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Abstract: In many applications, the investigation of traveling wave solutions is essential in obtaining
an accurate description of the dynamical behavior of most physical phenomena. The exact solutions to
nonlinear equations can provide more physical descriptions and insightful details for many problems
of practical interest. This paper focuses on investigating the solitary wave solutions of the generalized
Zakharov equations (GZEs) by using four integration algorithms, namely, the modified (g′/g2)-
expansion method, the modified (g′)-expansion method, the generalized simple (w/g)-expansion
method, and the addendum to Kudryashov’s method. The GZEs have been widely used to describe the
propagation of Langmuir waves in the field of plasma physics. The efficiency and simplicity of these
methods are evaluated based on their application to GZEs, which have yielded multiple new optical
solitary wave solutions in the form of rational, trigonometric, and hyperbolic functions. By using a
suitable wave transformation, the coupled nonlinear partial differential equations are converted into
ordinary differential equations. The derived optical solutions are graphically depicted in 2D and 3D
plots for some specific parameter values. The traveling wave solutions discovered in the current study
constitute just one example of the desired solutions that may enable the exploration of the physical
properties of many complex systems and could also contribute greatly to improving our understanding
of many interesting natural phenomena that arise in different applications, including plasma physics,
fluid mechanics, protein chemistry, wave propagation, and optical fibers.
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1. Introduction

With the advancement of computer methods, the study of the traveling wave solutions of nonlinear
partial differential equations (NLPDEs) has become a key research area in various fields, including
mathematics, physics, fluid dynamics, biology, engineering, and computer science. Over the past few
years, considerable progress has been made in the area of establishing different approaches to obtaining
exact solutions to NLPDEs, and this has greatly improved our understanding of nonlinear phenomena.
Such nonlinear phenomena can be observed in many scientific and technological applications, such as
plasma physics, nonlinear fiber optics, and the propagation of shallow water waves [1, 2]. Scientists
and engineers have successfully described many physical phenomena in recent decades by using
macroscopic models in the form of NLPDEs, which can be solved for desired quantities [3–5].
The most popular examples of such models include the Schrödinger equation, which describes the
properties of time-varying quantum states in quantum mechanics. In fluid mechanics, the Navier-
Stokes equation is widely used to describe the main properties of incompressible fluids such as velocity,
density, temperature, pressure, and viscosity. Furthermore, in the presence of viscosity, the Zakharov
equations are considered as continuum models that describe the behavior of blood plasma in biological
fluids [6]. However, there is still much to discover by exploring a series of new exact optical solutions to
such models with the aim of providing further explanation of physical phenomena of practical interest,
from which the NLPDE is formed, and to apply them in practical life. In addition, the stability analysis
can be successfully performed if the solutions of NLPDEs are available in closed form.

Solitary and soliton waves are special classes of traveling wave solutions with special properties [7].
These special properties are of fundamental importance in efforts to determine the behavior of the
solution, which we seek to understand. Solitary waves arise naturally in many engineering and
scientific applications, such as the intensity of light and the elevation of surface water in optical
fibers. On the other hand, a soliton is considered to be a nonlinear solitary wave which can provide
important insight into the particular features of solitary waves and form a special class of solutions to
the generalized Zakharov equations (GZEs). Here, we focus on exploring new solitary solutions for a
set of coupled equations, with the aim of deriving an adequate mathematical description for the system
of interest.

Despite the great success of NLPDEs as a tool to describe nonlinear phenomena, not all of the
complex systems are solvable. Even in some cases, if complex systems are solvable, the obtained
solutions are not general; hence, they do not cover every possibility. Therefore, from a modern
perspective, familiarity with all traditional and recently created techniques that have been designed
to tackle these nonlinear systems is becoming increasingly important. Over the past few years,
several techniques have been developed by scientists and mathematicians, such as the exact soliton
solution [8–10], the tanh-function technique [11], the method of sine-cosine [12], the auxiliary equation
method [13], the F-expansion method [14], the exp-function technique [15,16], the variational iteration
method [17], and the generalized Kudryashov approach [18]. A more detailed discussion on some
recent work on the solutions of nonlinear wave theory can be found in various research papers (see, for
example, [19–27]).

In 1972, Zakharov established a set of nonlinear evolution equations to model and investigate
the electromagnetic properties of plasmas, which became known as the Zakharov equations [28].
These equations are also extensively used as fundamental models that govern the nonlinear dynamical
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systems, and to describe the evolution of Langmuir turbulence in the presence of strong turbulence
effects; see, for example, the review by Goldman [29]. By implementing the extended hyperbolic
functions approach, Shang et al. [30] explored multiple explicit traveling solutions to the Zakharov
equations. Several analytical methods have been previously introduced that aim to explore the exact
and explicit solutions to the Zakharov equation [31–36].

In this paper, the GZEs which have been extensively used to model the propagation of Langmuir
waves in plasmas are explored to find new solitary solutions by using four different algorithms. For the
purpose of discussion, we introduce an example model in the class of nonlinear wave equations with
constant coefficients

iψt + β(ψxx + α1ψyy) + β1|ψ|
2ψ + γ1ψv = 0,

α2vtt + (vxx − β2vyy + γ2(|ψ|2)xx = 0,
(1.1)

where β, β1, γ1, and γ1 are non-zero constants; and β2, α1, and α2 are real constants. By selecting
appropriate values for these constants, we can obtain various equations, such as the nonlinear
Schrödinger equations and the Davey-Stewartson equations which have been used to investigate the
short-and long-wave resonances and other propagating-wave patterns [37]. By considering v(x, t) to
be the plasma density in one-dimensional systems and setting the above constants as follows: β = 1,
β1 = −2λ, α1, α2 = −1, γ1 = 2, and γ2 = −1, the system of Eq (1.1) can be reduced to the GZEs as
follows [38]:

iψt + ψxx − 2λ|ψ|2ψ + 2vψ = 0,
vtt − vxx + (|ψ|2)xx = 0,

(1.2)

where ψ is the high-frequency electric field envelope and v is the plasma density estimated from its
equilibrium value. The coefficient λ is a real constant that can be either positive or negative. Note
that by setting λ = 0, the system (1.2) reduces to the classical Zakharov equations, which describe the
nonlinear dynamical systems in plasma physics [39].

