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Abstract: Cardiovascular disease (CVD) detection using deep learning (DL) includes leveraging 

advanced neural network (NN) models to analyze medical data, namely imaging, electrocardiograms 

(ECGs), and patient records. This study introduces a new Nature Inspired Metaheuristic Algorithm 

with Deep Learning for Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA 

technique examines healthcare data for the recognition and classification of CVD. In the presented 

NIMADL-HDA technique, Z-score normalization was initially performed to normalize the input data. 

In addition, the NIMADL-HDA method made use of a barnacle mating optimizer (BMO) for the 

feature selection (FS) process. For healthcare data classification, a convolutional long short-term 

memory (CLSTM) model was employed. At last, the prairie dog optimization (PDO) algorithm was 

exploited for the optimal hyperparameter selection procedure. The experimentation outcome analysis 

of the NIMADL-HDA technique was verified on a benchmark healthcare dataset. The obtained outcomes 

stated that the NIMADL-HDA technique reached an effectual performance over other models. The 

NIMADL-HDA method provides an adaptable and sophisticated solution for healthcare data analysis, 

aiming to improve the interpretability and accuracy of the algorithm in terms of medical applications. 
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1. Introduction 

Cardiovascular disease (CVD) is a common kind of illness that is mainly caused by heart 

problems. CVD is characterized by shortness of breath, physical weakness, swollen feet, and 

exhaustion. A few risk factors of CVD include a high fat percentage, smoking, inactive lifestyles, and 

high blood pressure [1]. According to the World Health Organization (WHO), the foremost reason for 

death is CVD, which kills 18 million persons a year. Coronary artery disease is a type of heart disease 

[2]. As an outcome, stroke and heart disease are considered as main public health concerns. Clinicians 

regularly use angiography to analyze CVD. The use of analytical techniques, the expertise of doctors, 

and other resources are insufficient in underdeveloped states; therefore, this diagnosis procedure 

consumes more time and is expensive, requiring the investigation of numerous variables [3]. Recently, 

heart disease has become the most dangerous medical topic because the death toll from CVD has risen. 

Prediction helps in the primary recognition of the disease, as well as be the most effective action. In medical 

diagnostics, the use of machine learning (ML) has become popular [4]. ML has been recognized to enhance 

the classification and identification of diseases by providing information to aid medical experts in 

determining and identifying illnesses, supporting human health, and reducing the death rate [5]. When 

defining the prospect of a disease occurrence, ML classification techniques are frequently utilized.  

ML is the capability of computers to learn without being automated [6]. Generally, in the artificial 

intelligence (AI) model, computers learn from preceding experiences and then information. The 

quantity of data is growing quickly, so it is essential to professionally handle data. Occasionally, it 

becomes quite complex for human beings to physically remove valuable info from raw data due to 

their imprecision, alikeness, changeability, and uncertainty [7]. This is where ML is beneficial. With 

an excess of information in big data, its demand is on high growth, as it acquires more precise, helpful, 

and steady info from raw data. One of the chief aims of ML is to permit machines to study without 

being methodically automated. ML has been curiously innovative in numerous areas such as pre-

processing methods and learning procedures during the last few years [8]. Deep learning (DL) 

originated on artificial neural networks (ANNs), which are an important technique to deliver 

appropriate algorithmic structures. DL permits computational methods that are collected from 

numerous processing layers to learn data illustrations with numerous stages of concepts and needs little 

work by hand [9]. DL methodology established great latency in dissimilar fields of health care, as well 

as showed outstanding performance in natural language processing (NLP), computer vision (CV), 

removal of automated health records, health modalities, and sensor data analytics [10]. 

This study introduces a new Nature Inspired Metaheuristic Algorithm with Deep Learning for 

Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA technique examines 

healthcare data to recognize and classify CVD. In the presented NIMADL-HDA technique, Z-score 

normalization is initially performed to normalize the input data. In addition, the NIMADL-HDA 

technique makes use of a barnacle mating optimizer (BMO) for the feature selection (FS) process. For 

healthcare data classification, a convolutional long short-term memory (CLSTM) model can be 

employed. At last, the prairie dog optimization (PDO) algorithm can be exploited for the optimal 

hyperparameter selection process. The experimentation outcome analysis of the NIMADL-HDA 

methodology was tested on a benchmark healthcare dataset. Designed for healthcare data analysis, the 
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NIMADL-HDA technique offers several key contributions: 

• An automated NIMADL-HDA method including BMO-based feature subset selection, 

CLSTM-based classification, and PDO-based hyperparameter tuning has been proposed for 

CVD classification. To the best of our knowledge, the NIMADL-HDA method has never 

existed in the literature. 

