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1. Introduction

Every outbreak of infectious diseases will endanger people’s lives and have extremely negative
impacts on social economy. For example, the COVID-19 broke out in 2019 and swept the world. By
May 3, 2023, the number of confirmed cases in the world was close to 765 million, of which more
than 6.92 million people died due to infection [1]. Because of the fast mutation of the virus and the
inability to develop effective drugs in a timely manner, isolation is considered a valid approach to
reduce the spread of contagious diseases [2]. People can take practical and feasible measures such as
self isolation to prevent the rapid spread of the disease, so as to reduce the pressure of the medical
department and cause the infected people obtain effective treatment. However, the policy of isolation
has also had some negative effects, which will lead to recession in the economy to varying degrees
and unemployment due to reduced demand for labor. Hence, it is an interesting topic to find isolation
strategies to prevent the further development of infectious diseases and minimize the negative impact
of the epidemics.

The epidemic model plays a crucial role in countering infectious diseases. It incorporates various
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factors that affect the spread of diseases into the dynamic system to deeply understand the transmission
mechanism of diseases, so that the potential impact of different factors can be better evaluated. Isolation
is a very effective measure of controlling disease [3–7]. In [7], the authors have discussed a SIQRS
model with isolation as the following form,

dS t

dt
= Λ − µS t − βS tIt + r1Rt,

dIt

dt
= βS tIt − (α1 + δ + µ + γ1)It,

dQt

dt
= δIt − (µ + α2 + γ2)Qt,

dRt

dt
= α1It + α2Qt − (µ + r1)Rt,

(1.1)

where S t, It, Qt and Rt represent the numbers of the susceptible, the infected, isolated, and the removed
people, respectively. Λ denotes the recruitment rate due to immigration, µ is the natural mortality,
β stands for the disease transmission rate, r1 shows the rate of the recovered who lost immunity and
returns to the susceptible, α1 and α2 express the cure rates of the infected It, and the isolated Qt to Rt.
δ indicates the isolation rate of the infected. γ1 and γ2 mean the disease-caused mortality in classes It

and Qt. These parameters are assumed to be positive. To facilitate writing, let a1 = α1 + δ+ µ+ γ1 and
a2 = µ + α2 + γ2.

Various systems in life, including infectious diseases, will inevitably be disturbed by stochastic
factors, which will alter the trajectory of the system more or less. Thus, the epidemic models with
stochastic factors have been discussed widely due to their more applicability and richer research
contents [4,8–12]. White noise characterized by Brownian motion is a common stochastic disturbance,
which is often introduced into infectious disease models. In addition, color noise represented by
Markov chain is another important stochastic factor, which can portray the switching between different
environments, states, or temperatures [12–15]. In this paper, we will discuss the above epidemic model
containing these two types of stochastic noise.

In epidemiology, the incidence rate shows the cases of second-generation infected persons per unit
time. In many literatures, the incidence function used in epidemic models is the bilinear function
denoted by βS I [11, 16, 17]. This function is based on the fact that the population is evenly mixed and
everyone is equally likely to be infected. Owing to this assumption, the nonlinear incidence rates have
a wider application and have attracted a large number of scholars to study [10, 12, 14, 18–20]. The
authors have discussed a SIQS model with the incidence rate βS I

1+rI and obtained a value RS to determine
the extinction and persistence of the model [19]. Guo-Luo have investigated a hybrid SIR model
with Beddington-DeAngelis function [14] and the authors have studied the epidemic model with the
incidence rate β f (S )g(I) [10]. When incorporating random factors above and the nonlinear incidence
rate, (1.1) becomes

dS t =

[
Λ(θt) − µ(θt)S t −G(S t, It, θt)It + r1(θt)Rt

]
dt + σ1(θt)S tdW (1)

t ,

dIt =
[
G(S t, It, θt)It − a1(θt)It

]
dt + σ2(θt)ItdW (2)

t ,

dQt =
[
δ(θt)It − a2(θt)Qt

]
dt + σ3(θt)QtdW (3)

t ,

dRt =[α1(θt)It + α2(θt)Qt − (µ(θt) + r1(θt))Rt]dt + σ4(θt)RtdW (4)
t ,

(1.2)
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where W ( j)
t , j = 1, 2, 3, 4 are mutually independent Brownian motion defined on the complete space