In recent years, an explosive growth of activities involving the use of several direct methods to
find exact solutions for the GZEs due to their extensive applications in different fields has been seen,
especially in the fields of fluid dynamics and plasma physics. For example, Borhanifar et al. [40]
used the exp-function approach to construct periodic solutions and a generalized solitary of the GZEs.
Wang and Li used an extended F-expansion method to obtain a number of periodic wave solutions to
the GZEs [41]. The homotopy analysis method has been applied successfully by Abbasbandy et al. to
the GZEs to obtain approximations of the analytic solutions [42]. He’s variational technique [43, 44]
has been applied by Khan et al. to find soliton solutions of the GZEs [45]. By using the q-homotopy
analysis transform method, Veeresha and Prakasha obtained the solution for fractional generalized
Zakharov equations [46]. Here, we focus on applying four interesting integration methods to obtain
new traveling wave solutions of GZEs. The obtained solutions exhibit various wave features including
bright solutions and singular wave solutions. By using appropriate parameter values, the obtained
solutions were plotted to visualize the dynamical behavior of the corresponding wave solutions. These
new solutions show that these methods are simple, effective, and applicable mathematical tools to study
the physical nature in different scientific fields, such as, physics, geophysics, engineering, optics, and
computer science.
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Among the recent techniques used to find the exact traveling wave solutions to NLPDEs is
the (G′/G)-expansion approach which has been proposed by Wang et al. [47]. This approach is used
widely as a direct and concise technique, where G(ξ) is a function that satisfies the NLPDE of second
order:

G′′ + λG′ + µG = 0, (1.3)

where λ and µ are arbitrary constants. As a generalization of the (G′/G)-expansion method, Li
et al. [48] proposed the modified (w/g)-expansion method to construct some new traveling waves
for the Vakhnenko equation, which is a very important nonlinear evolution equation that can be used
to describe high-frequency wave propagation through relaxing media. Following this method, we aim
to illustrate and explore the effectiveness, reliability, and possibility of expanding the applications of
four different algorithms by using the GZEs. Also, considering the GZEs as a realistic plasma model
motivated us to investigate the solitary wave solutions of such a system [49].

In this paper, Section 2 briefly reviews the methodology of the modified (w/g)-expansion method.
Section 3 begins with a brief description of the extended rational (w/g)-expansion method and its
application. The first three used approaches, namely, the modified (g′/g2)-expansion method, (g′)-
expansion method, and the generalized simple (w/g)-expansion method are considered and new
solitary wave solutions for the resulting equations are obtained. The addendum to Kudryashov’s
method (AKM), which has been recently introduced by Zayed et al. [50], is the fourth method used in
this paper (Section 4); here, it is applied to the GZEs with the aim of demonstrating the efficiency of this
method as a tool to obtain a solitary wave solution for a system of nonlinear evolution equations. With
the assistance of symbolic computation software, we present Section 5 with graphical descriptions of
the results obtained in this study. Although we focus on investigating the GZEs, we expect that the
presented direct approaches should also be able to describe the physical phenomena of a variety of
nonlinear problems in different fields.

2. Summary of the modified (w/g)-expansion approach

This section briefly describes the procedure of the modified (w/g)-expansion method for
determination of solitary wave solutions of nonlinear equations as discussed in [48, 51]. Consider
the following NLPDE with two independent variables x and t:

P(u, ut, ux, utt, . . . ) = 0, (2.1)

where u(x, t) is the solution of the above equation and the subscripts represent the partial derivatives
of P, which is a nonlinear function of its arguments in general. The above NLPDE can be solved via
the following steps:
Step 1. To convert the spatial and temporal variables x and t, respectively, into a compound variable ξ,
we seek the traveling wave transformation in the following form:

u(x, t) = U(ξ), where ξ = x − kt, (2.2)

where U = U(ξ) is an unknown function and the constant k is the wave speed. This transformation
given by Eq (2.2) allows us to transform the NLPDE (2.1) to the following ordinary differential
equation (ODE):

Q(U,U′,U′′, . . . ) = 0, (2.3)
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where Q, in general, is a polynomial function in U(ξ) and its derivatives U′ with respect to ξ.
Integrating Eq (2.3) with respect to ξ gives Q1(U,U′, . . . ) = 0.
Step 2. Assume that the traveling wave solution to the ODE (2.3) is written as a polynomial in (w/g)
as follows:

U(ξ) =

m∑
i=0

ai

[
w(ξ)
g(ξ)

]i

, (2.4)

where both functions w = w(ξ) and g(ξ) must satisfy the following auxiliary ODE of first order:

[
w(ξ)
g(ξ)

]′
= a + b

[
w(ξ)
g(ξ)

]
+ c

[
w(ξ)
g(ξ)

]2

, (2.5)

where the expansion coefficients ai (i = 0, 1, 2, . . . ,m) and the arbitrary constants a, b, and c are to be
further determined.
Step 3. The integer m in Eq (2.4) is determined by balancing the nonlinear terms and the highest-order
derivatives of U(ξ) appearing in the ODE (2.3).
Step 4. Substitute the solution given by Eq (2.4) and the first-order equation given by Eq (2.5) into the
ODE (2.3); the result implies that the left-hand side of the ODE (2.3) becomes a polynomial in (w/g).
In this polynomial, we equate each coefficient to zero to obtain a system of algebraic equations for ai

and k.
Step 5. The obtained algebraic equations are solved with the aid of Mathematica or Maple, via which
we find ai and k.

3. Extended rational (w/g)-expansion method and its application

The extended rational (w/g)-expansion method, introduced by Li et al. [48], when applied to very
important nonlinear evolution equations in many physical or engineering modeling problems, provides
a computational shortcut to obtaining desired solutions of complex systems. This approach is based on
the assumption that states that the exact solutions are written in the form of a polynomial in (w/g)i for
i = 0, 1, 2, . . . ,m); also, both functions, w and g, must satisfy the following equation:

w′g − wg′ = ag2 + bwg + cw2, (3.1)

where a, b, and c are arbitrary constants. By choosing appropriate values for the functions w and g, we
obtain different powerful, new suitable methods that have been previously introduced.

The key aim of this section is to demonstrate the validity and advantages of the three expansion
methods, namely, the (g′/g2)-expansion method, (g′)-expansion method, and the generalized simple
(w/g)-expansion method by exploring new optical solitary wave solutions for nonlinear evolution
equations through the use of the GZEs in Eq (1.2).

