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Abstract: In this paper, we investigated the Hyers–Ulam stability of the coefficient multipliers on
the Hardy space H2 and the Dirichlet space D2. We also investigated the Hyers–Ulam stability
of the coefficient multipliers between Dirichlet and Hardy spaces. We provided the necessary and
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on Dirichlet spaceD2, and between Dirichlet and Hardy spaces. We also showed that the best constant
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were discussed.

Keywords: Hyers–Ulam stability; coefficient multipliers; Dirichlet spaces; Hardy spaces
Mathematics Subject Classification: 39B72, 39B82, 47B91

1. Introduction

In analytic function theory, it is an important question to describe the coefficient multipliers between
various spaces of analytic functions. The coefficient multipliers allow to obtain information on the
Taylor coefficients of analytic functions in certain function spaces or make it possible to tell whether
a given function is in a particular space of functions by observing the Taylor coefficients. In the
research of operator theory, the coefficient multipliers also play an important role. Through the actions
and behaviors of the coefficient multipliers on function spaces, we can get the element information
of the specific function spaces, reveal the structure of some function spaces, and find correlations
among different function spaces. This facilitates the study of the properties of other operators related
to coefficient multipliers. The operator equations of the coefficient multipliers are often discussed in
relation to problems within operator theory. Usually, the exact solutions for operator equations are not
easy to obtain. In view of this, it is necessary to investigate the approximate solutions, and we may
ask whether these lie near the exact solutions. This relates to the question of Hyers–Ulam stability.
Generally, we say that an operator equation has Hyers–Ulam stability if, for every solution of the
perturbed equation, there is an exact solution that is close to it. In other words, if a specific operator
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equation is replaced by an operator inequality, when can one assert that solutions of the latter lie near
the exact solution of the operator equation?

In view of the importance of this issue and the relevant research works that have been done, our
research work was carried out.

Let A, B be normed spaces and consider a mapping T : A → B. We say that T has Hyers–Ulam
stability property (briefly, T is HU-stable) if there exists a constant K > 0 such that for any g ∈ T (A),
ε > 0 and f ∈ A with ‖T f − g‖ ≤ ε, there exists an f0 ∈ A with T f0 = g and ‖ f − f0‖ ≤ Kε (see [5,17]).
The number K is called a Hyers–Ulam stability constant (briefly, HUS-constant) and the infimum of
all HUS constants of T is denoted by KT . Generally, KT is not a HUS constant of T (see [4]).

The first important result, which we now call the Hyers–Ulam stability, is due to Hyers [6], who
gave an answer to a question posed by Ulam [18] concerning group homomorphisms: let G1 be a
group and let G2 be a metric group with a metric d(·, ·). Given any ε > 0, is there a δ > 0 such that,
if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there
is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? Rassias [16] generalized
the result of Hyers in 1978. Since then, the stability of many differential, integral, operator, functional
equations have been extensively investigated.

Hyers–Ulam stability is widely used in many fields. For example, Hyers–Ulam stability analysis
plays a significant role in the research of fractional order differential equations and systems. In 2023,
Luo, Wang, Caraballo, and Zhu investigated Hyers–Ulam stability of Caputo-type fractional fuzzy
stochastic differential equations with delay by the monotone iterative technique combined with the
method of upper and lower solutions in [10]. In 2022, Luo, Abdeljawad, and Luo studied Ulam–
Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system
by applying Krasnoselskii’s fixed point theorem in [8]. In 2020, Luo and Luo gave some existence
and Hyers–Ulam stability results for a class of fractional-order delay differential equations with
non-instantaneous impulses by Krasnoselskii’s fixed point theorem and the generalized Gronwall’s
inequality in [9]. In 2022, Wang, Luo, and Zhu investigated Ulam–Hyers stability of Caputo-type fuzzy
fractional differential equations with time-delays in [22]. In 2022, Eidinejad, Saadati, Allahviranloo,
Kiani, Noeiaghdam, and Gamiz gave some results concerning the existence of a unique solution and
the Hyers–Ulam–H–Fox stability of the conformable fractional differential equation by matrix-valued
fuzzy controllers in [2].

In recent years, the Hyers–Ulam stability of operators on the different function spaces and operator
algebras have been addressed by several researchers. In 2024, Keshavarz, Heydari, and Anderson
investigated the Hyers–Ulam stability for mth differential operators on weighted Hardy spaces H2

β

in [7]. In [20,21], Wang and Xu discussed the Hyers–Ulam stability of differential operators on Hilbert
spaces of entire functions and the reproducing kernel function spaces and gave several sufficient and
necessary conditions for the differential operator to be stable on these spaces. In [14], the authors
studied the stability of multipliers on Banach algebras. In [13], Miura, Hirasawa, and Takahasi
investigated Hyers–Ulam stability of linear differential operators Th (h ∈ H(C)) on the entire function
space H(C) and gave a sufficient and necessary condition for the Th to be stable on H(C). In [17], the
authors gave a characterization for the weighed composition operators to have Hyers–Ulam stability
on Banach space C(X) and obtained a sufficient and necessary condition. In [15], Popa and Raşa
investigated the stability of some classical operators from approximation theory.

Let A, B be two spaces of analytic functions on the unit disc D in the complex plane. Given a
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complex sequence λ = {λn}
∞
n=0, we define the operator Tλ as follows. For f ∈ A with f (z) =

∑∞
n=0 anzn ,

let (Tλ f )(z) =
∑∞

n=0 λnanzn. If Tλ : A → B, then the sequence {λn} is said to be a coefficient multiplier
from A into B. This concept can be simply written as {λn} ∈ (A, B) (see [1]).

