connections are widespread, like
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social networking [6], and such networks are sometimes referred to as signed networks and these
networks can be represented using signed graphs. A signed graph’s negative and positive weights
indicate the hostile and cooperative relationship between two agents connected by an edge. If a set of
MASs may be divided into two opposing subgroups, all agents tend to agree on values with the same
modulus but distinct signs [7] this asymptotic behavior is known as bipartite consensus. A detailed
examination is being conducted on both the first-order as well as high-order bipartite
consensus [8–10]. In reality, multi-leader MASs could expand their useful applications, such as
silkworm moth swarming [11] and unmanned aerial vehicle obstacle avoidance [12]. Bipartite
fractional-order multi-agent systems can easily model the behavior of more complex systems as
compared to traditional integer-order models. They can control large-scale sensor networks. They can
also be used to control large groups of robots that are working together towards a goal.
Fractional-order dynamics can easily capture complex inter-robot connections and environmental
influences, providing more effective and adaptable behavior of swarms. Swarm robotics is the field
that tells us how to manage large groups of low-complexity robots through the use of basic rules, and
it is inspired by the capabilities of social insects to work together to implement complex tasks that are
out of reach for any single insect. In [13] a detailed introduction is presented about swarm robotics.

Confinement command is the term used to describe these asymptotic actions [14]. It means that the
followers of all leaders come together to form a convex hull. Some fascinating efforts on bipartite
containment control were demonstrated in [15–17]. Ahsan and Ma [18] use a matrix transformation to
convert bipartite containment control to general containment control. A strategy based on observers
was proposed to solve bipartite containment control in [19]. By putting together different control
protocols, a problem with bipartite output containment [20] examines this. Furthermore, some other
methods, such as the fuzzy observer method [21] and the output feedback approach [22] together with
the delayed event-triggered mechanism [23] are applied. The delay in time is a common issue in real
dynamical systems that has a significant impact on the dynamics of systems and can even make
systems unstable. Currently, frequency-domain analysis is an important method for exploring the
consensus of fractional-order delayed systems; for instance, [24, 25] are considered, as they presented
consensus on fractional-order systems with input delays. Shen et al. [26] investigate directed
multi-agent systems with variable input and delay in communication. In [27], a multi-agent system
with undirected input delays was taken into account. Researchers have recently investigated the
potential of time-delayed complex-valued neural networks and also proposed stability analysis of
these networks [28, 29]. In [30–32], the authors examined genetic regulatory networks, neural
networks with time delays, and heterogeneous multi-agent systems. Notable papers explored stability
in genetic networks with time-varying delays [33], analyzed neural network stability with delays [34],
and proposed control methods for achieving consensus in multi-agent systems with dynamic
communication structures. A new result on H∞ state estimation is present in [35] which is based on
convex inequality.

Despite the fact that the systems under consideration are switched, their topology is still fixed, so
we present the flexible control strategy to obtain bipartite containment control on switching
fractional-order multi-agent systems by applying Lyapunov stability theory of fractional order [36].
Time delay is often inevitable because of the finite propagation speed of the signal over long
distances. During this time, the topology of multi-agent systems is generally dynamic over time
because of changes in position. Interaction between agents can be best modeled utilizing network
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switching, but the presence of delays and switching connections leads to systems losing constancy
and developing complex animated interactions. Based on the above study, we will analyze the results
of hostile-based containment control for the non-linear FMAS with distribution and input delays. We
will use fixed and switching signed networks for the analysis.

This strategy is designed to effectively deal with input delays (delays in the information or
commands given to the system). The goal is to explore and propose solutions for effectively
controlling complex systems in the presence of these challenges. The remaining part of the paper is
structured as follows: Section 2 provides background information or preliminary details about
fractional-order multi-agent systems. Section 3 presents the key findings or main results of the study.
This is where the core contributions and outcomes of the research are discussed. Section 4 Provides
an analysis of the main result. Section 5 includes a practical example through simulation to
demonstrate how the theoretical results can be applied or how they work in real-world scenarios.
Section 6 concludes the paper by summarizing the main, points and drawing overall insights or
implications from the study.