For the purpose of discussion, we investigate the GZEs in Eq (1.2). Since ψ(x, t) in Eq (1.2) is a
complex function, we assume that the traveling wave solutions can be expressed in the following form:

ψ(x, t) = eiηU(ξ), η = px + qt, v(x, t) = V(ξ), ξ = k(x − 2pt), (3.2)
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where U(ξ) and V(ξ) are real functions and p, q, and k are arbitrary constants. By substituting Eq (3.2)
into the GZEs in Eq (1.2), we obtain

k2U
′′

+ 2UV −
(
p2 + q

)
U − 2λU3 = 0,

k2
(
4p2 − 1

)
V
′′

+ k2
(
U2

)′′
= 0.

(3.3)

Integrating the second equation of Eq (3.3) twice with respect to ξ and setting the first integration
constant to zero, for simplicity, we obtain

V =
U2

1 − 4p2 + C, where p2 ,
1
4
, (3.4)

where C is the second integration constant. By substituting Eq (3.4) into the first equation of Eq (3.3),
we obtain

k2U
′′

+
(
2C−p2 − q

)
U + 2

(
1

1 − 4p2 − λ

)
U3 = 0. (3.5)

To explore the solitary solutions of the above equation and investigate their physical properties, the
following sections present three interesting analytical methods.

3.1. On solving the GZEs by using the modified (g′/g2)-expansion method

The principle aim of this section is to explore the solitary solutions of the GZEs in Eq (1.2) by
implementing the method of modified (g′/g2)-expansion. By setting the function w = g′/g and the
constant b = 0 in Eq (3.1), we obtain a new expansion in the following form:

u(ξ) = U(ξ) =

m∑
i=0

ai

(
g′

g2

)i

, (3.6)

where the expansion coefficients denoted by’n0ytgai are constants to be further determined; the
function g(ξ) admits the following NLPDE:

g2g′′ − 2(g′)2(2g + c) = ag4, (3.7)

hence, this is known as the (g′/g2)-expansion method, as introduced in [48]. By explicitly taking
advantage of the homogeneous balance principle [52] between the higher-order nonlinear term U3 and
higher-derivative term U′′ in Eq (3.5), we obtain the balance constant m = 1. Therefore, Eq (3.5) has
a solution in the following form:

U(ξ) = a0 + a1

(
g′

g2

)
, (3.8)

where a0 and a1 are arbitrary real constants to be further determined so that g(ξ) satisfies Eq (3.7).
Substituting Eqs (3.7) and (3.8) into Eq (3.5) implies that the left-hand side of Eq (3.5) becomes a
polynomial in (g′/g2). In this polynomial, we equate each coefficient to zero to obtain a system of
algebraic equations for a0, a1, and C, which are addressed by using Mathematica software to obtain the
following:

a0 = 0, a1 = ±

√
ωck

4λp2 − λ + 1
, C = −k2ca +

1
2

p2 +
1
2

q,
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where ω =
(
4λp2 − λ + 1

) (
4p2 − 1

)
and k, λ, p, q, c, a are real constants to be further determined.

Therefore, Eq (3.7) has general solutions in the following form for some constants A and B:

g(ξ) =



2c
ln(a/c) + ln[A sin(ξ

√
ac) − B cos(ξ

√
ac)]2

, ac > 0,

−
2c

2ξ
√
|ac| + ln(4a) − ln[Ace2ξ

√
|ac| − Bc]2

, ac < 0,

c
ln

[
Acξ + Bc

] , a = 0, c , 0.

The corresponding fields represented by (g′/g2) are as follows:

(
g′

g2

)
=



√
a
c

[
A cos(ξ

√
ac) + B sin(ξ

√
ac)

A sin(ξ
√

ac) − B cos(ξ
√

ac)

]
, ac > 0,

√
|ac|
c
−

2Ae2ξ
√
|ac|
√
|ac|

Ace2ξ
√
|ac| − Bc

, ac < 0,

−
A

(Aξ + B)c
, a = 0, c , 0.

Hence, three cases can be applied to determine the new types of solitary wave solutions to the GZEs
in Eq (1.2):
Case 1. When ca > 0, we obtain a trigonometric function solution in the following form:

U1(ξ) = ±

√
ωck

4λp2 − λ + 1

√
a
c

A cos
(
ξ
√

ac
)

+ B sin
(
ξ
√

ac
)

A sin
(
ξ
√

ac
)
− B cos

(√
acξ

) .
Substituting this equation into Eqs (3.2) and (3.4), we obtain solutions to the GZEs in Eq (1.2) as
follows:

ψ1 (x, t)

= ± exp
[
i (px + qt)

] √
ωck

4λp2 − λ + 1

√
a
c

A cos
[
(kx − 2kpt)

√
ac

]
+ B sin

[
(kx − 2kpt)

√
ac

]
A sin

[
(kx − 2kpt)

√
ac

]
− B cos

[
(kx − 2kpt)

√
ac

] , (3.9)

and

v1(x, t) =
1

1 − 4p2

±
√
ωck

4λp2 − λ + 1

√
a
c

A cos
[
(kx − 2kpt)

√
ac

]
+ B sin

[
(kx − 2kpt)

√
ac

]
A sin

[
(kx − 2kpt)

√
ac

]
− B cos

[
(kx − 2kpt)

√
ac

]


2

−k2ca +
1
2

p2 +
1
2

q. (3.10)

Case 2. When ca < 0, we obtain a solution in the following form:

U2(ξ) = ±

√
ωck

4λp2 − λ + 1

 √|ac|
c
−

2
√
|ac|Ae2

√
|ac|[kx−2kpt]

Ace2
√
|ac|[kx−2kpt] − cB

 .
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Substituting this equation into Eqs (3.2) and (3.4), we obtain the solutions to the GZEs in Eq (1.2) as
follows:

ψ2 (x, t) = ± exp
[
i (px + qt)

] √
ωck

4λp2 − λ + 1

 √|ac|
c
−

2
√
|ac|Ae2

√
|ac|[kx−2kpt]

Ace2
√
|ac|[kx−2kpt] − cB

 , (3.11)

and

v2(x, t) =
1

1 − 4p2

±
√
ωck

4λp2 − λ + 1

 √|ac|
c
−

2
√
|ac|Ae2

√
|ac|[kx−2kpt]

Ace2
√
|ac|[kx−2kpt] − cB


2

− k2ca +
1
2

p2 +
1
2

q. (3.12)

Case 3. When a = 0 and c , 0, we obtain a rational function solution in the following form:

U3(ξ, t) = ±

√
ωck

4λp2 − λ + 1

(
A

Acξ + Bc

)
.