For the completeness of the description, we briefly introduce some early work on the study of
coefficient multipliers. Hardy and Littlewood [3] showed that the fractional integration is a multiplier
of Hp into Hq under certain conditions. Duren [1] investigated the work of Hardy and Littlewood and
then gave some simplified sufficient conditions such that the sequence {λn} is a multiplier of Hp into Hq.
Vukotic [19] investigated the coefficient multipliers of Bergman spaces and obtained some sufficient
conditions and some necessary conditions for the coefficient multipliers. In particular, the coefficient
multipliers from A1 into A2 were studied, and a necessary and sufficient condition was obtained. Wu
and Yang [23] studied the multipliers between Dirichlet spaces and provided some interesting results.
Since then, the coefficient multipliers of various function spaces have been extensively investigated,
and some new results on the coefficient multipliers on Hardy, Bergman, Bloch, BMOA, Lipschitz, and
Besov spaces have been obtained (see [11, 12] and the references therein).

Motivated by the above work, we investigate the Hyers–Ulam stability of the coefficient multipliers
Tλ on Hardy spaces H2 and Dirichlet spaces D2. We also investigate the Hyers–Ulam stability of the
coefficient multipliers between Dirichlet and Hardy spaces, and some illustrative examples are also
discussed.

The organization of the paper is as follows: Section 2 is devoted to the fundamental definitions of the
Hardy space and Dirichlet space and a review of some basic properties of these spaces. Additionally,
we review some existing results concerning the coefficient multipliers Tλ on Hardy space H2 and
give a sufficient condition concerning the coefficient multipliers on Dirichlet space D2. In Section 3,
a necessary and sufficient condition for the coefficient multipliers on Dirichlet space D2 to have
Hyers–Ulam stability is obtained, and the best constant of Hyers–Ulam stability is also discussed.
In Section 4, a necessary and sufficient condition for the coefficient multipliers on Hardy space H2

to be Hyers–Ulam stable is obtained, and the best constant of Hyers–Ulam stability is also discussed.
In Sections 5 and 6, we focus our attention on the investigation of the Hyers–Ulam stability of the
coefficient multipliers between Dirichlet and Hardy spaces. We give some necessary and sufficient
conditions for the coefficient multipliers to have Hyers–Ulam stability between Dirichlet and Hardy
spaces, and the best constant of Hyers–Ulam stability is also discussed under different circumstances.
In Section 7, we summarize the main results and ideas of this paper.

Throughout this paper, let C denote the complex plane and let D denote the unit open disc over
complex plane.

2. The coefficient multipliers on Hardy space H2 and Dirichlet spaceD2

In this section, we recall Hardy space H2 and Dirichlet space D2 and the fundamental properties
of them, we recall some sufficient conditions, for which a complex sequence λ = {λn}

∞
n=0 can be the

coefficient multiplier on Hardy space H2, and we give a sufficient condition concerning the coefficient
multipliers on Dirichlet spaceD2 .

First, we recall Hardy space H2 and Dirichlet spaceD2 and the fundamental properties of them.
Let H(D) denote the space of all holomorphic functions on D. For 0 < p < ∞ and 0 < r < 1, for a
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holomorphic function f defined on D, we set

Mp( f , r) =

(
1

2π

∫ 2π

0
| f (reiθ)|pdθ

) 1
p

.

We define the Hardy space Hp = Hp(D) as

Hp =

{
f ∈ H(D) : sup

0<r<1
Mp( f , r) < ∞

}
,

and for f ∈ Hp, we set
‖ f ‖Hp(D) = sup

0<r<1
Mp( f , r).

Furthermore, we define H∞ as the space of holomorphic functions that are bounded on the unit disc,
endowed with the sup-norm.

The particular importance of H2 is due to the fact that H2 is a Hilbert space. If f is holomorphic on

D, then it admits power series expansion f (z) =
∞∑

n=0
anzn. It is easy to show that

‖ f ‖H2(D) = sup
0<r<1

M2( f , r) =

 ∞∑
n=0

|an|
2


1
2

,

that is, f ∈ H2 if and only if
∞∑

n=0
|an|

2 is finite. The norm ‖ · ‖H2(D) can be simply written as ‖ · ‖H2 without

causing confusion.
It is well known that for 0 < p < ∞, each function in Hp can be approximated in norm by

polynomials. Thus, Hp is also characterized as the closure of polynomials in the space Lp. It is
also said that the polynomials are dense in Hp.

In what follows, dA(z) = 1
π
dxdy = 1

π
rdrdθ is the normalized area measure on the unit disc D. The

Dirichlet spaceD2 consists of all analytic functions f on D such that the Dirichlet integral

D( f ) =

∫
D

| f ′(z)|2dA(z) < ∞.

For convenience, we define the norm on the Dirichlet spaceD2 as follows

‖ f ‖D2 =

√
‖ f ‖2

H2 + D( f ), f ∈ D2,

where the norm ‖ f ‖H2 is the norm in which f is the vector in Hardy space H2.

For f (z) =
∞∑

n=0
anzn, g(z) =

∞∑
n=0

bnzn ∈ D2, the inner product concerning the above norm is

〈 f , g〉 =

∞∑
n=0

(n + 1)anbn,
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where bn is the complex conjugation of the complex number bn. For every f (z) =
∑∞

n=0 anzn ∈ D2, by
an easy calculation, we obtain

‖ f ‖D2 =

 ∞∑
n=0

(n + 1)|an|
2


1
2

.

It is well known that the sequence {
zn

√
n + 1

}∞
n=0

is an orthonormal basis ofD2 and the polynomials are dense inD2.
In [1], Duren gave sufficient conditions for a complex sequence λ = {λn}

∞
n=0 to be the coefficient

multiplier on Hardy space H2.

Theorem 2.1. ( [1] ) If 0 < p 6 2 6 q < ∞, α = 1
p −

1
q , and λn = O(n−α), then {λn} is a multiplier of

Hp into Hq. The same is true if 0 < p 6 1 and q = ∞, but not if 1 < p < q = ∞. The number α is best:
for each a < α, there is a sequence {λn} with λn = O(n−a) that is not a multiplier of Hp into Hq.

By Theorem 2.1, it is easy to obtain the following result.