2. Preliminaries

2.1. Graph theory

Let G = {N ,L} be a weighted signed digraph in which N = {n1, n2..., nM} is the set of nodes,
L ⊆ N × N is the set of edges, and D = [dpq]M×M is the adjacency matrix such that dpq , 0 if
(np, nq) ∈ L, else dpq = 0 , dpq > 0 , and dpq < 0 represent the cooperative and hostile relationship
of nodes, respectively. Let L = [lpq]M×M be the Laplacian matrix of graph G defined as lpq = −dpq if
p , q, and if p = q then lpq =

∑M
p=1,q,p |dpq|. Hence, if the graph has both a hostile and cooperative

relationship between nodes then the graph is called a signed graph. Furthermore, the graph G is
structurally balanced if the node set N of a signed graph G may be divided into two separate subsets
N1 and N2 where each element is exclusively part of one group and does not overlap with the other,
such that dpq ≥ 0 for any np, nq ∈ N1(N2) and dpq ≤ 0 for any np ∈ N1, nq ∈ N2.

2.2. Definition and important lemmas

In this section, some important definitions and lemmas are discussed.

Definition 2.1 ( [37]). For a continuous differentiable function s(τ) of order k, the Caputo derivative
of order ω is given as

Dωs(τ) =
1

Γ(k − ω)

∫ τ

τ0

sk(u)
(τ − u)ω−k+1 du,

0 ≤ k − 1 < ω ≤ k, k ∈ Z+.

Lemma 2.1 ( [36]). An absolutely continuous function s(τ) ∈ Rn follows that

1
2

Dω(sT (τ)s(τ))) ≤ sT (τ)Dωs(τ), ω ∈ (0, 1).

Lemma 2.2 ( [38]). For any ρ > 0 and C1,C2 ∈ R
n, the following relationship holds:

2CT
1C2 ≤ ρC

T
1C1 +

1
ρ
CT

2C2.
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Let B = B(([−x, 0] → Rn) be the Banach space of each function exhibiting continuity on [−x, 0].
Now, the fractional-order system under delay for 0 < ω < 1 is taken into account.Dωy(τ) = H(τ, yt),

yτ0 = φ(ϑ), ϑ ∈ [−x, 0],
(2.1)

where yt(θ) = y(τ + θ), θ ∈ [−x, 0] for any τ ≥ τ0 and time delay x > 0, andφ ∈ B. H maps R ×
(bounded sets o f B) to Rn, which is also a bounded set in which H(τ, 0) = 0.

Lemma 2.3. Consider a quadratic Lyapunov function G : Rn → R. If there are positive numbers
b1, b2, andb3, then for some η > 1 the following relationship holds:

b1||s(τ)||2 ≤ G(s(τ)) ≤ b2||s(τ)||2

and whenever
G(s(τ + θ)) ≤ ηG(s(τ)), θ ∈ [−x, 0], Dωz(s(τ)) ≤ −b3||s(τ)||2,

then the long-term stability of the required solution of system (2.1) can be obtained.

3. Problem formulation

Consider a fractional order multi-agent system having F followers and M − F leaders, marked as
F = {1, 2, 3..., F} and B = {F + 1, F + 2...,M}, respectively. The pth agent state zp(τ) ∈ Rn is described
by the system of fractional differential equationsDωzp(τ) = Vzp(τ) + h(τ, zp(τ)) + σp(τ − x) + ∆σp(τ), p ∈ F,

Dωzp(τ) = Vzp(τ) + h(τ, zp(τ)), p ∈ B,
(3.1)

where σp(τ) is the control input of agent p, ∆σp(τ) is the disturbance in protocol, x represents input
delays V∈ Rn×n, and h : R×Rn → Rn is an odd function that is also continuous on zp(τ) with h(τ, 0) = 0.

Definition 3.1 ( [14]). For any s1, s2 ∈ ζ and 0 < δ < 1, if (1 − δ)s1 + δs2 ∈ ζ, then ζ ∈ Rn is called
convex function and

co{s1, s2...., sn} =

{ n∑
p=1

δpsp|δp ≥ 0,
n∑

p=1

δp = 1
}

is called a convex hull formed by s1, s2, ...sn ∈ R
n.

Definition 3.2. For FMAS (3.1), the bipartite containment control will be achieved if some followers
converge to co{zi, i ∈ B} and others converge to -co{zi, i ∈ B}.

The following hypotheses are needed to obtain the main result.