Substituting this equation into Eqs (3.2) and (3.4), we find the solutions of the GZEs in Eq (1.2) as
follows:

ψ3(x, t) = ± exp
[
i(px + qt)

] √
ωck

4λp2 − λ + 1

[
A

Ac (kx − 2kpt) + Bc

]
, (3.13)

and

v3 (x, t) =
1

1 − 4p2

{
±

√
ωck

4λp2 − λ + 1

[
A

Ac (kx − 2kpt) + Bc

]}2

− k2ca +
1
2

p2 +
1
2

q. (3.14)

3.2. On solving the GZEs by using the modified (g′)-expansion method

Here, we adopt an efficient technique, namely the modified (g′)-expansion method to explore the
traveling wave solutions of the GZEs in Eq (1.2). By setting the function w = gg′ and the constant b = 0
in Eq (3.1), we obtain a new expansion in the following form:

u(ξ) = U(ξ) =

m∑
i=0

ai(g′)i,

where the expansion coefficients denoted by ai are constants to be further determined and the function
g(ξ) admits the following NLPDE:

g′′ = a + bg′ + c(g′)2, (3.15)

hence, this is known as the (g′)-expansion method, as introduced in [48, 53]. Using the homogeneous
balance principle between the higher-order nonlinear term U3 and higher-derivative term U′′ in
Eq (3.5), we obtain the balance constant m = 1. Therefore, Eq (3.5) has a solution in the following
form:

U(ξ) = a0 + a1g′, (3.16)

where a0 and a1 are constants and g(ξ) satisfies Eq (3.15). Substituting Eqs (3.15) and (3.16) into
Eq (3.5) implies that the left-hand side of Eq (3.5) becomes a polynomial in g′. In this polynomial, we
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equate each coefficient to zero to obtain a system of algebraic equations for a0, a1, and C, which are
solved by using Mathematica software to obtain the following:

a0 = ±
1
2

√
ωbk

4λp2 − λ + 1
, a1 = ±

√
ωck

4λp2 − λ + 1
, C = −k2ca +

1
4

b2k2 +
1
2

p2 +
1
2

q,

where k, λ, p, q, c, a, and b are arbitrary constants. The general solutions of Eq (3.15) are given as
follows:

g(ξ) =



1
2c

ln
[
1 + tan2

(
1
2

√
∆ξ

)]
−

bξ
2c
, ∆ = 4ac − b2 > 0,

1
2c

ln
[
tanh2

(
1
2

√
−∆ξ

)
− 1

]
−

bξ
2c
, ∆ = 4ac − b2 < 0,

−
1
c

ln(ξ) −
b
2c
ξ, ∆ = 4ac − b2 = 0.

The corresponding derivative fields are as follows:

g′ =



1
2c

√
∆ tan

(
1
2

√
∆ξ

)
−

b
2c
, ∆ = 4ac − b2 > 0,

−
1
2c

√
−∆ tanh

(
1
2

√
−∆ξ

)
−

b
2c
, ∆ = 4ac − b2 < 0,

−
1
cξ
−

b
2c
, ∆ = 4ac − b2 = 0.

Hence, three cases can be applied to determine the new types of solitary wave solutions for the GZEs
in Eq (1.2):
Case 1. If ∆ = 4ac − b2 > 0, the solitary wave solution of Eq (3.5) is given by

U4(ξ) = ±
1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

 √∆

2
tan

 √∆

2
k (x − 2pt)

 − b
2

 .
Substituting the above equation into Eqs (3.2) and (3.4), we find the solutions to the GZEs in Eq (1.2)
as follows:

ψ4 (x, t)

= exp
[
i (px + qt)

] ±1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

 √∆

2
tan

 √∆

2
k (x − 2pt)

 − b
2

 , (3.17)

and

v4 (x, t) =
1

1 − 4p2

±1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

 √∆

2
tan

 √∆

2
k (x − 2pt)

 − b
2


2

−k2ca +
1
4

b2k2 +
1
2

p2 +
1
2

q. (3.18)

Case 2. If ∆ = 4ac − b2 < 0, the solitary wave solution of Eq (3.5) is given by

U5(ξ) = ±
1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

− √−∆

2
tanh

(
1
2

√
−∆ξ

)
−

b
2

 .
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Substituting the above equation into Eqs (3.2) and (3.4), we find the solutions to the GZEs in Eq (1.2)
as follows:

ψ5 (x, t) = exp
[
i (px + qt)

]±1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

− √−∆

2
tanh

(
1
2

√
−∆k (x − 2pt)

)
−

b
2

 , (3.19)

and

v5 (x, t) =
1

1 − 4p2

±1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

− √−∆

2
tanh

(
1
2

√
−∆k (x − 2pt)

)
−

b
2


2

−k2ca +
1
4

b2k2 +
1
2

P2 +
1
2

q. (3.20)

Case 3. If ∆ = 4ac − b2 = 0, the solitary wave solution of Eq (3.5) is given by

U6(ξ) = ±
1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

(
−

1
ξ
−

b
2

)
.

Substituting the above equation into Eqs (3.2) and (3.4), we find the solutions to the GZEs in Eq (1.2)
as follows:

ψ6 (x, t) = exp
[
i (px + qt)

] [
±

1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

(
−

1
k(x − 2pt)

−
b
2

)]
, (3.21)

and

v6 (x, t) =
1

1 − 4p2

{
±

1
2

√
ωbk

4λp2 − λ + 1
±

√
ωk

4λp2 − λ + 1

[
−

1
k(x − 2pt)

−
b
2

]}2

−k2ca +
1
4

b2k2 +
1
2

p2 +
1
2

q. (3.22)

3.3. On solving the GZEs by using the generalized simple (w/g)-expansion method

In this subsection, the generalized simple (w/g)-expansion method is employed to investigate the
exact solutions and then explore the solitary wave solutions for Eq (3.5). A new form of exact solutions
can be obtained as follows

u(ξ) = U(ξ) =

m∑
i=0

ai

(
w
g

)i

,

where the expansion coefficients denoted by ai are arbitrary constants. The functions w and g satisfy
the conditions of the following coupled system of differential equations:

w′ = λg, g′ = µw, (3.23)

where λ and µ are arbitrary constants. This is known as the generalized simple (w/g)-expansion
method. By balancing the highest-order derivative and the nonlinear term in Eq (3.5) by using the

AIMS Mathematics Volume 9, Issue 5, 12650–12677.