Corollary 2.2. If a sequence {λn} satisfies λn = O(1), then {λn} ∈ (H2,H2).

Next, we give a sufficient condition concerning the coefficient multipliers on Dirichlet spaceD2.

Theorem 2.3. If a sequence {λn} satisfies λn = O(1), then {λn} ∈ (D2,D2).

Proof. Suppose that f =
∞∑

n=0
anzn ∈ D2, then f is a analytic function on the unit disc D and satisfies that

lim
n→∞

n√
|an| 6 1 and

‖ f ‖D2 =

 ∞∑
n=0

(n + 1)|an|
2


1
2

< ∞.

Here, for the convenience of calculating the norm of the function in the spaceD2, each related function
is expressed as a linear combination of orthonormal basis in the space. It is easy to get

f (z) =

∞∑
n=0

anzn =

∞∑
n=0

√
n + 1an

zn

√
n + 1

.

We have

Tλ f (z) =

∞∑
n=0

λnanzn =

∞∑
n=0

λn

√
n + 1an

zn

√
n + 1

.

Suppose that |λn| < C,C > 0, let g(z) = Tλ f (z) =
∞∑

n=0
λnanzn. We can obtain that

lim
n→∞

n
√
|λnan| 6 lim

n→∞

n
√

C|an| = lim
n→∞

n√
C · lim

n→∞

n
√
|an| 6 1,

so the function g is also an analytic function on the unit disc D. It is easy to get

‖g(z)‖2
D2 = ‖Tλ f (z)‖2

D2 =

∞∑
n=0

|λn|
2|an|

2(n + 1) 6 C2
∞∑

n=0

(n + 1)|an|
2 < ∞.
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Thus, we get that g ∈ D2. Therefore, the sequence {λn} is a multiplier from D2 to D2. The proof is
complete. �

In order to study the Hyers–Ulam stability of the coefficient multipliers on Hardy space H2 and
Dirichlet spaceD2, throughout this paper, we suppose that the sequence {λn}

∞
n=0 is bounded.

3. Hyers–Ulam stability of the coefficient multipliers Tλ on Dirichlet spaceD2

In this section, we investigate the Hyers–Ulam stability of the coefficient multipliers on Dirichlet
spaceD2 and we give a necessary and sufficient condition for the coefficient multipliers to have Hyers–
Ulam stability. We also show that the best constant of Hyers–Ulam stability exists.

Theorem 3.1. Suppose that λ = {λn} satisfies λn = O(1), then the following conditions are equivalent:
(a) the sequence

{
1
λn

}
is bounded;

(b) the multiplier Tλ is Hyers–Ulam stable on Dirichlet spaceD2.

Proof. (b)⇒(a). Suppose that Tλ is stable with Hyers–Ulam stability constant K on Dirichlet space
D2. For any ε > 0, f , g ∈ D2 and f , g satisfy ‖ Tλ f − g ‖D26 ε, then exists f0 ∈ D

2 and K > 0 such
that Tλ f0 = g and ‖ f0 − f ‖D2 < Kε. If f = zn

λn
√

n+1
for any nonnegative integer n, g = 0, ε = 1, we

have ‖ Tλ f − g ‖D2=
∥∥∥∥ zn
√

n+1

∥∥∥∥
D2
6 1 = ε. Then, exists f0 ∈ D

2 such that Tλ f0 = 0 and ‖ f0 − f ‖D2 =∥∥∥∥ f0 −
zn

λn
√

n+1

∥∥∥∥
D2

< K · 1 = K. Thus, we have ‖ f ‖D2 − ‖ f0‖D2 < K. We obtain that ‖ f ‖D2 < ‖ f0‖D2 + K.

Therefore,
∣∣∣∣ 1
λn

∣∣∣∣ ∥∥∥∥ zn
√

n+1

∥∥∥∥
D2
< ‖ f0‖D2 + K. We obtain that

∣∣∣∣ 1
λn

∣∣∣∣ < ‖ f0‖D2 + K.

(a)⇒(b). Suppose that the sequence
{

1
λn

}
is bounded, and let M = sup

{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}
. Since the

polynomials are dense in D2, we just need to show that Tλ is Hyers–Ulam stable on the polynomials

dense subspace P. Take any two polynomials p(z) =
r∑

n=0
anzn ∈ P and q(z) =

s∑
n=0

bnzn ∈ P, where r, s

are all nonnegative integers.
When r > s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

λnanzn +

r∑
n=s+1

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

(λnan − bn)zn +

r∑
n=s+1

λnanzn

=

s∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

+

r∑
n=s+1

λnan ·
√

n + 1 ·
zn

√
n + 1

. (3.1)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (3.1), we obtain

‖Tλp − q‖D2
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=

 s∑
n=0

(n + 1)|λnan − bn|
2 +

r∑
n=s+1

(n + 1)|λnan|
2


1
2

< ε. (3.2)

We take p0 ∈ P ⊂ D
2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to show that

Tλp0(z) =

s∑
n=0

bnzn = q(z).

Thus, we obtain

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

anzn +

r∑
n=s+1

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

(
an −

bn

λn

)
zn +

r∑
n=s+1

anzn

=

s∑
n=0

λnan − bn

λn
zn +

r∑
n=s+1

1
λn
λnanzn

=

s∑
n=0

λnan − bn

λn
·
√

n + 1 ·
zn

√
n + 1

+

r∑
n=s+1

1
λn
· λnan ·

√
n + 1 ·

zn

√
n + 1

. (3.3)

By (3.2) and (3.3), we get

‖p − p0‖D2 =

 s∑
n=0

∣∣∣∣∣ 1
λn

∣∣∣∣∣2 (n + 1)|λnan − bn|
2 +

r∑
n=s+1

∣∣∣∣∣ 1
λn

∣∣∣∣∣2 (n + 1)|λnan|
2


1
2

6

 s∑
n=0

M2(n + 1)|λnan − bn|
2 +

r∑
n=s+1

M2(n + 1)|λnan|
2


1
2

= M

 s∑
n=0

(n + 1)|λnan − bn|
2 +

r∑
n=s+1

(n + 1)|λnan|
2


1
2

< M · ε.