• BMO contributes to the model's efficacy by providing an optimum subset of applicable features 

for healthcare data analysis, thereby enhancing interpretability and reducing dimensionality. 

• CLSTM captures the temporal dependency in healthcare information, which is crucial to 

analyzing medical sensor data or time-series patient information and improving the model's 

capability to recognize trends and patterns over time. 

• PDO contributes to efficiently enhance the hyperparameters, which ensures the finetuning of 

the model for better performance on healthcare data. 

2. Related works 

Khanna et al. [11] developed an innovative internet of things (IoT) and DL-permitted healthcare 

disease diagnosis (IoTDL-HDD) technique. This methodology uses a bidirectional long short term 

memory (BiLSTM) feature extraction model to remove valuable feature vectors from signals of 

electrocardiograms (ECG). To improve the efficacy of the BiLSTM model, the artificial flora 

optimization (AFO) methodology used hyperparameter optimization. Additionally, a fuzzy deep neural 

network (FDNN) classification algorithm was used to convey the appropriate class labels to signals of 

ECG. Rath et al. [12] identified appropriate DL and ML technologies and proposed and tested essential 

classification methods proposed. The Generative Adversarial Network (GAN) technique was selected by 

the main aim to handle imbalanced facts by creating and employing extra false information for recognition 

purposes. Additionally, an ensemble technique employing LSTM and GAN has been presented. 

In [13], a Fog-based cardiac health recognition framework, termed FogDLearner, has been 

developed. FogDLearner uses spread resources to identify a person's cardiac health deprived of 

cooperating Quality of Service (QoS) and correctness. FogDLearner executes a DL based classification 

algorithm to forecast the cardiac health of the user. The planned structure is estimated on the 

PureEdgeSim simulator. In [14], a DL-based system, chiefly a convolutional neural network (CNN) 

with BiLSTM, was developed. The most appropriate features were only nominated through FS, which 

is skilled at ranking and choosing features that are extremely valued in the provided illness dataset. 

Afterwards, the CNN + BiLSTM-based hybrid DL technique was employed to forecast CVD. 

Hussain et al. [15] developed a new DL architecture that employed one-dimensional CNNs to 

detect healthy and non-healthy individuals with balanced datasets to decrease the limits of the 

traditional ML model. Many medical parameters were utilized to estimate danger contour in patients, 

which were sustained in the initial analysis. Numerous regularization models were applied to avoid 

overfitting in the presented method. Bensenane et al. [16] projected a decision support system-based system 

(DSS) to create an analysis of CVD. It employed DL techniques that categorized ECG signals. Therefore, 

a dual-stage LSTM-based NN framework with ample pre-processing of ECG signals planned as an 

analysis-assisted method for cardiac arrhythmia recognition depends on an ECG signal study. 

In [17], a smart healthcare method was proposed that employed ensemble DL and feature fusion 

techniques. First, the feature fusion model integrates removed features to make valuable healthcare 

information. Second, the data gain method removed irrelevant and redundant features. Additionally, the 

restricted prospect tactic calculated a precise feature load for every class. Lastly, the ensemble DL method 
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was trained for heart illness forecast. Najafi et al. [18] presented an effectual and precise method that 

employed ANNs, FS, and multiple-criteria decision-making (MCDM) models. Suitable features were 

chosen by employing 5 FS models. Then, the three ANNs for the CVD forecast were applied. Furthermore, 

a Particle Swarm Optimizer (PSO) was utilized. A new combined weighting model that utilized the Best 

worst method (BWM) and the Method based on the Removal Effects of Criteria (MEREC) were developed. 

The research gap in healthcare data classification highlights the urgent necessity for advanced 

methodologies in hyperparameter tuning and feature selection. Existing techniques often lack a 

comprehensive approach to address the intricate nature of healthcare datasets that are considered by 

diverse feature types and a high dimensionality. Insufficient attention to the feature selection method 

results in interpretability and a sub-optimal model performance. Moreover, the absence of systematic 

hyperparameter tuning hampers the capability of models to adapt to the unique features of healthcare 

information, which limits the generalization over different healthcare scenarios. Connecting this gap 

needs the development of robust methods that incorporates advanced hyperparameter tuning strategies 

and efficient FS mechanisms, which ensures the creation of interpretable and accurate healthcare 

classification techniques that are crucial for informed medical decision-making. 

3. The proposed model 

In this research, we focus on the development of the NIMADL-HDA technique. The NIMADL-HDA 

technique examines healthcare data to recognize and classify CVD. The presented NIMADL-HDA 

technique is comprised of Z-score normalization, BMO-based FS, CLSTM-based recognition, and PDO-

based hyperparameter tuning. Figure 1 exemplifies the workflow of the NIMADL-HDA technique. 