12660

homogeneous balance method, we obtain the balance constant m = 1. Therefore, Eq (3.5) has a
solution which can be written as follows:

U(ξ) = a0 + a1

(
w
g

)
, (3.24)

where a0 and a1 are constants so that w(ξ) and g(ξ) satisfy Eq (3.23). Substituting Eqs (3.23) and (3.24)
into Eq (3.5) implies that the left-hand side of Eq (3.5) becomes a polynomial in (w/g). In this
polynomial, we equate each coefficient to zero to obtain a system of algebraic equations for a0, a1,

and C, which are solved by using Mathematica software to obtain the following:

a0 = 0, a1 = ±

√
ωµk

4λp2 − λ + 1
, C = k2µλ +

1
2

p2 +
1
2

q,

where k, λ, and µ are constants. Hence, Eq (3.23) has a general solution in the following form:

(
w
g

)
=



√
λ
√
µ

A
√
µ cosh

(√
λµξ

)
+ B
√
λ sinh

(√
λµξ

)
A
√
µ sinh

(√
λµξ

)
+ B
√
λ cosh

(√
λµξ

) , λ, µ > 0,

√
λ
√
µ

 A
√
−µ cosh

(√
λµξ

)
− B
√
−λ sinh

(√
λµξ

)
−A
√
−µ sinh

(√
λµξ

)
+ B
√
−λ cosh

(√
λµξ

) , λ, µ < 0,

√
λ

√
−µ

 A
√
−µ cos

(√
−λµξ

)
+ B
√
λ sin

(√
−λµξ

)
−A
√
−µ sin

(√
−λµξ

)
+ B
√
λ cos

(√
−λµξ

) , λ > 0 and µ < 0,

√
−λ
√
µ

A
√
µ cos

(√
−λµξ

)
− B
√
−λ sin

(√
−λµξ

)
A
√
µ sin

(√
−λµξ

)
+ B
√
−λ cos

(√
−λµξ

) , λ < 0 and µ > 0,

where A and B are arbitrary constants. Four cases can be applied to determine the new types of solitary
wave solutions for the GZEs in Eq (1.2):
Case 1. If λ > 0 and µ > 0, we can find a hyperbolic function solution of Eq (3.5) in the following
form:

U7 (ξ) = ±

√
ωk

4λp2 − λ + 1

√
λµ

A
√
µ cosh(ξ

√
λµ) + B

√
λ sinh(ξ

√
λµ)

A
√
µ sinh(ξ

√
λµ) + B

√
λ cosh(ξ

√
λµ)

 .
Substituting the above equation into Eqs (3.2) and (3.4), we can find the solution to the GZEs in
Eq (1.2) as follows:

ψ7 (x, t) = ± exp
[
i (px + qt)

]
√
λµωk

4λp2 − λ + 1

A
√
µ cosh

[
k (x − 2pt)

√
λµ

]
+ B
√
λ sinh

[
k (x − 2pt)

√
λµ

]
A
√
µ sinh

[
k (x − 2pt)

√
λµ

]
+ B
√
λ cosh

[
k (x − 2pt)

√
λµ

] , (3.25)

and

v7 (x, t) =
1

1 − 4p2

±
√
λµωk

4λp2 − λ + 1

A
√
µ cosh

[
k (x − 2pt)

√
λµ

]
+ B
√
λ sinh

[
k (x − 2pt)

√
λµ

]
A
√
µ sinh

[
k (x − 2pt)

√
λµ

]
+ B
√
λ cosh

[
k (x − 2pt)

√
λµ

]


2
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+k2µλ +
1
2

p2 +
1
2

q. (3.26)

Case 2. If λ < 0 and µ < 0, we can find the solitary wave solution of Eq (3.5) which can be written in
the following form:

U8 (ξ) = ±

√
ωk

(
−
√
λµ

)
4λp2 − λ + 1

 A
√
−µ cosh(ξ

√
λµ) − B

√
−λ sinh(ξ

√
λµ)

−A
√
−µ sinh(ξ

√
λµ) + B

√
−λ cosh(ξ

√
λµ)

 .
Substituting the above equation into Eqs (3.2) and (3.4) we find the solution to the GZEs in Eq (1.2)

as follows:

ψ8 (x) = exp
[
i (px + qt)

]
±

√
ωk

(
−
√
λµ

)
4λp2 − λ + 1

 A
√
−µ cosh[k(x − 2pt)

√
λµ] − B

√
−λ sinh[k(x − 2pt)

√
λµ]

−A
√
−µ sinh[k(x − 2pt)

√
λµ] + B

√
−λ cosh[k(x − 2pt)

√
λµ]

 , (3.27)

and

v8 (x, t) =
1

1 − 4p2

±
√
ωk

(
−
√
λµ

)
4λp2 − λ + 1

 A
√
−µ cosh(k(x − 2pt)

√
λµ) − B

√
−λ sinh(k(x − 2pt)

√
λµ)

−A
√
−µ sinh(k(x − 2pt)

√
λµ) + B

√
−λ cosh(k(x − 2pt)

√
λµ)




2

+k2µλ +
1
2

p2 +
1
2

q. (3.28)

Case 3. If λ > 0 and µ < 0, we can obtain a trigonometric function solution of Eq (3.5) in the following
form:

U9 (ξ) = ±

√
ωk

(
−
√
−λµ

)
4λp2 − λ + 1

 A
√
−µ cos(ξ

√
−λµ) + B

√
λ sin(ξ

√
−λµ)

−A
√
−µ sin(ξ

√
−λµ) + B

√
λ cos(ξ

√
−λµ)

 .
Substituting the above equation into Eqs (3.2) and (3.4), we can find the solution to the GZEs in

Eq (1.2) as follows:

ψ9 (x) = ± exp
[
i (px + qt)

]
√
ωk

(
−
√
−λµ

)
4λp2 − λ + 1

 A
√
−µ cos(k(x − 2pt)

√
−λµ) + B

√
λ sin(k(x − 2pt)

√
−λµ)

−A
√
−µ sin(k(x − 2pt)

√
−λµ) + B

√
λ cos(k(x − 2pt)

√
−λµ)

 , (3.29)

and

v9 (x, t) =
1

1 − 4p2

±
√
ωk

(
−
√
−λµ

)
4λp2 − λ + 1

 A
√
−µ cos(k(x − 2pt)

√
−λµ) + B

√
λ sin(k(x − 2pt)

√
−λµ)

−A
√
−µ sin(k(x − 2pt)

√
−λµ) + B

√
λ cos(k(x − 2pt)

√
−λµ)