H1. For arbitrary s, sp ∈ R
n, δp with

∑M−F
p=1 δp = 1, and k > 0, the nonlinear function g satisfies the

following:

‖h(τ, s) −
M−F∑
p=1

δph(τ, sp)‖ ≤ k‖s −
M−F∑
p=1

δpsp‖. (3.2)
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H2. If G is a signed directed network, it is also structurally balanced.

H3. In the signed directed network G, each follower has a directed edge to at least one leader.
If hypothesis H2 holds, then all followers will be divided into two subsets such that there exist

cooperative interactions between agents in subsets F1 and F2, while these subsets have antagonistic
interactions with different subsets. Now, according to Definition 3.2, the FMAS realizes bipartite
containment control if 

lim
τ→∞
‖zp(τ) − co{zi(τ), i ∈ B}‖ = 0, ∀p ∈ F1,

lim
τ→∞
‖zp(τ) + co{zi(τ), i ∈ B}‖ = 0, ∀p ∈ F2.

Remark 3.1. Containment control refers to the idea that all followers converge to the leader, as
opposed to the consensus tracking concerns to many leaders, for instance with formation control and
the set tracking leader-composed convex hull. The definition of set tracking in mathematics is
equivalent to formation control and confinement control. The following suggests that one does more
than just follow the convex hull shaped by leaders and yet keeps the intended configuration. While
there are several leaders involved in consensus tracking, the leaders may be exposed to control inputs
to accomplish some preferred tasks [39–41], but in terms of the containment control problem. Other
agents will not have an impact on any one leader, so, typically, the leaders get no control input: refer
to [18–20].

4. Analysis of bipartite containment control

4.1. Bipartite containment control under fixed signed digraph

Under fixed topology, we make the following disturbed delayed control protocol for achieving
bipartite containment control of the system (3.1):

σp(τ − x) = ξ

M∑
q=1

|dpq|(sgn(dpq))zq(τ − x) − zp(τ − x) + ∆σp(τ), p ∈ F (4.1)

where ξ > 0 is the gain constant and dpq are the members of the D (adjacency matrix). ∆σp(τ)
represents disturbance in the control protocol. Since up = 0 for p ∈ B , matrix D can be defined as

D =

(
D′F×F D′′F×(M−F)

0(M−F)×F 0(M−F)×(M−F)

)
. (4.2)

Therefore, the Laplacian matrix L can be written as

L =

(
LF LB

0(M−F)×F 0(M−F)×(M−F)

)
, (4.3)

where LF ∈ RF×F and LB ∈ RF×(M−F). If H2, then we may select a diagonal matrix
Ω = diag(Ω1,Ω2, ....,ΩF ,ΩF+1, ....,ΩM) in which Ωp = 1, if p ∈ F1 ∪ B,

Ωp = −1, if p ∈ F2,
(4.4)
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such that L = ΩLΩ,

L =

(
LF LB

0(M−F)×F 0(M−F)×(M−F)

)
(4.5)

where

LF = [lpq]F×F =


−|dpq|, p , q,

M∑
q=1,q,p

|dpq|, p = q,
(4.6)

and LB = [lpq]F×(M−F) with lpq = −|dpq| ≤ 0 where p = 1, ....F, q = F + 1, F + 2, ....,M. See [18] for
more details.

Lemma 4.1. [14] If H3 holds, then LF is a non-singular matrix and -L
−1
F LB is a non-negative matrix

whose row sums are equal to 1.

Theorem 4.2. The bipartite containment control of fractional order multi-agent system (3.1) using
controller (4.1) will be achieved under H1–H3 if there exists a symmetric matrix U > 0 satisfying the
following inequality for λ1 = λmax{LFL

T
F}:(

UV + VT U + k2In + ξU − ξλ1U + 4σF (τ)
ν

U U
U −In

)
< 0. (4.7)

Proof. Consider gp(.) = Ωpzp(.), the coordinate transformation for any p = 1, 2, ...,M in which (4.4)
holds. Now, substituting control protocol (4.1) into system (3.1) yields following result:

Dωgp(τ) = Vgp(τ) + h(τ, gp(τ)) + ξΩp

M∑
q=1

|dpq|(sgn(dpq)Ωqgq(τ − x) −Ωpgp(τ − x)) + 2∆σp(τ), p ∈ F,

Dωgp(τ) = Vgp(τ) + h(τ, gp(τ)), p ∈ B.