 

Figure 1. Workflow of NIMADL-HDA technique. 
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3.1. Z-score normalization 

Z-score normalization is also recognized as a standardization technique. It is a statistical model that is 

employed to change and rescale information by conveying every data point's value in terms of standard 

deviations from the mean of the dataset. This procedure includes deducting the mean of a dataset from 

every data point and separating the result by the standard deviation (SD). The resultant z-scores offer a 

standardized measure of how many SDs a specific data point is from the mean. Z-score normalization is 

usually used in many areas, such as ML and statistics, to ensure that variables with dissimilar measures and 

units are on a similar scale, thus simplifying meaningful contrasts and analyses through various datasets. 

3.2. BMO based feature selection 

In this stage, the NIMADL-HDA technique makes use of BMO for the FS process. Barnacles 

generally originate and strongly fuse to solid matter such as ships, rocks, corals, and even sea turtles [19]. 

They are hermaphroditic animals which contain both male and female reproduction methods. One of 

the exclusive features of barnacles is their penis size, which stretches numerous times when equated 

to the span of their body (7 to 8 times).  

The mating performance of barnacles occurs in dual methods such as normal copulation and a 

sperm‐cast. The male barnacle will hit the female barnacle for normal copulation and then the mating 

procedure occurs. The sperm cast takes place to reproduce insulated barnacles. This is completed by 

liquidating fertilized eggs into the aquatic environment. This performance produces novel offspring 

that become a vision in an overview of BMO to crack optimization difficulties. 

Comparable to other evolutionary methods such as a genetic algorithm (GA), BMO utilizes the same 

technique to have the selection procedure of parents reproduced to generate novel offspring. However, the 

method of the answer is dissimilar when equaled to the GA, which is deprived of employing any familiar 

range such as a tournament, roulette wheels, and much more. The assortment process for the reproduced 

barnacle's parents is completed depending on the simplification instructions mentioned below: 

• Barnacles are generally recognized as hermaphroditic animals and denote those female 

barnacles capable of being composted by many male barnacles; it is expected one other 

barnacle reproduces each barnacle. It mainly evades the algorithm's difficulty. 

• The value of 𝑝𝑙 is required to be usual by the user; a collection of the barnacle’s parents is 

complete arbitrarily. A value of 𝑝𝑙 is a control parameter in which the consumer can attain 

noble optimizer outcomes away from the amount of barnacles and the maximal iterations. 

• The Hardy‐Weinberg model employed in an assortment of the barnacle’s parents is inside the 

array of 𝑝𝑙. Otherwise, the sperm‐cast procedure is executed to gain novel offspring. 

3.2.1. Barnacles’ new off‐springs generation 

The group of novel offspring is directed by a standard of Hardy-Weinberg's idea. The description 

is measured by Eqs (1) and (2): 

𝑥𝑖
𝑁−𝑛𝑒𝑤 = 𝑝𝑥𝑏𝑜𝑟𝑛𝑜𝑐𝑙𝑒−𝑚

𝑁 + 𝑞𝑥𝑏𝑜𝑟𝑛𝑜𝑐𝑙𝑒−𝑑
𝑁  𝑓𝑜𝑟 𝑘 ≤ 𝑝𝑙    (1) 

𝑥𝑖
𝑁−𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑( ) × 𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒−𝑚

𝑁  𝑓𝑜𝑟 𝑘 > 𝑝𝑙      (2) 
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where 𝑘 = |𝑏𝑎𝑟𝑛𝑎𝑐𝐼𝑒−𝑚 − 𝑏𝑎𝑟𝑛𝑐𝐼𝑒−𝑑|,  𝑝  refers to a usually dispersed pseudo-random amount, 

𝑞 = (1 − 𝑝),  and 𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒−𝑚
𝑁   and 𝑥𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒−𝑑

𝑁   denote randomly selected variables for the 

barnacle’s parents (Mum and Dad), correspondingly. 𝑟𝑎𝑛𝑑()  signifies a random amount array 

between zero to one (0 ∼ 1) . By mentioning these equations, 𝑝  and 𝑞  signify the inheritance 

percentage from the individual barnacle’s parents. For instance, let's say 𝑝 is produced to be 0.80. It 

specifies that the novel offspring receive 80% of Mum’s features and 20% of Dad’s features. Eq (1) is 

essentially preserved as an optimizing exploitation procedure, whereas Eq (2) is preserved as an 

exploration procedure of the advanced BMO. Additionally, it is valuable to remark that the exploration 

procedure (sperm‐cast) is only related to the barnacle’s mum, and the expected sperm is unconstrained 

from other barnacles.  