2

+k2µλ +
1
2

p2 +
1
2

q. (3.30)

Case 4. If λ > 0 and µ < 0, we can obtain the periodic wave solution of Eq (3.5) in the following form:

U10 (ξ) = ±

√
ωk

(√
−λµ

)
4λp2 − λ + 1

A
√
µ cos(ξ

√
−λµ) − B

√
−λ sin(ξ

√
−λµ)

A
√
µ sin(ξ

√
−λµ) + B

√
−λ cos(ξ

√
−λµ)

 .
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Substituting the above equation into Eqs (3.2) and (3.4) we find the solution to the GZEs in Eq (1.2) as
follows:

ψ10 (x) = ± exp
[
i (px + qt)

]
√
ωk

(√
−λµ

)
4λp2 − λ + 1

A
√
µ cos(k(x − 2pt)

√
−λµ) − B

√
−λ sin(k(x − 2pt)

√
−λµ)

A
√
µ sin(k(x − 2pt)

√
−λµ) + B

√
−λ cos(k(x − 2pt)

√
−λµ)

 , (3.31)

and

v10 (x, t) =
1

1 − 4p2

±
√
ωk

(√
−λµ

)
4λp2 − λ + 1

A
√
µ cos(k(x − 2pt)

√
−λµ) − B

√
−λ sin(k(x − 2pt)

√
−λµ)

A
√
µ sin(k(x − 2pt)

√
−λµ) + B

√
−λ cos(k(x − 2pt)

√
−λµ)




2

+k2µλ +
1
2

p2 +
1
2

q. (3.32)

Remark 1. [48] Setting the constant coefficients c = 1 and b = 0 and the function g = 0 in Eq (3.1),
we can obtain a new expansion in the following form:

U(ξ) =

m∑
i=0

ai wi,

which are identical to the tanh-function approach; thus, it follows that the expansion coefficients
denoted by ai are arbitrary constants and the function w(ξ) satisfies the following equation:

w′ = a + w2.

Meanwhile, when the constant coefficients a = b = c , 0 and the function g = 1, the expansion given
by Eq (2.4) becomes identical to the Riccati expansion [54, 55].
Remark 2. [48,53] Setting the constant coefficients a = −µ, b = −λ, and c = −1 and the function w =

g′ in Eq (3.1) yields a new expansion in the following form:

U(ξ) =

m∑
i=0

ai

(
g′

g

)i

,

which is identical to the (G′/G)-expansion method introduced in [47]; thus, the expansion coefficients
denoted by ai are constants and the function g(ξ) satisfies Eq (1.3).

4. AKM and its application

The Kudryashov method was introduced by Kudryashov [49] to efficiently compute and predict the
highly dispersive optical solitons of some NLPDEs that arise in different applications. In this scheme,
the calculations are performed without using a specific function’s form. Inspired by the Kudryashov
method, many powerful and efficient methods have been developed over the last few years to find the
exact solutions of some NLPDEs. Examples of such methods include the generalized Kudryashov’s
method [18], the extended Kudryashov’s method [56], and the new extended generalized Kudryashov’s
method [57]. In addition, among these techniques, we should mention the AKM method which was
introduced by Zayed et al. [50]. This method is an efficient technique for obtaining exact solutions to
the NLPDEs. The objective of the following sections is to implement this approach to explore different
types of solitary wave solutions to the GZEs in Eq (1.2). For convenience, the following section starts
by presenting the basic steps of the implemented method.
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4.1. Methodology

In this section, we briefly present the basic steps of the AKM as follows:
Step 1. Let us assume that Eq (3.5) has a solution in the following form:

φ(ξ) =

M∑
i=0

bi [R(ξ)]i, (4.1)

where the expansion coefficients denoted by bi are constants for i = 0, 1, . . . ,M; thus, the function R(ξ)
admits the following equation:

R
′2(ξ) = R2(ξ) ln2(K)

[
1 − χR2T (ξ)

]
, (4.2)

where k is a positive number, with k , 1, and χ is an arbitrary constant. The solution of Eq (4.2) is
written as follows:

R(ξ) =

[
4b

4b2 expK(Tξ) + χ expK(−Tξ)

]1/T

. (4.3)

Here, b and T represent a non-zero real number and a natural number, respectively; also note the
function expK(Tξ) = KTξ.
Step 2. To determine the relation between M and T , we consider the following formula:

Let us assume that the function F[φ(ξ)] = M; hence, F[φ
′

(ξ)] = M + T and F[φ
′′

(ξ)] = M + 2T .
Therefore, F[φ(r)(ξ)] = M + rT and F[φ(r)(ξ) φs(ξ)] = (s + 1)M + rT.

Step 3. Substitute Eqs (4.1) and (4.2) into Eq (3.5); then, set each coefficient of the following term to
zero:

[R
′

(ξ)]i[R(ξ)] f for i = 0, 1, and f = 0, 1, . . . ,

resulting in a set of algebraic equations in bi for i = 0, 1, 2, . . . ,M. These equations can be addressed
to determine bi and c. Hence, the analytical solutions to Eq (3.5) can be obtained.

4.2. On solving the GZEs by using the AKM

Here, we aim to find new solitary wave solutions for nonlinear evolution equations by implementing
the AKM. By balancing the nonlinear terms U

′′

and U3 in Eq (3.5), we obtain

M + 2T = 3M ⇒ M = T. (4.4)

Two scenarios are presented here to determine the new types of solitary wave solutions to the GZEs in
Eq (1.2):
Case 1. Choosing T = 1 gives M = 1. Therefore, Eq (3.5) has a solution in the following form:

U(ξ) = b0 + b1R(ξ), (4.5)

where b0 and b1 are arbitrary constants such that b1 , 0. Substitute Eqs (4.1) and (4.5) into Eq (3.5);
then, we can equate each coefficient to zero

[R
′

(ξ)]i[R(ξ)] f for i = 0, 1, and f = 0, 1, . . . , 12.
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This procedure yields a system of algebraic equations as follows:

6b0b2
1

(1 − 4p2)
− 6λb0b2

1 = 0,

−2χk2b1ln2(K) +
2b2

1

1 − 4p2 − 2λb2
1 = 0,

−b0(p2 + q) + 2b0C +
2b3

0

1 − 4p2 − 2λb3
0 = 0,

k2b1ln2(K) − b1 p2 + 2b1C − b1q +
6b2

0b1

1 − 4p2 − 6λb2
0b1 = 0.