When r = s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn
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=

s∑
n=0

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

(λnan − bn)zn

=

s∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

. (3.4)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (3.4) we get

‖Tλp − q‖D2 =

 s∑
n=0

(n + 1)|λnan − bn|
2


1
2

< ε. (3.5)

Take p0 ∈ P ⊂ D
2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to show that

Tλp0(z) =

s∑
n=0

bnzn = q(z).

Thus, we have

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

(
an −

bn

λn

)
zn

=

s∑
n=0

λnan − bn

λn
zn

=

s∑
n=0

λnan − bn

λn
·
√

n + 1 ·
zn

√
n + 1

. (3.6)

By (3.5) and (3.6), we obtain

‖p − p0‖D2 =

 s∑
n=0

∣∣∣∣∣ 1
λn

∣∣∣∣∣2 (n + 1)|λnan − bn|
2


1
2

6 M

 s∑
n=0

(n + 1)|λnan − bn|
2


1
2

AIMS Mathematics Volume 9, Issue 5, 12550–12569.



12558

< M · ε.

When r < s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn

=

r∑
n=0

λnanzn −

r∑
n=0

bnzn −

s∑
n=r+1

bnzn

=

r∑
n=0

(λnan − bn)zn −

s∑
n=r+1

bnzn

=

r∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

−

s∑
n=r+1

bn ·
√

n + 1 ·
zn

√
n + 1

. (3.7)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (3.7) we get

‖Tλp − q‖D2 =

 r∑
n=0

(n + 1)|λnan − bn|
2 +

s∑
n=r+1

(n + 1)|bn|
2


1
2

< ε. (3.8)

Take p0 ∈ P ⊂ D
2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to show that

Tλp0(z) =

s∑
n=0

bnzn = q(z).

Thus, we get

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

r∑
n=0

anzn −

r∑
n=0

bn

λn
zn −

s∑
n=r+1

bn

λn
zn

=

r∑
n=0

(
an −

bn

λn

)
zn −

s∑
n=r+1

bn

λn
zn

=

r∑
n=0

λnan − bn

λn
zn −

s∑
n=r+1

1
λn

bnzn

=

r∑
n=0

(λnan − bn)
λn

·
√

n + 1 ·
zn

√
n + 1

−

s∑
n=r+1

bn

λn
·
√

n + 1 ·
zn

√
n + 1

. (3.9)
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By (3.8) and (3.9), we obtain

‖p − p0‖D2

=

 r∑
n=0

∣∣∣∣∣ 1
λn

∣∣∣∣∣2 (n + 1)|λnan − bn|
2 +

s∑
n=r+1

∣∣∣∣∣ 1
λn

∣∣∣∣∣2 (n + 1)|bn|
2


1
2

6

 r∑
n=0

M2(n + 1)|λnan − bn|
2 +

s∑
n=r+1

M2(n + 1)|bn|
2


1
2

= M

 r∑
n=0

(n + 1)|λnan − bn|
2 +

s∑
n=r+1

(n + 1)|bn|
2


1
2

< M · ε.

Therefore, the coefficient multiplier Tλ is Hyers–Ulam stable onD2. The proof is complete. �

Next, we will show that the best constant of Hyers–Ulam stability of the coefficient multiplier Tλ

exists.

Theorem 3.2. Suppose that λ = {λn}, and the coefficient multiplier Tλ is Hyers–Ulam stable on D2,

then KTλ = sup
{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}

and KTλ is a HUS constant of Tλ.

Proof. Since the coefficient multiplier Tλ is Hyers–Ulam stable on D2, then for any ε > 0, f , g ∈ D2

and f , g satisfy ‖Tλ f −g‖D2 6 ε, then exists f0 ∈ D
2 and K > 0 such that Tλ f0 = g and ‖ f0− f ‖D2 < Kε.

For f = 1
λn

zn
√

n+1
, where n is any nonnegative integer, g = 0, ε = 1, we have ‖Tλ f − g‖D2 =

∥∥∥∥ zn
√

n+1

∥∥∥∥
D2

=

1 6 ε, then exists K > 0, f0 = 0 ∈ D2 such that Tλ f0 = 0 = g and ‖ f0 − f ‖D2 =
∥∥∥∥0 − 1

λn

zn
√

n+1

∥∥∥∥
D2

=∣∣∣∣ 1
λn

∣∣∣∣ ∥∥∥∥ zn
√

n+1

∥∥∥∥
D2

=
∣∣∣∣ 1
λn

∣∣∣∣ < Kε = K · 1 = K. Thus, we have
∣∣∣∣ 1
λn

∣∣∣∣ < K, and we obtain that sup
{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}
6

K. From the proof of Theorem 3.1, we know that M = sup
{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}

is a HUS constant. Therefore,

KTλ = sup
{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}
. We obtain that KTλ is a HUS constant of Tλ. �

Next, several examples are given to illustrate the results of the above two theorems.

Example 3.3. A trivial example is the coefficient multiplier Tλ, where the sequence λ = {λn}, λn ≡ c ∈
C, c , 0. By Theorems 3.1 and 3.2, it is easy to show that Tλ is Hyers–Ulam stable onD2, and the best
HUS constant of Tλ is 1

|c| .

Example 3.4. We consider the sequence λ = {λn}, where λn = n+5
n+8 i2n, i is the imaginary unit and n

is nonnegative integer. It is evident that the sequence satisfies λn = O(1); by Theorem 2.3, we have
{λn} ∈ (D2,D2). By 1

λn
=

(
1 + 3

n+5

)
1

i2n , we obtain that
{

1
λn

}
is bounded. By Theorems 3.1 and 3.2, it is

easy to show that Tλ is Hyers–Ulam stable onD2, and the best HUS constant of Tλ is 8
5 .