(4.8)

Observe that

M∑
q=1

|dpq|sgn(dpq)gq(τ − x) − gp(τ − x)

=

M∑
q=1,q,p

|dpq|sgn(dpq)gq(τ − x) −
M∑

q=1,q,p

|dpq|gp(τ − x)

=

M∑
q=1,q,p

|dpq|gq(τ − x) −
M∑

q=1,q,p

|dpq|gp(τ − x)

= −

M∑
q=1,q,p

lpqgq(τ − x) − lppgp(τ − x)

= −

M∑
q=1

lpqgq(τ − x).
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Therefore, system (4.8) becomes
Dωgp(τ) = Vgp(τ) + h(τ, gp(τ)) − ξ

M∑
q=1

ΩplpqΩqgq(τ − x) + 2∆σp(τ), p ∈ F,

Dωgp(τ) = Vgp(τ) + h(τ, gp(τ)), p ∈ B.

(4.9)

Let

GF(.) = (gT
1 (.), gT

2 (.), ....gT
F(.))T , GB(.) = (gT

F+1(.), gT
F+2(.), ....gT

M(.))T ,

H(τ, gF) = (hT (τ, g1), ....hT (τ, gF))T ,H(τ, gB) = (hT (τ, gF+1), .....hT (τ, gM))T ,

then system (4.9) becomesDωGF(τ) = (IF ⊗ V)GF(τ) + H(τ,GF(τ)) − ξ(LF ⊗ In)GF(τ − x) − ξ(LB ⊗ In)GB(τ − x) + 2∆σF(τ),
DωGB(τ) = (IM−F ⊗ V)GB(τ) + H(τ,GB(τ)).

(4.10)

The error system is defined as

α(.) = GF(.) − (−L
−1
F LB ⊗ In)GB(.),

and then system (4.10) becomes as

Dωα(τ) =(IF ⊗ V)GF(τ) + (L
−1
F LB ⊗ V)GB(τ) + H(τ,GF(τ)) + (L

−1
F LB ⊗ In)H(τ,GB(τ))

− (ξLF ⊗ In)(IF ⊗ In)GF(τ − x) − (ξLF ⊗ In)(L
−1
F LB ⊗ In)GB(τ − x) + 2∆σF(τ),

Dωα(τ) =(IF ⊗ V)α(τ) + H(τ,GF(τ)) + (L
−1
F LB ⊗ In)H(τ,GB(τ))

− (ξLF ⊗ In)α(τ − x) + 2∆σF(τ). (4.11)

Now, we construct a Lyapunov function such that

S (α(τ)) = αT (τ)(IF ⊗ U)α(τ).

Now, applying Lemmas 2.1 and 2.2 on Eq (4.11),

DωS (α(τ)) = Dω[αT (τ)](IF ⊗ U)α(τ)
≤ 2αT (τ)(IF ⊗ U)[Dωα(τ)] = 2αT (τ)(IF ⊗ U)[(IF ⊗ V)α(τ)

+ H(τ,GF(τ)) + (L
−1
F LB ⊗ In)H(τ,GB(τ)) − (ξLF ⊗ In)α(τ − x) + 2∆σF(τ)]

= αT (τ)[IF ⊗ (UV + VT U)]α(τ) + 2αT (τ)(IF ⊗ U)[H(τ,GF(τ)) + (L
−1
F LB ⊗ In)H(τ,GB(τ))]

− 2αT (τ)(ξLF ⊗ U)α(τ − x) + 2αT (τ)(IF ⊗ U)[2∆σF(τ)]

≤ αT (τ)[IF ⊗ (UV + VT U)]α(τ) − 2αT (τ)(ξLF ⊗ U)α(τ − x) + αT (τ)(IF ⊗ U2)α(τ)

≤ αT (τ)[IF ⊗ (UV + VT U)]α(τ) − 2αT (τ)(ξLF ⊗ U)α(τ − x) + αT (τ)(IF ⊗ U2)α(τ)

+ [H(τ,GF(τ)) + (L
−1
F LB ⊗ In)H(τ,GB(τ))]T [[H(τ,GF(τ)) + (L

−1
F LB ⊗ In)H(τ,GB(τ))]

+ 4αT (τ)(IF ⊗ U)∆σF(τ)]. (4.12)
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Now, if we suppose that −L
−1
F LB = [lpq]F×(M−F), from hypothesis H1 we have

[H(τ,GF(τ)) − (−L
−1
F LB ⊗ In)H(τ,GB(τ))]T [[H(τ,GF(τ)) − (−L

−1
F LB ⊗ In)H(τ,GB(τ))]

=



h(τ, g1) −
∑M−F

q=1 l1qh(τ, gF+q)
h(τ, g2) −

∑M−F
q=1 l2qh(τ, gF+q)
.