3.2.2. Sorting best barnacles 

In case of classification among the barnacles, many populaces get folded from the primary 

populace. Similar to the GA procedure, the BMO too requires a sorting procedure. In this procedure, 

the optimal outcome for a definite iteration is found at the top of the doubled populace. Then, it is 

measured for the next generation whereas the bottom half is dead. 

When it comes to designing an optimization approach, the fitness function (FF) remains the key 

feature that must be taken into account [20]. Both the objectives must be considered while assessing a 

solution; meanwhile, FS is a multi-objective optimization issue. The fitness of the feature subset can be 

defined by the classifier accuracy (maximum) and the number of features selected (minimum). The most 

common approach for multi‐objective formulation is aggregation. In the proposed technique, the main aim 

is combined into a solitary objective; therefore, the present load recognizes every objective importance: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼 ⋅ 𝐸(𝑋) + 𝛽 ∗ (1 −
|𝑅|

|𝑁|
)     (3) 

Algorithm 1: Steps involved in BMO Algorithm 

Step 1: Parameter Initialization 

Initialize search space dimension, Population size, limits for variables, and objective 

function 

Randomly produce initial position for all the barnacles within the given bounds, which 

represents possible solution. 

Calculate the fitness of all the positions using the objective function. 

Step 2: Selection 

For every barnacle, randomly select two other barnacles as possible mates. 

Each selection is influenced by the "attractiveness" score, which is inversely 

proportional to the individual's fitness (best fitness = more attractive). 

Step 3: Reproduction 

For all the pairs of mates, produce an offspring location using a weighted average of 

their positions, similar to the crossover operation in genetic algorithm. 

The weighting is based on the "attractiveness" of all the parents, providing more weight 

to the parent with best fitness. 

Step 4: Mutation 

With a specific probability, employ a mutation operator to all the offspring positions. 
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Step 5: Evaluation and Selection 

Compute the fitness of all the offspring positions using the objective function. 

For every barnacle, compare its fitness with the optimum offspring produced from its 

mating pairs. 

Replace the barnacle with the best individual (either itself or the offspring) for the next 

generation. 

Step 6: Repeat steps 2-5 for a predetermined number of iterations. 

Step 7: After each iterations, the barnacle with the better (lowest) fitness signifies the 

optimum solution found by the BMO technique. 

In Eq (3), the fitness value of a subset 𝑋 is represented as the 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋), t classifier error rate 

by applying features selected in the 𝑋 subset, which is denoted by 𝐸(𝑋). The number of features 

selected and original features in the dataset are |𝑅| and |𝑁|, respectively, and 𝛼 ∈ [0,1] and 𝛽 =

(1 − 𝛼) are the weights of the classifier error and the reduction ratio of 𝛼 and 𝛽, respetively. The 

solution representation is an additional factor that must be taken into account when designing an 

optimization approach to address the FS problems. In this study, the feature subset is characterized by 

a binary vector of 𝑁  components, where the overall amount of features in a unique dataset is 

represented as 𝑁 . Every dimension has a binary value (0  or 1 ), where 1 specifies that the 

corresponding feature is selected and 0 denotes that it is not selected. 

3.3. Classification using CLSTM model 

For healthcare data classification, the CLSTM model can be employed. The CLSTM is different 

from the LSTM network, which handles data communication within the cell over gates, namely forget 

(𝑓𝑡), input (𝑖𝑡), and output (𝑜𝑡) [21]. The discrete gates switch information to join and upgrade the 

in cell state (CS), which selectively hold or remove information via gates. If the input gate is activated, 

then the input will be gathered into a cell. If the forget gate starts, then the preceding CS is forgotten. 

The output gate organizes if the cell output is conveyed to the last hidden layer (HL). CLSTM 

completely varies from LSTM because it uses convolution processes rather than matrix multiplication 

in the “input‐to‐state”, as well as “state‐to‐state” fragments and its inputs 𝑋1, … ,  𝑋𝑡 , unit outputs 

𝐶1, … ,  𝐶𝑡 , and HL ℋ1, … ,ℋ𝑖 ; the forget gate (𝑓𝑡) , the input gate (i), and the output gate (o) are 

entirely three-dimensional tensors. The benefit of this technique is that it can eliminate a huge amount 

of spatial terminated features and resolve the problem of the time requirement of information, thereby 

removing spatial information to understand the joint forming of the time and spatial data. Figure 2 

depicts the framework of CLSTM. 