The above equations are solved to obtain

b0 = 0, b1 = k ln(K)

√
χ(1 − 4p2)

4λp2 − λ + 1
, C = −

1
2

k2ln2(K) +
1
2

p2 +
1
2

q. (4.6)

Substituting Eqs (4.6) and (4.3) into Eq (4.5), we can obtain the straddled solitary solutions of the
GZEs in Eq (1.2) as follows:

ψ11(x, t) =
4bk ln(K)

[4b2 expK[k(x − 2pt)] + χ expK[−k(x − 2pt)]

√
χ(1 − 4p2)

4λp2 − λ + 1
ei(px+qt), (4.7)

and

v11(x, t) =
16b2k2χln2(K)

(4λp2 − λ + 1)[4b2 expK[k(x − 2pt)] + χ expK[−k(x − 2pt)]2−
1
2

k2ln2(K)+
1
2

p2+
1
2

q. (4.8)

It follows that χ(1 − 4p2)(4λp2 − λ + 1) > 0.
Remark 3. Setting χ = 4b2 in Eqs (4.7) and (4.8) yields the bright soliton solutions to the GZEs in
Eq (1.2) as follows:

ψ12(x, t) = k ln(K)

√
(1 − 4p2)

4λp2 − λ + 1
ei(px+qt) sech[(x − 2pt)k ln K], (4.9)

v12(x, t) =
k2 ln2(K)

(4λp2 − λ + 1)
sech2[(x − 2pt)k ln K] −

1
2

k2 ln2(K) +
1
2

p2 +
1
2

q. (4.10)

It follows that (1 − 4p2)(4λp2 − λ + 1) > 0. Meanwhile, setting χ = −4b2 in Eqs (4.7) and (4.8) yields
the singular soliton solutions to the GZEs in Eq (1.2) as follows:

ψ13(x, t) = k ln(K)

√
(4p2 − 1)

4λp2 − λ + 1
ei(px+qt) csch[(x − 2pt)k ln K], (4.11)

v13(x, t) = −
k2ln2(K)

(4λp2 − λ + 1)
csch2[(x − 2pt)k ln K] −

1
2

k2 ln2(K) +
1
2

p2 +
1
2

q. (4.12)
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It follows that (4p2 − 1)(4λp2 − λ + 1) > 0.
Case 2. Choosing T = 2 gives M = 2. Therefore, Eq (3.5) has a solution in the form:

U(ξ) = b0 + b1R(ξ) + b2R2(ξ), (4.13)

where b0, b1, and b2 are constants to be determined such that b2 , 0. Substitute Eqs (4.1) and (4.13)
into Eq (3.5); then, we can equate each coefficient to zero

[R
′

(ξ)]i[R(ξ)] f for i = 0, 1, and f = 0, 1, . . . , 12.

This procedure yields a system of algebraic equations which can be solved to get the following results:

b0 = b1 = 0, b2 = 2k ln(K)

√
χ(1 − 4p2)

4λp2 − λ + 1
, C = −2k2 ln2(K) +

1
2

p2 +
1
2

q. (4.14)

Substituting Eqs (4.3) and (4.14) into Eq (4.13), we can calculate the straddled solitary solution of the
GZEs in Eq (1.2) as follows:

ψ14(x, t) =
8bk ln(K)

[4b2 expK[2k(x − 2pt)] + χ expK[−2k(x − 2pt)]

√
χ(1 − 4p2)

4λp2 − λ + 1
ei(px+qt), (4.15)

v14(x, t) =
64b2k2χ ln2(K)

(4λp2 − λ + 1)[4b2 expK[2k(x − 2pt)] + χ expK[−2k(x − 2pt)]2 − 2k2 ln2(K) +
1
2

p2 +
1
2

q.

(4.16)
It follows that χ(1 − 4p2)(4λp2 − λ + 1) > 0.
Remark 4. Setting χ = 4b2 in Eqs (4.15) and (4.16) yields the bright soliton solution to the GZEs in
Eq (1.2) as follows:

ψ15(x, t) = 2k ln(K)

√
(1 − 4p2)

4λp2 − λ + 1
ei(px+qt) sech[2(x − 2pt)k ln K], (4.17)

v15(x, t) =
4k2 ln2(K)

(4λp2 − λ + 1)
sech2[2(x − 2pt)k ln K] − 2k2 ln2(K) +

1
2

p2 +
1
2

q. (4.18)

It follows that (1−4p2)(4λp2−λ+ 1) > 0. Meanwhile, setting χ = −4b2 in Eqs (4.15) and (4.16) yields
the singular soliton solutions to the GZEs in Eq (1.2) as follows:

ψ16(x, t) = 2k ln(K)

√
(4p2 − 1)

4λp2 − λ + 1
ei(px+qt) csch[2(x − 2pt)k ln K], (4.19)

v16(x, t) = −
4k2 ln2(K)

(4λp2 − λ + 1)
csch2[2(x − 2pt)k ln K] −

1
2

k2ln2(K) +
1
2

p2 +
1
2

q. (4.20)

It follows that (4p2 − 1)(4λp2 − λ + 1) > 0. It is worth mentioning that, by varying the values of the
parameters T and M, we can obtain a variety of solitary wave solutions to the GZEs in Eq (1.2). For
the purpose of checking, we verify that all of the obtained results satisfy the GZEs in Eq (1.2).
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5. Graphical representation of the obtained solitary wave solutions for the GZEs

The GZE is an important model equation in mathematical physics because the derived solutions
are particularly useful for modeling different types of Langmuir wave propagation, such as those
applied in the field of plasma physics. In solitary wave theory, there are numerous forms of traveling
wave solutions that are very interesting to investigate. In this paper, we present different types of
traveling wave solutions that have been obtained based on the explicit solutions in Eqs (3.9)–(4.20)
when physical parameters are given certain values.

The principle aim of this section is to present graphical illustrations of multiple solitary wave
solutions of the GZEs in Eq (1.2) that can be obtained by using the methods discussed in Sections 3
and 4. The obtained solutions have been plotted to facilitate comprehension of the physical principles
and efficacy of the used methods. In soliton physics, solitons are localized waves that propagate without
changing their shape or velocity, and they are considered one type of solitary waves that are used to
describe a wide range of nonlinear physical phenomena, including the propagation of solitons in optical
fibers. Particle-like structures like magnetic monopoles and other similar structures can also arise from
soliton solutions. Hence, soliton wave solutions may be necessary to obtain comprehension of both the
complex and naturally physical properties of the constructed topological, singular soliton, and singular
periodic wave solutions.