.

.

h(τ, gF) −
∑M−F

q=1 lFqh(τ, gF+q)



T

×



h(τ, g1) −
∑M−F

q=1 l1qh(τ, gF+q)
h(τ, g2) −

∑M−F
q=1 l2qh(τ, gF+q)
.

.

.

h(τ, gF) −
∑M−F

q=1 lFqh(τ, gF+q)


=

F∑
p=1

[h(τ, gp) −
M−F∑
q=1

lpqh(τ, gF+q)]T [
F∑

p=1

h(τ, gp) −
M−F∑
q=1

lpqh(τ, gF+q)]

≤

F∑
p=1

k2[gp −

M−F∑
q=1

lpqgF+q]T [
F∑

p=1

gp −

M−F∑
q=1

lpqgF+q]

= k2[GF(τ) − (−L
−1
F LB ⊗ In)GB(τ)]T [GF(τ) − (−L

−1
F LB ⊗ In)GB(τ)]

= k2αT (τ)α(τ). (4.13)

Now, consider

2αT (τ)(ξLF ⊗ U)α(τ − x) = ξ.2αT (τ)(LF ⊗ U)(IF ⊗ U
−1
2 (IF ⊗ U

1
2 )α(τ − x)

≤ ξ.αT (τ)(LF ⊗ U)(IF ⊗ U
−1
2 )(IF ⊗ U

−1
2 )(L

−T
F ⊗ U)α(τ)

+ ξ.αT (τ − x)(LF ⊗ U)(IF ⊗ U
1
2 (IF ⊗ U

1
2 )α(τ − x)

= αT (τ)(ξLFL
−T
F ⊗ U)α(τ) + ξ.αT (τ − x)(IF ⊗ U)α(τ − x).

Now, substituting Eq (4.13) and the above equation into Eq (4.12):

≤ αT (τ)[IF ⊗ (UV + VT U + U2 + k2In]α(τ) − αT (τ)(ξLFL
−T
F ⊗ U)α(τ)

−ξ.αT (τ − x)(IF ⊗ U)α(τ − x) + 4∆σF(τ)(IF ⊗ U)

since LF is invertible from Lemma 4.1, LFL
T
F is positive definite matrix, so we let

λ1 = λmax{LFL
T
F}

≤ αT (τ)[IF ⊗ (UV + VT U + U2 + k2In + 4
σF(τ)
ν

U

− ξλ1U]α(τ) − ξ.αT (τ − x)(IF ⊗ U)α(τ − x), (4.14)

where ν = α(τ). Now, for some %>1, whenever S (α(τ + ϑ)) ≤ %S (α(τ)), ϑ ∈ [−x, 0]. That is

αT (τ − x)(IF ⊗ U)α(τ − x) ≤ %αT (τ)(IF ⊗ U)α(τ). (4.15)
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Now, substituting Eq (4.15) into (4.14) yields, for sufficiently small % > 0, % = 1 + %,

DωS (α(τ)) ≤ αT (τ)[IF ⊗ (UV + VT U + U2 + k2In + ξU − ξλ1U + 4
σF(τ)
ν

U)]α(τ). (4.16)

Inequality (4.7) means DωS (α(τ)) < 0 from (4.16), thus there exists a scalar µ > 0 satisfying

DωS (α(τ)) ≤ −µS (α(τ)) ≤ −µλmin(U)||α(τ)||2,

which indicates that error system (4.11) is asymptotically stable by using Lemma 2.3, and hence the
bipartite containment control of FMAS (3.1) with controller (4.1) is realized.

Remark 4.3. Comparison of spatial non-uniformity and limited singularity of derivatives of
fractional order, with integer-order MASs, pose numerous challenges in the exploration of FMASs,
particularly when encountering temporal delays. When studying the asymptotic performance of
integer-order MASs under delays, a Lyapunov function incorporating an integral expression is
typically employed. However, in the case of delayed FMASs, this Lyapunov function becomes invalid
in the sense of Caputo derivatives, given that fractional operators lack a composition properly, that is,
Dm(Dnx(τ)) , Dm+nx(τ). In this instance, using signed graph theory and the fractional Razumikhin
method, a useful approach is created to address delayed FMASs bipartite containment control. Our
technique effectively addresses the issues brought on by delays and fractional derivatives by deciding
on a straightforward quadratic Lyapunov function. The same method can also be used for fractional
order multi-agent systems under time delays as well as distributed types of delays [42, 43].