Example 3.5. Take the sequence λ = {λn}, where λn =
√

3(n+4)
n+5 +

√
8(n+4)
n+5 i, and n is nonnegative integer.

We obtain that the sequence satisfies |λn| 6
√

11. By Theorem 2.3, we have {λn} ∈ (D2,D2). By
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1
λn

=
√

3(n+5)
11(n+4) −

√
8(n+5)

11(n+4) i, we obtain that
{

1
λn

}
is bounded and

∣∣∣∣ 1
λn

∣∣∣∣ 6 5
√

11
44 . By Theorem 3.1 and 3.2, the

multiplier Tλ is Hyers–Ulam stable onD2, and the best HUS constant of Tλ is 5
√

11
44 .

Example 3.6. We consider the sequence λ = {λn}, where λn = 10i
(n+5)3 , and n is nonnegative integer. It

is evident that the sequence satisfies |λn| =
10

(n+5)3 6
2
25 ; by Theorem 2.3, we have {λn} ∈ (D2,D2). By

1
λn

=
(n+5)3

10i , we obtain that
{

1
λn

}
is unbounded. By Theorem 3.1, the multiplier Tλ is not Hyers–Ulam

stable onD2.

4. Hyers–Ulam stability of the coefficient multipliers Tλ on Hardy space H2

In this section, we investigate the Hyers–Ulam stability of the coefficient multipliers on Hardy space
H2 and we give a necessary and sufficient condition for the coefficient multipliers to have Hyers–Ulam
stability. We also show that the best constant of Hyers–Ulam stability exists by using the same method
of Section 3. We omit the proofs of the following main results.

Theorem 4.1. Suppose that λ = {λn} satisfies λn = O(1), then the following conditions are equivalent:
(a) the multiplier Tλ is Hyers–Ulam stable on Hardy space H2;
(b) the sequence

{
1
λn

}
is bounded.

Theorem 4.2. Suppose that λ = {λn} and the coefficient multiplier Tλ is Hyers–Ulam stable on H2,

then KTλ = sup
{∣∣∣∣ 1
λn

∣∣∣∣ : n > 0
}

and KTλ is a HUS constant of Tλ.

Next, several examples are given to illustrate the results of the above two theorems.

Example 4.3. A trivial example is the coefficient multiplier Tλ, where the sequence λ = {λn}, λn ≡ c ∈
C, c , 0. By Theorem 4.1 and 4.2, it is easy to show that Tλ is Hyers–Ulam stable on H2, and the best
HUS constant of Tλ is 1

|c| .

Example 4.4. We consider the sequence λ = {λn}, where λn = 5 + in, i is the imaginary unit and
n is nonnegative integer. It is evident that the sequence satisfies λn = O(1); by Corollary 2.2, we
have {λn} ∈ (H2,H2). By 1

λn
= 1

5+in , we obtain that
{

1
λn

}
is bounded. By Theorem 4.1 and 4.2, Tλ is

Hyers–Ulam stable on H2, and the best HUS constant of Tλ is 1
4 .

Example 4.5. We consider the sequence λ = {λn}, where λn =
√

n+3
√

n+4
+
√

n+3
√

n+4
i, and n is nonnegative

integer. We get that the sequence satisfies |λn| 6
√

2. By Corollary 2.2, we have {λn} ∈ (H2,H2). By
1
λn

=
√

n+4
2
√

n+3
−

√
n+4

2
√

n+3
i, we obtain that

{
1
λn

}
is bounded and

∣∣∣∣ 1
λn

∣∣∣∣ 6 √
2
3 . By Theorem 4.1 and 4.2, the

coefficient multiplier Tλ is Hyers–Ulam stable on H2, and the best HUS constant of Tλ is
√

2
3 .

Example 4.6. Take the sequence λ = {λn}, where λn = 7+8i
(n+2)4 , and n is nonnegative integer. We get that

the sequence satisfies |λn| =
√

113
(n+2)4 6

√
113
16 . By Corollary 2.2, we have {λn} ∈ (H2,H2). By 1

λn
=

(n+2)4

7+8i ,

we obtain that
{

1
λn

}
is unbounded. By Theorem 4.1, the coefficient multiplier Tλ is not Hyers–Ulam

stable on H2.
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5. The coefficient multipliers from Hardy space to Dirichlet space with Hyers–Ulam stability

In this section, we focus our attention on the investigation of the Hyers–Ulam stability of the
coefficient multipliers from H2 toD2.

Theorem 5.1. If a sequence {λn} satisfies λn
√

n + 1 = O(1), then {λn} ∈ (H2,D2).

Proof. Suppose that f ∈ H2 and f =
∞∑

n=0
anzn, we have

‖ f ‖H2 =

 ∞∑
n=0

|an|
2


1
2

< ∞.

Suppose that the sequence
{
λn
√

n + 1
}

satisfies |λn
√

n + 1| 6 C, where C > 0. By

(Tλ f )(z) =

∞∑
n=0

λnanzn,

we obtain
∞∑

n=0

(n + 1)|λnan|
2 =

∞∑
n=0

|λn|
2(n + 1)|an|

2 6 C2
∞∑

n=0

|an|
2 < ∞.

Thus Tλ f ∈ D2. So {λn} ∈ (H2,D2). �

Next, some examples are given to illustrate the result of the theorem.

Example 5.2. We consider the sequence λ = {λn}, where λn = i
√

n+1
, n is nonnegative integer. It is

evident that the sequence {λn} satisfies λn
√

n + 1 = O(1); by Theorem 5.1, we have {λn} ∈ (H2,D2).

Example 5.3. Take the sequence λ = {λn}, where λn = 6+7i
n+1 , i is the imaginary unit and n is nonnegative

integer. We get that the sequence
{
λn
√

n + 1
}

is bounded. By Theorem 5.1, we have {λn} ∈ (H2,D2).