Solutions ψ3(x, t), ψ6(x, t), and ψ13(x, t) of the GZEs represent singular soliton solutions. Solitary
waves with a singularity are referred to as singular soliton solutions. Solutions of ψ5(x, t), ψ8(x, t),
and ψ12(x, t) represent the exact solitary wave solution of bright soliton type under different physical
parameter conditions. Since the natures of some obtained solutions are identical, and for convenience,
we have only plotted some interesting solutions as shown in the following figures. Since the envelope
ψ(x, t) is a complex function, we characterize the solitary wave propagation for various instances
by using |ψ(x, t)|. Figures 1–6 present the real and imaginary parts and the absolute values of the
obtained complex function ψ(x, t), the absolute value of v(x, t) and its projection at t = 0. Figure 1
depicts the solutions of Eq (3.13). The 3D figure is portrayed within the interval −5 ≤ x ≤ 5. It
is clear that the dynamic behaviors in this figure show an example of singular wave solutions for
the GZEs in Eq (1.2) which were successfully obtained by using the modified (g′/g2)-expansion
method in Section 3.1. Singular solitons are associated with solitary waves when the solitary wave’s
center position is imaginary. Note that a singularity commonly appears in the presence of rational or
trigonometric functions.

The results for the bright solitons can be seen in Figure 2 for the wave solutions of Eq (3.19), which
were obtained by means of the (g′)-expansion method. Moreover, Figure 3 presents the dynamic
behaviors of the wave solutions of Eq (3.21), which were also obtained by using the (g′)-expansion
method. The bright solitary wave solutions are also shown in Figure 4, and they were determined by
using the generalized simple (w/g)-expansion method (Section 3.3). Figures 5 and 6 depict the physical
behaviors of the obtained solutions given by Eqs (4.9) and (4.11), which were obtained by using the
AKM. It can be observed that the contour of the absolute value plot is a perfect bright wave; however,
as for the real and imaginary parts, they are all kinky bright waves as shown in Figure 5. Notice that,
if both real and imaginary parts exhibit the bright wave characteristic, we refer to them as rough bright
waves. Figure 6 presents the exact singular soliton solutions. It can be observed that, from all of the
listed figures we can see that the AKM is more accurate, very effective and easier than other methods
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purposed to capture the physical behavior of the obtained solutions.

(a) The real part of ψ3(x, t). (b) The imaginary part of ψ3(x, t).

(c) The absolute values of ψ3(x, t). (d) The absolute values of v3(x, t).

-4 -2 2 4
x

0.08

0.09

0.10

0.11

v3

(e) The projection of v3(x, t) at t = 0.

Figure 1. Singular wave solutions ψ3(x, t) (Eq (3.13)) and v3(x, t) (Eq (3.14)) when a = 0,
c = 0.7, λ = 0.4, k = 0.1, p = 0.3, q = 0.1, A = 0.4, and B = 0.2.
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(a) The real part of ψ5(x, t). (b) The imaginary part of ψ5(x, t).

(c) The absolute values of ψ5(x, t). (d) The absolute values of v5(x, t).

-4 -2 2 4
x

0.815

0.820

0.825

0.830

0.835

v5

(e) The projection of v5(x, t) at t = 0.

Figure 2. Bright wave solutions ψ5(x, t) (Eq (3.19)) and v5(x, t) (Eq (3.20)) when a = 0.4,
c = −0.5, λ = 0.2, k = 0.4, p = 0.9, and q = 0.8.
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(a) The real part of ψ6(x, t). (b) The imaginary part of ψ6(x, t).

(c) The absolute values of ψ6(x, t). (d) The absolute values of v6(x, t).

-4 -2 2 4
x

0.1

0.2

0.3

0.4

v6

(e) The projection of v6(x, t) at t = 0.

Figure 3. Singular wave solutions ψ6(x, t) (Eq (3.21)) and v6(x, t) (Eq (3.22)) when a = 0.8,
c = 0, λ = 0.3, k = 0.5, p = 0.1, and q = 0.4.
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(a) The real part of ψ8(x, t). (b) The imaginary part of ψ8(x, t).

(c) The absolute values of ψ8(x, t). (d) The absolute values of v8(x, t).

-4 -2 2 4
x

0.535

0.540

0.545

0.550

v8

(e) The projection of v8(x, t) at t = 0.

Figure 4. Bright wave solutions ψ8(x, t) (Eq (3.27)) and v8(x, t) (Eq (3.28)) when µ = 0.3,
λ = 0.7, k = 0.5, p = 0.9, q = 0.4, A = 0.1, and B = 0.2.
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(a) The real part of ψ12(x, t). (b) The imaginary part of ψ12(x, t).

(c) The absolute values of ψ12(x, t). (d) The absolute values of v12(x, t).

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

v12

(e) The projection of v12(x, t) at t = 0.

Figure 5. Bright wave solutions ψ12(x, t) (Eq (4.9)) and v12(x, t) (Eq (4.10)) when k = −2,
K = 2, λ = 0.9, and y = 2.
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(a) The real part of ψ13(x, t). (b) The imaginary part of ψ13(x, t).

(c) The absolute values of ψ13(x, t). (d) The absolute values of v13(x, t).

-4 -2 2 4
x

1

2

3

4

v13

(e) The projection of v13(x, t) at t = 0.

Figure 6. Singular wave solutions ψ13(x, t) (Eq (4.11)) and v13(x, t) (Eq (4.12)) when k = −2,
K = 2, λ = 0.9, and y = 2.
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6. Conclusions

In many applications, physical phenomena can be accurately modeled and described by using
NLPDE. Examples of such applications include nonlinear chaotic systems, heat conduction systems,
diffusion processes, plasma waves, and chemical physics. This paper served to achieve two aims:
First, new solitary wave solutions for a set of coupled equations that is widely used as a realistic
model in the field of plasma physics have been discovered by employing four schemes of integration.
The second aim of this paper has been achieved by evaluating the effectiveness and reliability of the
constructed schemes on GZEs. Therefore, this should empower us, with great flexibility, to expand the
applicability of these methods to a wide range of physical problems of special interest. It should be
emphasized that the obtained results significantly help to better understand and describe the nonlinear
physical phenomena that arise in different fields, including fluid dynamics, quantum mechanics, optical
fibers, and plasma physics. These methods can contribute to significantly reduce the computation time
for complex systems through the use of computer algebra systems, such as Maple or Mathematica,
which can replace much tedious manual calculations.
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