 

Figure 2. Architecture of CLSTM. 
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The transfer relations among every CLSTM gate are exposed by Eq (4), whereas 𝐼𝑡 denotes the 

input gate, 𝑓𝑡 denotes the forget gate, 𝐶𝑡 signifies the cell state, 𝑜𝑡 represents the output gate, ℋ𝑡 

represents the HL output, “*” symbolizes the convolution operator, "◯" embodies the Hadamard 

product, and 𝜎 represents the sigmoid activation function. Eq (4) shows the formula for this initiation 

function. The CLSTM technique employs a peephole LSTM construction based on the number of 

peeps that utilizes the cells to compute the forgotten and input doors so as to hold the data. The forget 

gate controls and removes the information that is redundantly measured, recollects the beneficial data 

and then transfers it back. The sustained information arrives at the input gate, information to be 

upgraded is defined via the sigmoid layer, and novel cell information is obtained via the tanh layer 

to upgrade the cell. At last, the final output of the CLSTM part is obtained by multiplying the sigmoid 

information in the output gate with the memory cell data via 𝑡𝑎𝑛ℎ. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ ℋ𝑡−1 +𝑊𝑐𝑖◯𝐶𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑓 ∗ ℋ𝑡−1 +𝑊𝑐𝑓◯𝐶𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ ℋ𝑡−1 +𝑊𝑐𝑜◯𝐶𝑡 + 𝑏𝑜)     (4) 

𝐶𝑡 = 𝑓𝑡◯𝐶𝑡−1 + 𝑖𝑡◯tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ ℋ𝑡−1 + 𝑏𝑐) 

ℋ𝑡 = 𝑜𝑡◯tanh (𝐶) 

𝜎(𝑥) =
1

1+𝑒−𝑥
             (5) 

3.4. Hyperparameter tuning 

At last, the PDO algorithm can be exploited for the optimal hyperparameter selection process. 

The PDO algorithm chooses the following hyperparameters: learning rate, number of epochs, and 

batch size. The PDO technique is an optimization algorithm that pretends to search the activity of 

prairie dogs (PD) [22]. PD is involved in social actions such as hunting, constructing caves, preserving 

caves, and protection against hunters every day. Therefore, depending on the daily actions of PD, a 

PDO technique is separated into 4-time stages. Then, we separate the exploitation and exploration 

depending on a fixed mirror existence. 

3.4.1. Population initialization 

The hunting action of every PD is symbolized by 1 ×  dim in the spatial dimension. To avert PD 

from opposing their trajectory, upper‐bound is represented by 𝑈𝐵 and lower‐bound is represented by 

𝐿𝐵 to limit the movement range of PD. The set of every PD in dissimilar places is an optimal solution 

to a problem.  

3.4.2. Exploration stage 

During the first period, the location of PD in foraging actions is connected to food sources 𝜌, 

current excellence of food, and location of arbitrarily created PDs. 𝜌 is a fixed food source alarm at 
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0.1 Khz. In a calculated method, the quality of existing food is definite as the efficiency of estimation 

presently acquired the finest solution 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗. The position of a randomly created PD is defined as 

the random collective effect 𝐶𝑃𝐷𝑖,𝑗. The calculation expression is shown below: 

𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝛥 +
𝑃𝐷𝑖,𝑗×𝑚𝑒𝑎𝑛(𝑃𝐷𝑖)

𝐺𝐵𝑒𝑠𝑡𝑖,𝑗×(𝑈𝐵𝑗−𝐿𝐵𝑗)+𝛥
      (6) 

𝐶𝑃𝐷𝑖,𝑗 =
𝐺𝐵𝑒𝑠𝑡𝑖,𝑗−𝑟𝑃𝐷𝑖,𝑗

𝐺𝐵𝑒𝑠𝑡𝑖,𝑗+𝛥
       (7) 

where 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗  is the global optimum solution gained so far, 𝛥  is a very small number that 

represents variances among PD, and 𝑟𝑃𝐷𝑖𝑗  denotes positions of random solution. Therefore, an 

equation to upgrade the position of PD searching for food is mentioned below: 

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑝 − 𝐶𝑃𝐷𝑖,𝑗 × 𝐿𝑒𝑣𝑦(𝑛)     (8) 

From the above expression, Levy represents a Levy distribution with intermittent jumps. After 

discovering novel food sources, PD’s dig and construct new caves around them. At this time, the 

position of the PD is connected to their dig force DS of caves. The upgraded equation for the DS is 

mentioned below: 

𝐷𝑆 = 1.5 × 𝑟 × (1 −
𝑡

𝑇
)
𝑡(2

t

T
)
        (9) 

where 𝑟 is converted among ‐l and 1 according to the equivalence of the present iteration number, 

𝑡  denotes the current iteration number, and 𝑇  refers to the maximal iteration number. During the 

second period, Eq (10) displays an upgrade in a location of PD  

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑟𝑃𝐷 × 𝐷𝑆 × 𝐿𝑒𝑣𝑦(𝑛)     (10) 

3.4.3. Exploitation stage 

During 3rd time stage, PD refers to the excellence of the present food source 𝜀 and the increasing 

effect of all PDs to arbitrarily upgrade their locations. In the calculated method, the quality of the 

existing food source 𝜀 is a small number labeled as the quality of the food source. The procedure for 

upgrading the location of PD is shown below: 

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜀 − 𝐶𝑃𝐷𝑖,𝑗 × 𝑟𝑎𝑛𝑑    (11) 

where rand represents a random number amongst 0 and 1. During the foraging procedure of PDs, 

predators frequently attack them. Therefore, a predator attack is described as a predatory effect of PE. 