Next, we prove the main results of this section.

Theorem 5.4. Suppose that λ = {λn} satisfies λn
√

n + 1 = O(1), then the coefficient multiplier Tλ :

H2 → D2 is Hyers–Ulam stable if and only if the sequence
{

1
λn
√

n+1

}
is bounded.

Proof. Sufficiency. Suppose that the sequence
{

1
λn
√

n+1

}
is bounded, and let M = sup

{∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ : n > 0
}
.

Since the polynomials are dense in H2 and D2, we just need to show that Tλ is Hyers–Ulam stable on

the polynomials dense subspace P of H2 andD2. Take any two polynomials p(z) =
r∑

n=0
anzn ∈ P ⊂ H2

and q(z) =
s∑

n=0
bnzn ∈ P ⊂ D2, where r, s are all nonnegative integers.

When r = s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn
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=

s∑
n=0

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

(λnan − bn)zn

=

s∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

. (5.1)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (5.1) we get

‖Tλp − q‖D2 =

 s∑
n=0

|λnan − bn|
2(n + 1)


1
2

< ε. (5.2)

Take p0 ∈ P ⊂ H2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to show that

Tλp0(z) =

s∑
n=0

bnzn = q(z),

where q ∈ P ⊂ D2. Thus, we have

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

(
an −

bn

λn

)
zn

=

s∑
n=0

λnan − bn

λn
zn. (5.3)

By (5.2) and (5.3), we obtain

‖p − p0‖H2 =

 s∑
n=0

∣∣∣∣∣λnan − bn

λn

∣∣∣∣∣2


1
2

=

 s∑
n=0

∣∣∣∣∣∣ 1

λn
√

n + 1

∣∣∣∣∣∣2 |λnan − bn|
2(n + 1)


1
2

6

 s∑
n=0

M2|λnan − bn|
2(n + 1)


1
2
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= M

 s∑
n=0

|λnan − bn|
2(n + 1)


1
2

< M · ε.

When r < s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn

=

r∑
n=0

λnanzn −

r∑
n=0

bnzn −

s∑
n=r+1

bnzn

=

r∑
n=0

(λnan − bn)zn −

s∑
n=r+1

bnzn

=

r∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

−

s∑
n=r+1

bn ·
√

n + 1 ·
zn

√
n + 1

. (5.4)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (5.4) we get

‖Tλp − q‖D2 =

 r∑
n=0

|λnan − bn|
2(n + 1) +

s∑
n=r+1

|bn|
2(n + 1)


1
2

< ε. (5.5)

Take p0 ∈ P ⊂ H2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to obtain that

Tλp0(z) =

s∑
n=0

bnzn = q(z),

where q ∈ P ⊂ D2. Thus, we get

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

r∑
n=0

anzn −

r∑
n=0

bn

λn
zn −

s∑
n=r+1

bn

λn
zn

=

r∑
n=0

(
an −

bn

λn

)
zn −

s∑
n=r+1

bn

λn
zn

=

r∑
n=0

λnan − bn

λn
zn −

s∑
n=r+1

1
λn

bnzn. (5.6)
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By (5.5) and (5.6), we obtain

‖p − p0‖H2

=

 r∑
n=0

∣∣∣∣∣λnan − bn

λn

∣∣∣∣∣2 +

s∑
n=r+1

∣∣∣∣∣bn

λn

∣∣∣∣∣2


1
2

=

 r∑
n=0

∣∣∣∣∣∣ 1

λn
√

n + 1

∣∣∣∣∣∣2 |λnan − bn|
2(n + 1) +

s∑
n=r+1

∣∣∣∣∣∣ 1

λn
√

n + 1

∣∣∣∣∣∣2 |bn|
2(n + 1)


1
2

6

 r∑
n=0

M2|λnan − bn|
2(n + 1) +

s∑
n=r+1

M2|bn|
2(n + 1)


1
2

= M

 r∑
n=0

|λnan − bn|
2(n + 1) +

s∑
n=r+1

|bn|
2(n + 1)


1
2

< M · ε.

When r > s, we have

Tλp − q =

r∑
n=0

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

λnanzn +

r∑
n=s+1

λnanzn −

s∑
n=0

bnzn

=

s∑
n=0

(λnan − bn)zn +

r∑
n=s+1

λnanzn

=

s∑
n=0

(λnan − bn) ·
√

n + 1 ·
zn

√
n + 1

+

r∑
n=s+1

λnan ·
√

n + 1 ·
zn

√
n + 1

. (5.7)

For any ε > 0, if p, q satisfy that ‖Tλp − q‖D2 < ε, by (5.7), we obtain

‖Tλp − q‖D2

=

 s∑
n=0

|λnan − bn|
2(n + 1) +

r∑
n=s+1

|λnan|
2(n + 1)


1
2

< ε. (5.8)

Take p0 ∈ P ⊂ H2 to be the function defined by

p0(z) =

s∑
n=0

bn

λn
zn,

it is easy to get that

Tλp0(z) =

s∑
n=0

bnzn = q(z),
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where q ∈ P ⊂ D2. Thus, we obtain

p − p0 =

r∑
n=0

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

anzn +

r∑
n=s+1

anzn −

s∑
n=0

bn

λn
zn

=

s∑
n=0

(
an −

bn

λn

)
zn +

r∑
n=s+1

anzn

=

s∑
n=0

λnan − bn

λn
zn +

r∑
n=s+1

1
λn
λnanzn. (5.9)

By (5.8) and (5.9), we get

‖p − p0‖H2 =

 s∑
n=0

∣∣∣∣∣λnan − bn

λn

∣∣∣∣∣2 +

r∑
n=s+1

∣∣∣∣∣λnan

λn

∣∣∣∣∣2


1
2

=

 s∑
n=0

∣∣∣∣∣∣ 1

λn
√

n + 1

∣∣∣∣∣∣2 |λnan − bn|
2(n + 1) +

r∑
n=s+1

∣∣∣∣∣∣ 1

λn
√

n + 1

∣∣∣∣∣∣2 |λnan|
2(n + 1)


1
2

6

 s∑
n=0

M2|λnan − bn|
2(n + 1) +

r∑
n=s+1

M2|λnan|
2(n + 1)


1
2

= M

 s∑
n=0

|λnan − bn|
2(n + 1) +

r∑
n=s+1

|λnan|
2(n + 1)


1
2

< M · ε.