4.2. Bipartite containment control under switching signed digraph

Consider a switching signed directed network G`(τ) = (N ,L`(τ)) and switching point τ  where the
piecewise switching signal ` assigns [τ0,∞) into set N ={1,2,3,....n} and  ∈ Z+∪{0}. ∀τ  ∃ an arbitrary
point t which is small and also satisfies inequality τ +1 − τ  ≥ t, which can avoid Zeno behavior. The
nth topology is activated if for τ ∈ [τ , τ +1), `(τ) = n ∈ N. D`(τ) = [d`(τ)

pq ]M×M is the adjacency matrix
and L`(τ) = [l`(τ)

pq ]M×M represent, the Laplacian matrices of G`(τ). Also, for any `(τ) = ı ∈ N, Gı = G,
and we need some hypotheses to attain bipartite containment control of fractional order multi-agent
system (3.1) with switching signed network.

H4. Signed directed network G`(τ) for any `(τ) ∈ N is structurally balanced.

H5. In G`(τ) every follower has a directed connection to at least one leader.
Under switching topology we make the following disturbed delayed control protocol for achieving

bipartite containment control of the system (3.1).

σp(τ − x2) = ξ

M∑
q=1

|d`(τ)
pq |(sgn(d`(τ)

pq ))zq(τ − x2) − zp(τ − x2) + ∆σp(τ), p ∈ F. (4.17)

Remark 4.4. Using (4.2) and (4.4) for `(τ) ∈ M the Laplacian matrix of G`(τ) is defined by

L`(τ) =

(
L`(τ)

F L`(τ)
B

0(M−F)×F 0(M−F)×(M−F)

)
, (4.18)
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where L`(τ)
F ∈ RF×F and L`(τ)

B ∈ RF×(M−F). If H4, then we may select a diagonal matrix
Ω`(τ) = diag(Ω1,Ω2, ....,ΩF ,ΩF+1, ....,ΩM) in whichΩp = 1, if p ∈ F1 ∪ B,

Ωp = −1, if p ∈ F2,
(4.19)

such that
L
`(τ)

= Ω`(τ)L`(τ)Ω`(τ),

L
`(τ)

=

 L`(τ)
F L

`(τ)
B

0(M−F)×F 0(M−F)×(M−F)

 , (4.20)

where

L
`(τ)
F = [l

`(τ)
pq ]F×F =


− |d`(τ)

pq |, p , q,
M∑

q=1,q,p

|d`(τ)
pq |, p = q,

(4.21)

and
L
`(τ)
B = [l

`(τ)
pq ]F×(M−F) with l

`(τ)
pq = −|d`(τ)

pq | ≤ 0,

where p = 1, ...F, q = F + 1, F + 2, ...,M.

Remark 4.5. If H5 holds, then for any `(τ) ∈ N, L
`(τ)
F is a matrix which is not singular and every

element of -(L
`(τ)
F )−1L

`(τ)
B is non negative with row sums equal to 1.

Theorem 4.6. The bipartite containment control of fractional multi-agent system (3.1) using the
switching disturbed controller (4.17) for arbitrary switching signal `(τ) shall be achieved under
H1–H3, if there exists a symmetric matrix U > 0 satisfying the following inequality for

λ2 = max`(τ)∈N[λmax{L
`(τ)
F (L

`(τ)
F )T }],

(
UV + VT U + k2In + ξU − ξλ2U + 4σF (τ)

ν
U U

U −In

)
< 0. (4.22)

Proof. For error system is defined as

α(.) = GF(.) − ((−L
`(τ)
F )−1L

`(τ)
B ⊗ In)GB(.),

then the system under controller (4.17) gives the following result:

Dωα(τ) = (IF ⊗ V)α(τ) + H(τ,GF(τ)) + ((L
`(τ)
F )−1L

`(τ)
B ⊗ In)H(τ,GB(τ))

− (ξL
`(τ)
F ⊗ In)α(τ − x) + 2∆σF(τ). (4.23)