The 𝑃𝐸 calculation equation is given below: 

𝑃𝐸 = 1.5 × (1 −
𝑡

𝑇
)
𝑡(2

t

T
)
        (12) 

Upgrade the position of PD during the 4th period in Eq (13): 

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑃𝐸 × 𝑟𝑎𝑛𝑑     (13) 
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The novel PDO technique mimics the performance of PDs in hunting, digging, and avoiding 

natural enemies, thus separating the performance of PDs into 4 time periods, where 𝜌 refers to the 

food sources alarm, 𝐶𝑃𝐷𝑖,𝑗 is a cumulative effect of all PDs, DS signifies the strength of burrowing, 

𝜀 is quality of the food sources, and PE denotes the predatory effect of predators regularly apprising 

the location to discover improved food sources. Eq (14) reviews the upgraded positions of PDs at four 

time periods. 

{
 
 

 
 𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜌 − 𝐶𝑃𝐷𝑖,𝑗 × 𝐿𝑒𝑣𝑦(𝑛)   ∀𝑡 <

𝑇

4

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑟𝑃𝐷 × 𝐷𝑆 × 𝐿𝑒𝑣𝑦 (𝑛)           ∀
𝑇

4
≤ 𝑡 <

𝑇

2

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜀 − 𝐶𝑃𝐷𝑖,𝑗 × 𝑟𝑎𝑛𝑑    ∀
𝑇

2
≤ 𝑡 < 3

𝑇

4

𝑃𝐷𝑖+1,𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑃𝐸 × 𝑟𝑎𝑛𝑑                  ∀3
𝑇

4
≤ 𝑡 < 𝑇

 (14) 

The fitness selection is a significant factor that influences the performance of the PDO method. 

The hyperparameter selection procedure includes a solution encoding model to estimate the efficiency 

of candidate solutions. In this work, the PDO methodology reflects the accurateness as the main 

standard to design FF as expressed below: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)       (15) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (16) 

where TP represents a true positive and FP represents a false positive value. 

4. Result analysis and discussions 

In this section, the healthcare data classification result of the NIMADL-HDA technique will be 

examined in detail. The NIMADL-HDA technique was tested using a healthcare dataset [23], which 

combines the Cleveland, Hungarian, Switzerland, Long Beach, and Stalog Heart datasets. Table 1 

represents the details of a database. 

Table 1. Details on database. 

Classes No. of Instances 

Normal 561 

Disease Affected 629 

Total Number of Instances 1190 

Figure 3 validates the confusion matrices formed by the NIMADL-HDA model undernumerous 

epochs. The results suggest that the NIMADL-HDA method has an effective detection of normal and 

disease-affected classes. 



12640 

AIMS Mathematics  Volume 9, Issue 5, 12630–12649. 

 

Figure 3. Confusion matrices of NIMADL-HDA technique (a-f) Epochs 500–3000. 

Table 2 and Figure 4 report the general disease detection results of the NIMADL-HDA method 

under varying numbers of epochs. The results show that the NIMADL-HDA model properly recognize 

normal and disease-affected samples. 

 

Figure 4. Disease detection outcome of NIMADL-HDA technique (a-f) Epochs 500–3000. 
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Table 2. Disease detection outcome of NIMADL-HDA technique under various epochs. 

Class  Accuracybal Precision Recall F-Score G-Measure 

Epoch-500 

Normal 99.11 99.29 99.11 99.20 99.20 

Disease Affected 99.36 99.21 99.36 99.29 99.29 

Average 99.24 99.25 99.24 99.24 99.24 

Epoch-1000 

Normal 99.29 99.46 99.29 99.38 99.38 

Disease Affected 99.52 99.37 99.52 99.44 99.44 

Average 99.41 99.41 99.41 99.41 99.41 

Epoch-1500 

Normal 99.29 99.11 99.29 99.20 99.20 

Disease Affected 99.21 99.36 99.21 99.28 99.28 

Average 99.25 99.24 99.25 99.24 99.24 

Epoch-2000 

Normal 98.93 99.28 98.93 99.11 99.11 

Disease Affected 99.36 99.05 99.36 99.21 99.21 

Average 99.15 99.17 99.15 99.16 99.16 

Epoch-2500 

Normal 99.29 99.64 99.29 99.46 99.46 

Disease Affected 99.68 99.37 99.68 99.52 99.52 

Average 99.48 99.50 99.48 99.49 99.49 

Epoch-3000 

Normal 98.75 99.82 98.75 99.28 99.28 

Disease Affected 99.84 98.90 99.84 99.37 99.37 

Average 99.30 99.36 99.30 99.33 99.33 

In Figure 5, an average detection result of the NIMADL-HDA technique is portrayed under a 