Therefore, the coefficient multiplier Tλ : H2 → D2 is Hyers–Ulam stable.
Necessity. Suppose that Tλ : H2 → D2 is stable with Hyers–Ulam stability constant K. For any

ε > 0, f ∈ H2, g ∈ D2 and f , g satisfy ‖ Tλ f − g ‖D26 ε, then exists f0 ∈ H2 and K > 0 such
that Tλ f0 = g and ‖ f0 − f ‖H2 < Kε. If f = zn

λn
√

n+1
for any nonnegative integer n, g = 0, ε = 1, we

have ‖ Tλ f − g ‖D2=
∥∥∥∥ zn
√

n+1

∥∥∥∥
D2
6 1 = ε. Then exists f0 ∈ H2 such that Tλ f0 = 0 and ‖ f0 − f ‖H2 =∥∥∥∥ f0 −

zn

λn
√

n+1

∥∥∥∥
H2
< K · 1 = K. Thus, we have ‖ f ‖H2 − ‖ f0‖H2 < K. We obtain that ‖ f ‖H2 < ‖ f0‖H2 + K.

Therefore,
∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ ‖zn‖H2 < ‖ f0‖H2 +K. We obtain that
∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ < ‖ f0‖H2 +K. Since n is any nonnegative

integer, we get that the sequence
{

1
λn
√

n+1

}
is bounded. The proof is complete. �

Next, we show that the best constant of Hyers–Ulam stability of the coefficient multiplier Tλ : H2 →

D2 exists.
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Theorem 5.5. Suppose that λ = {λn}, the coefficient multiplier Tλ : H2 → D2 is Hyers–Ulam stable,

then KTλ = sup
{∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ : n > 0
}

and KTλ is a HUS constant of Tλ.

Proof. Since the coefficient multiplier Tλ : H2 → D2 is Hyers–Ulam stable, then for any ε > 0,
f ∈ H2, g ∈ D2 and f , g satisfy ‖ Tλ f − g ‖D26 ε, then exists f0 ∈ H2 and K > 0 such that
Tλ f0 = g and ‖ f0 − f ‖H2 < Kε. For f = zn

λn
√

n+1
, g = 0, ε = 1, where n is any nonnegative integer,

we have ‖ Tλ f − g ‖D2=
∥∥∥∥ zn
√

n+1

∥∥∥∥
D2

= 1 6 ε, then exists K > 0, f0 = 0 ∈ H2 such that Tλ f0 = 0 = g

and ‖ f0 − f ‖H2 =
∥∥∥∥0 − zn

λn
√

n+1

∥∥∥∥
H2

=
∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ ‖zn‖H2 =
∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ < Kε = K · 1 = K. Thus, we have∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ < K and we obtain that sup
{∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ : n > 0
}
6 K. From the proof of Theorem 5.4, we know

that M = sup
{∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ : n > 0
}

is a HUS constant. Therefore, KTλ = sup
{∣∣∣∣ 1
λn
√

n+1

∣∣∣∣ : n > 0
}
. We obtain

that KTλ is a HUS constant of Tλ. �

Next, several examples are given to illustrate the results of the above two theorems.

Example 5.6. We consider the sequence λ = {λn}, where λn = 2i
√

n+1
, n is nonnegative integer. We

obtain that the sequence
{

1
λn
√

n+1

}
is bounded. By Theorem 5.4, we obtain that Tλ : H2 → D2 is

Hyers–Ulam stable. By Theorem 5.5, the best HUS constant of Tλ is 1
2 .

Example 5.7. Take the sequence λ = {λn}, where λn = 2
√

n+1
+ 3
√

n+1
i, n is nonnegative integer. It

is evident that the sequence
{

1
λn
√

n+1

}
is bounded; by Theorem 5.4, we obtain that Tλ : H2 → D2 is

Hyers–Ulam stable. By Theorem 5.5, the best HUS constant of Tλ is 1
√

13
.

6. The coefficient multipliers from Dirichlet space to Hardy space with Hyers–Ulam stability

In this section, by a duality argument, we have the following main results concerning the coefficient
multipliers from Dirichlet spaceD2 to Hardy space H2. We omit the proofs of them. Several examples
are given to illustrate the results of the following main results.

Theorem 6.1. If a sequence {λn} satisfies λn√
n+1

= O(1), then {λn} ∈ (D2,H2).

Theorem 6.2. Suppose that λ = {λn} satisfies λn√
n+1

= O(1), then the coefficient multiplier Tλ : D2 →

H2 is Hyers–Ulam stable if and only if the sequence
{ √

n+1
λn

}
is bounded.

Theorem 6.3. Suppose that λ = {λn}, the coefficient multiplier Tλ : D2 → H2 is Hyers–Ulam stable,

then KTλ = sup
{∣∣∣∣ √n+1

λn

∣∣∣∣ : n > 0
}

and KTλ is a HUS constant of Tλ.

Next, several examples are given to illustrate the results of the above theorems.

Example 6.4. Take the sequence λ = {λn}, where λn = 2i
√

n+1
, n is nonnegative integer. We obtain

that the sequence
{

λn√
n+1

}
is bounded. By Theorem 6.1, we have

{
2i
√

n+1

}∞
n=0
∈ (D2,H2). Since

{ √
n+1
λn

}
is

unbounded, by Theorem 6.2, we obtain that Tλ : D2 → H2 is not Hyers–Ulam stable.
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Example 6.5. We consider the sequence λ = {λn}, where λn =
√

n + 5, n is nonnegative integer. It
is evident that the sequence

{
λn√
n+1

}
is bounded; by Theorem 6.1, we have {

√
n + 5}∞n=0 ∈ (D2,H2).