Now, we construct a Lyapunov function such that

S (α(τ)) = αT (τ)(IF ⊗ U)α(τ). (4.24)
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Now, by using Theorem 4.2, we can get

Dωα(τ) ≤ αT (τ)[IF ⊗ (UV + VT U + U2 + k2In + ξIn + 4
σF(τ)
ν

U]α(τ)

− αT (τ)[ξL
`(τ)
F (L

`(τ)
F )T ⊗ U}]α(τ)

≤ αT (τ)[UV + VT U + k2In + ξU + U2 − ξλ2U + 4
σF(τ)
ν

U]α(τ),

where
λ2 = max`(τ)∈N[λmax{L

`(τ)
F (L

`(τ)
F )T }]

and ν = α(τ).
Inequality (4.22) means DωS (α(τ)) < 0, and thus there exists a scalar µ > 0 satisfying

DωS (α(τ)) ≤ −µS (α(τ)). We can say that DωS (α(τ)) ≤ −µS (α(τ)) is true for every topology, which
concludes that the Lyapunov function described by Eq (4.24) is common for all types of topologies.
The error system (4.23) under any switching signal is asymptotically stable using Lemma 2.3. Hence,
bipartite containment control under any switching for FMAS (3.1) is achieved with the disturbed
controller (4.17).

5. Numerical examples

5.1. Fixed signed network

Example 5.1. We consider a fractional order multi-agent system (3.1) as having 5 followers and 2
leaders. In Figure 1, the signed digraph of the problem is present. F1 = {1, 2} and F2 = {3, 4, 5} are
bipartite subgroups of the signed directed network G which is structurally balanced.
h(τ, zp(τ)) = 3

5 sin(zp(τ)), p = 1, 2, 3...7 with σF(τ) = cos(0.1), ν = 0.21, and we can take k=0.6, which
satisfies (3.2).

Figure 1. The signed directed network of G.
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Now, let V =

(
−6.3 0

4 −8

)
. From Figure 1, the adjacency matrix

D =



0 0 −1.5 0 0 2 0
1.2 0 0 0 0 0 1.3
0 0 0 0 1.4 −2 0
0 0 0.8 0 0 0 −1.7
0 −0.7 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Ω =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

L =



3.5 0 1.5 0 0 −2 0
−1.2 2.5 0 0 0 0 −1.3

0 0 3.4 0 −1.4 2 0
0 0 −0.8 2.5 0 0 1.7
0 0.7 0 0 0.7 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

and

L = ΩLΩ =



3.5 0 −1.5 0 0 −2 0
−1.2 2.5 0 0 0 0 −1.3

0 0 3.4 0 −1.4 −2 0
0 0 −0.8 2.5 0 0 −1.7
0 −0.7 0 0 0.7 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

where

LF =


3.5 0 −1.5 0 0
−1.2 2.5 0 0 0

0 0 3.4 0 −1.4
0 0 −0.8 2.5 0
0 −0.7 0 0 0.7


,
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and

LB =


−2 0
0 −1.3
−2 0
0 −1.7
0 0


,

λ1 = λmax[LFL
T
F] = 20.0032.

Now, by solving inequality (4.7), we can get U =

(
1.21 0.02
0.02 1.21

)
and ξ = 1.14, which satisfies

inequality (4.7). The state of agents and error trajectories of FMAS (3.1) under the fixed signed
network is described in Figures 2 and 3, respectively, in which we take ω = 0.7 and x=1.5.
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Figure 2. zp1(τ) and zp2(τ) represent state of agents that are described by FMAS(3.1) where
p = {1,2,3,4,5,6,7}.
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Figure 3. Error trajectories of FMAS (3.1) under the fixed signed network.
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In error trajectories
αp1(τ) = zp1(τ) − co{z61, z71},

αp2(τ) = zp2(τ) − co{z61, z71},

and
αp1(τ) = −(zp1(τ) + co{z61, z71}),

αp2(τ) = −(zp2(τ) + co{z61, z71}),

now we could say that 
lim
τ→∞
‖zp(τ) − co{zi(τ), i ∈ B}‖ = 0, p ∈ {1, 2},

lim
τ→∞
‖zp(τ) + co{zi(τ), i ∈ B}‖ = 0, p ∈ {3, 4, 5}.