varying number of epochs. The obtained values highlight that the NIMADL-HDA technique properly 

accomplishes a classification performance. With 500 epochs, the NIMADL-HDA technique gains an 

average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 99.24%, 𝑝𝑟𝑒𝑐𝑛  of 99.25%, 𝑟𝑒𝑐𝑎𝑙  of 99.24%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.24%, and 

𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 99.24%. Meanwhile, with 1500 epochs, the NIMADL-HDA methodology gains an 

average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 99.25%, 𝑝𝑟𝑒𝑐𝑛  of 99.24%, 𝑟𝑒𝑐𝑎𝑙  of 99.25%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.24%, and 

𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 99.24%. Besides, with 2500 epochs, the NIMADL-HDA method gains an average 

𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 99.48%, 𝑝𝑟𝑒𝑐𝑛  of 99.50%, 𝑟𝑒𝑐𝑎𝑙  of 99.48%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.49%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 

99.49%. At last, with 3000 epochs, the NIMADL-HDA method gains an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.30%, 

𝑝𝑟𝑒𝑐𝑛 of 99.36%, 𝑟𝑒𝑐𝑎𝑙 of 99.30%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.33%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 99.33%. 

As shown in Figure 6, the training and validation accuracy curves of the NIMADL-HDA method 

below epoch-2500 deliver valuable insights into the performance of the NIMADL-HDA approach over 

multiple epochs. These curves highlight the vital insights into the learning procedure and the model's 

ability to simplify. Additionally, it is noticeable that there is a consistent development in training (TR) 

and testing (TS) accurateness over increasing epochs. Moreover, the model's capability to learn and 

identify patterns within both TR and TS datasets is highlighted. The growing testing accurateness 
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recommends that the model not only adjusts to the training data, but also excels in creating precise 

forecasts on before-hidden data, thus highlighting its robust generalization abilities. 

 

Figure 5. Average outcome of NIMADL-HDA technique under various epochs. 

 

Figure 6. 𝐴𝑐𝑐𝑢𝑦 curve of NIMADL-HDA technique under epoch 2500. 

In Figure 7, we signify an inclusive view of TR and TS loss values for the NIMADL-HDA 

methodology under epoch-2500. The TR loss progressively decreases as the model enhances its 

weights to reduce classification errors on both the TR and TS datasets. These loss curves offer a perfect 

picture of how well the model supports the training data, thus highlighting its aptitude to professionally 

hold patterns in both datasets. It is valuable to note that the NIMADL-HDA model constantly enhances 

its parameters to diminish discrepancies between predictions and genuine training labels. 
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Figure 7. Loss curve of NIMADL-HDA technique under epoch 2500. 

With respect to the precision-recall (PR) curve, as assumed in Figure 8, the results confirm that 

the NIMADL-HDA approach under epoch-2500 gradually achieves greater PR values through each 

class. The results highlight the effective capability of the model to discriminate dissimilar classes, thus 

highlighting its efficiency in the detection of class labels. 

In Figure 9, we present Receiver Operating Characteristic (ROC) curves formed by the NIMADL-

HDA model under epoch-2500, which is best at distinguishing between classes. These curves offer 

valuable insights into the balance among TPR and FPR across dissimilar classification thresholds and 

epochs. The outcomes highlight the precise classification performance below dissimilar class labels, 

thus underlining its performance in tackling dissimilar classification tasks. 

 

Figure 8. PR curve of NIMADL-HDA technique under epoch 2500. 
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Figure 9. ROC curve of NIMADL-HDA technique under epoch 2500. 

Table 3 reports a detailed comparison study of the NIMADL-HDA technique with other models 

[24–26]. In Figure 10, a comparative result of NIMADL-HDA methodology is reported in terms of 

𝑎𝑐𝑐𝑢𝑦. Based on 𝑎𝑐𝑐𝑢𝑦, the results indicate that the NIMADL-HDA model extents a higher 𝑎𝑐𝑐𝑢𝑦 of 

99.48%, while the ACVD-HBOMDL, SC, J48, ANN, Bagging, REPTree, and SVM models obtain lower 

𝑎𝑐𝑐𝑢𝑦 values of 99.39%, 98.86%, 97.60%, 95.55%, 94.99%, 92.91%, and 84.49%, respectively. 