Since
{ √

n+1
λn

}
is bounded, by Theorem 6.2 we obtain that Tλ : D2 → H2 is Hyers–Ulam stable. By

Theorem 6.3, the best HUS constant of Tλ is
√

5
5 .

Example 6.6. Take the sequence λ = {λn}, where λn = 5
√

n + 1 + 12i
√

n + 1, n is nonnegative integer.
We get that the sequence

{
λn√
n+1

}
is bounded. By Theorem 6.1, we have {λn} ∈ (D2,H2). Since

{ √
n+1
λn

}
is bounded, by Theorem 6.2 we obtain that Tλ : D2 → H2 is Hyers–Ulam stable. By Theorem 6.3, the
best HUS constant of Tλ is 1

13 .

Example 6.7. We consider the sequence λ = {λn}, where λn =
5√n + 1, n is nonnegative integer. It is

evident that the sequence
{

λn√
n+1

}
is bounded; by Theorem 6.1, we have

{
5√n + 1

}∞
n=0
∈ (D2,H2). Since{ √

n+1
λn

}
is unbounded, by Theorem 6.2 we obtain that Tλ : D2 → H2 is not Hyers–Ulam stable.

Example 6.8. We consider the sequence λ = {λn}, where λn =
5√n + 1 + i 7√n + 1, n is nonnegative

integer. It is evident that the sequence
{

λn√
n+1

}
is bounded; by Theorem 6.1, we have {λn} ∈ (D2,H2).

Since
{ √

n+1
λn

}
is unbounded, by Theorem 6.2 we obtain that Tλ : D2 → H2 is not Hyers–Ulam stable.

7. Conclusions

In our work, we investigate the Hyers–Ulam stability of the coefficient multipliers on Hardy
space H2 and Dirichlet space D2. We also investigate the Hyers–Ulam stability of the coefficient
multipliers between Dirichlet and Hardy spaces. These results show that the Hyers–Ulam stability of
the coefficient multipliers Tλ on Hilbert spaces of analytic functions depends on the boundedness of
a particular sequence associated with the sequence λ = {λn}. When Tλ is Hyers–Ulam stable, these
results also show that the best constant of Hyers–Ulam stability of the coefficient multiplier Tλ exists
under different circumstances.

Use of AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The author would like to thank the referees for many valuable comments and suggestions that helped
to improve the presentation and quality of this article. This work is supported by the Fundamental
Science Research Projects of Shanxi Province (202203021211110), China.

Conflict of interest

The author declares no conflict of interest.

AIMS Mathematics Volume 9, Issue 5, 12550–12569.



12568

References

1. P. L. Duren, On the multipliers of Hp spaces, Proc. Amer. Math. Soc., 22 (1969), 24–27.
https://doi.org/10.1090/S0002-9939-1969-0241651-X

2. Z. Eidinejad, R. Saadati, T. Allahviranloo, F. Kiani, S. Noeiaghdam, U. Fernandez-Gamiz,
Existence of a unique solution and the Hyers–Ulam–H–Fox stability of the conformable fractional
differential equation by matrix-valued fuzzy controllers, Complexity, 2022 (2022), 5630187.
https://doi.org/10.1155/2022/5630187

3. G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals. II, Math. Z., 34 (1932),
403–439. https://doi.org/10.1007/BF01180596

4. O. Hatori, K. Kobayasi, T. Miura, H. Takagi, S.-E. Takahasi, On the best constant of Hyers–Ulam
stability, J. Nonlinear Convex Anal., 5 (2004), 387–393.

5. G. Hirasawa, T. Miura, Hyers–Ulam stability of a closed operator in a Hilbert space, Bull. Korean
Math. Soc., 43 (2006), 107–117. https://doi.org/10.4134/BKMS.2006.43.1.107

6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27
(1941), 222–224. https://doi.org/10.1073/pnas.27.4.222

7. V. Keshavarz, M. T. Heydari, D. R. Anderson, Hyers–Ulam stabilities for mth differential operators
on H2

β , Chaos Soliton. Fract., 179 (2024), 114443. https://doi.org/10.1016/j.chaos.2023.114443

8. D. Luo, T. Abdeljawad, Z. Luo, Ulam–Hyers stability results for a novel nonlinear nabla
Caputo fractional variable-order difference system, Turkish J. Math., 45 (2021), 456–470.
https://doi.org/10.3906/mat-2008-53

9. D. Luo, Z. Luo, Existence and Hyers–Ulam stability results for a class of fractional order delay
differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231–1248.
https://doi.org/10.1515/ms-2017-0427

10. D. Luo, X. Wang, T. Caraballo, Q. Zhu, Ulam–Hyers stability of Caputo-type fractional fuzzy
stochastic differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 121 (2023),
107229. https://doi.org/10.1016/j.cnsns.2023.107229

11. T. Macgregor, K. Zhu, Coefficient multipliers between Bergman and Hardy spaces, Mathematika,
42 (1995), 413–426. https://doi.org/10.1112/S0025579300014698

12. M. Mateljevic, M. Pavlovic, Multipliers of Hp and BMOA, Pac. J. Math., 146 (1990), 71–84.
https://doi.org/10.2140/pjm.1990.146.71

13. T. Miura, G. Hirasawa, S.-E. Takahasi, Ger-type and Hyers–Ulam stabilities for the first-order
linear differential opetators of entire functions, Int. J. Math. Math. Sci., 2004 (2004), 1151–1158.
https://doi.org/10.1155/s0161171204304333

14. T. Miura, G. Hirasawa, S.-E. Takahasi, Stability of multipliers on Banach algebras, Int. J. Math.
Math. Sci., 2004 (2004), 2377–2381. https://doi.org/10.1155/s0161171204402324
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