This concludes that the system is still working under delays and with small disturbances in the
controller, but larger delays and disturbances can slow the convergence speed of the system.

5.2. Switching signed network

Example 5.2. We consider a fractional order multi-agent system (3.1) as having 2 leaders and 5
followers. The switching topologies of graphs G1,G2,G3 are described in Figures 4–6, respectively.
F1 = {1, 2} and F2 = {3, 4, 5} are bipartite subgroups of the signed digraph G1, G2, G3, which is
structurally balanced.

Figure 4. The signed directed network of G1.
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Figure 5. The signed directed network of G2.

Figure 6. The signed directed network of G3.

D1 =



0 0 −0.2 0 0 1.3 0
2 0 0 0 0 0 2.1
0 0 0 0 0.5 −2 0
0 0 0.1 0 0 0 −0.8
0 −1.5 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,
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D2 =



0 0 0 −0.3 0 0 2
0.5 0 0 0 −1.1 0 0
0 0 0 0 0 −1.1 0
0 0 0.1 0 0 0 0
0 0 0 0.7 0 −0.4 −0.8
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

D3 =



0 0 −0.3 0 0 1.1 0
1.7 0 0 0 0 0 2
0 0 0 0 0 −1.2 0
0 0 0.1 0 0 0 0
0 −1.5 0 1 0 0 −0.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Ω1 = Ω2 = Ω3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

then

L
1
F =


1.5 0 −0.2 0 0
−2 4.1 0 0 0
0 0 2.5 0 −0.5
0 0 −0.1 0.9 0
0 −1.5 0 0 1.5


,

L
1
B =


−1.3 0

0 −2.1
−2 0
0 −0.8
0 0


,

L
2
F =


2.3 0 0 −0.3 0
−0.5 1.6 0 0 −1.1

0 0 1.1 0 0
0 0 −0.1 0.1 0
0 0 0 −0.7 1.9


,
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L
2
B =


0 −2
0 0
−1.1 0

0 0
−0.4 −0.8


,

L
3
F =


1.4 0 −0.3 0 0
−1.7 1.9 0 0 0

0 0 1.2 0 0
0 0 −0.1 0.1 0
0 −1.5 0 −1 3


,

L
3
B =


−1.1 0

0 −2
−1.2 0

0 0
0 −0.5


,

λmax[L
1
F(L

1
F)T ] = 23.2612,

λmax[L
2
F(L

2
F)T ] = 6.8258,

λmax[L
3
F(L

3
F)T ] = 13.4871,

from these three values we have λ2 = 23.2612. Now, by solving inequalities (4.22), we can get

U =

(
1.22 0.01
0.01 1.22

)
and ξ = 1.04, which satisfy (4.22). The state of agents and error trajectories of

FMAS (3.1) under switching signed network is described in Figures 7 and 8 respectively, in which we
take ω = 0.7 and x = 1.5.
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Figure 7. zp1(τ) and zp2(τ) represent the state of agents that are described by FMAS (3.1)
where p = {1, 2, 3, 4, 5, 6, 7}.
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Figure 8. Error trajectories of FMAS (3.1) under the switching signed directed network.

Remark 5.3. The graphs of the bipartite structure give us a clear picture of the connection and
separation between sets of agents. Positive and negative values in signed digraphs show the
cooperative and antagonistic behavior of agents. We can easily see from the digraph in Figure 1 that
nodes 1 and 2, which are followers of node 7, cooperate with each other as the link between them is
positive, but these nodes have a negative link with other nodes, like 3, 4, and 5, which are followers of
node 6. Bipartite structure combined with fractional order dynamics can offer unique challenges in
designing control strategies for achieving containment control and consensus.

6. Conclusions

In networks that have a combination of fixed and switching attributes, along with signed directed
links, where both cooperative and hostile agent interaction is present, bipartite containment control
of nonlinear FMASs has been studied. Based on the presumptions that the associated signed digraph
is structurally balanced, and at least one leader has a directed link to each follower the fixed and
switching signed directed systems, delayed control methods have been developed to address bipartite
containment control networks. With regard to the typical Lyapunov function approach and fractional
Razumikhin technique, a trustworthy and practical solution has been put out to address the issues raised
through switching topologies, fractional calculus, and delay, and multiple bipartite containment control
has been guaranteed by the presentation of basic matrix inequalities. Concrete numerical examples
elucidate the validity and viability of the primary findings.
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