 

Figure 10. 𝐴𝑐𝑐𝑢𝑦 outcome of NIMADL-HDA approach with other methods. 
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Table 3. Comparative outcome of NIMADL-HDA approach with other methods [24–26].  

Methods Accuracy Precision Recall F-Score 

NIMADL-HDA 99.48 99.50 99.48 99.49 

ACVD-HBOMDL 99.39 99.44 99.39 99.41 

SC Algorithm 98.86 98.42 97.60 98.12 

J48 Algorithm 97.60 97.52 98.42 98.21 

ANN Algorithm 95.55 95.16 94.85 95.27 

Bagging Algorithm 94.99 94.38 94.69 94.42 

REPTree Algorithm 92.91 92.92 92.47 93.18 

SVM Algorithm 84.49 84.95 83.95 83.99 

In Figure 11, a comparative result of the NIMADL-HDA model is conveyed in terms of 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒. Depending on 𝑝𝑟𝑒𝑐𝑛, the results designate that the NIMADL-HDA model attains 

a greater 𝑝𝑟𝑒𝑐𝑛  of 99.50%, while the ACVD-HBOMDL, SC, J48, ANN, Bagging, REPTree, and 

SVM techniques attain lower 𝑝𝑟𝑒𝑐𝑛 values of 99.44%, 98.42%, 97.52%, 95.16%, 94.38%, 92.92%, 

and 84.95%, respectively. Besides, based on 𝑟𝑒𝑐𝑎𝑙 , the results show that the NIMADL-HDA 

methodology reached an advanced 𝑟𝑒𝑐𝑎𝑙 of 99.48%, while the ACVD-HBOMDL, SC, J48, ANN, 

Bagging, REPTree, and SVM methods acquired lower 𝑟𝑒𝑐𝑎𝑙 values of 99.39%, 97.60%, 98.42%, 

94.85%, 94.69%, 92.47%, and 83.95%, respectively. Lastly, based on 𝐹𝑠𝑐𝑜𝑟𝑒, the results indicate that 

the NIMADL-HDA model reached a higher 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.49%, while the ACVD-HBOMDL, SC, J48, 

ANN, Bagging, REPTree, and SVM models acquired lower 𝐹𝑠𝑐𝑜𝑟𝑒  values of 99.41%, 98.12%, 

98.21%, 95.27%, 94.42%, 93.18%, and 83.99%, respectively. 

 

Figure 11. Comparative outcome of NIMADL-HDA approach with other methods [24–26]. 

We have carried out an experiment to ensure the performance enhancement made by feature 

selection and the hyperparameter tuning process. The overall results of the NIMADL-HAD technique 
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(with FS and hyperparameter tuning) with BMOA-CLSTM (without FS) and CLSTM (without FS and 

hyperparameter tuning) are depicted in Table 4 and Figure 12, respectively. The results indicate that 

the NIMADL-HDA model outperforms the other ones with a maximum performance due to the 

integration of the FS and hyperparameter tuning process. 

Table 4. Comparative outcome of NIMADL-HDA approach with CLSTM and BMOA-

CLSTM model. 

Measures (%) 

Models Accuracy Precision Recall F-Score 

NIMADL-HDA 99.48 99.50 99.48 99.49 

BMOA-CLSTM 98.76 98.89 98.65 98.32 

CLSTM 97.15 98.08 97.12 97.96 

 

Figure 12. Comparative outcome of NIMADL-HDA approach before and after FS with 

hyperparameter tuning process. 

The NIMADL-HDA method excels over existing techniques in healthcare data analyses due to 

its innovative incorporation of bio-inspired optimization techniques, adaptive FS using the BMO, the 

CLSTM-based classifier, and effective hyperparameter tuning with the PDO method. Thus, the 

NIMADL-HDA technique can be applied for enhanced detection processes in the healthcare 

environment.  

5. Conclusions 

In this paper, we focused on the design and improvement of the NIMADL-HDA technique. The 

NIMADL-HDA technique examines healthcare data to recognize and classify CVD. The presented 

NIMADL-HDA technique is comprised of Z-score normalization, BMO-based FS, CLSTM-based 
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detection, and PDO-based hyperparameter tuning. In the developed NIMADL-HDA technique, Z-

score normalization was initially performed to normalize the input data. In addition, the NIMADL-

HDA technique made use of a BMO-based FS process. For healthcare data classification, the CLSTM 

model was employed. Finally, a PDO algorithm was exploited to optimize the hyperparameter 

selection procedure. An experimental result analysis of the NIMADL-HDA technique was tested on a 

benchmark healthcare dataset. The acquired outcomes stated that the NIMADL-HDA technique 

reached an effectual performance over other models. 
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