(Ω,F, {F}t,P). σ j(l), j = 1, · · · , 4, l = 1, · · · ,M express the intensities of stochastic disturbances and
{θt}t≥0 denotes the continuous time Markov chain, which is independent of W (l)

t , taking values in the
state space S = {1, 2 · · · ,M} and the generator Q = (γi j)M×M satisfies

P(θt+ε = l|θt = j) =

 γ jlε + o(ε), i f j , l,

1 + γ j jε + o(ε), i f j = l,

for ε ↓ 0. γ jl > 0 for j , l and
∑M

l=1 γ jl = 0 for any j ∈ S. The general incidence function G(S , I, θ) has
the following assumption:
Assumption 1. For the variables S and I, the function G(S , I, θ) is locally Lipschitz continuous. For
each l ∈ S, G(S , I, l) is non-increasing in I and non-decreasing in S with G(0, I, l) = 0. Moreover, the
function G is continuous uniformly at I = 0, that is

lim
I→0

sup
S≥0,l∈S

{|G(S , I, l) −G(S , 0, l)|} = 0. (1.3)

Assume further that there exist positive constants c(l) and c1(l) such that ∂G(S ,I,l)
∂S ≤ c(l) and ∂G(S ,I,l)

∂I ≥

−c1(l) for any I and l ∈ N . Therefore, G(S , I, l) ≤ c(l)S holds due to G(0, I, l) = 0.
For the incidence function G(S , I, l)I above, it contains many types that appear in other literature,

such as the bilinear form β(l)S I, saturated rate β(l)S I
1+aI , the rate β(l)S I

m+S , Beddington-DeAngelis rate
β(l)S I

1+m1(l)S +m2(l)I and other forms.
As we know, besides the contact spread of disease, there is also a vertical transmission, in which

the disease is transmitted from the infected mother to the newborn. Vertical transmission is considered
as an important mode of AIDS transmission. Therefore, many scholars have discussed the epidemic
models introducing the vertical transmission [21–24]. The authors in [24] have concerned a SIR model
with the birth rate b and vertical transmission rate p from the infected mother. We utilize these symbols
to express the same meanings. Assume that the newborns of the classes S , Q, R all become susceptible
and µ > b in this paper.

In view of the above discussion, we study the following stochastic hybrid SIQRS model with
nonlinear incidence rate and vertical transmission

dS t =

[
Λ(θt) − (µ(θt) − b(θt))S t −G(S t, It, θt)It + qb(θt)It+

b(θt)Qt + (r1(θt) + b(θt))Rt

]
dt + σ1(θt)S tdW (1)

t ,

dIt =
[
G(S t, It, θt)It + pb(θt)It − a1(θt)It

]
dt + σ2(θt)ItdW (2)

t ,

dQt =
[
δ(θt)It − a2(θt)Qt

]
dt + σ3(θt)QtdW (3)

t ,

dRt =[α1(θt)It + α2(θt)Qt − (µ(θt) + r1(θt))Rt]dt + σ4(θt)RtdW (4)
t .

(1.4)

These factors can reflect different aspects of actual problems and increase the difficulty of study.
Since the term Rt appears in the first equation in (1.4), we cannot omit Rt to reduce the dimension of
the model as in [9] and need to study the system with four components. This paper is constructed as
follows: Section 2 gives the existence and uniqueness of positive solutions of model (1.4) and some
properties, which are used later. Section 3 presents the major results of the paper, that is, we obtain
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a threshold which can be used to decide the extinction of model (1.4) and the existence of invariant
measure. Section 4 aims to prove the major results of Theorem 3.1, and Section 5 provides some
remarks and compares our results with those of other studies. Section 6 constructs some examples and
presents numerical simulations to test the results. Section 7 summarizes this article.

2. Preliminaries

In this paper, R4
+ := {(a1, a2, a3, a4)|ak ≥ 0, k = 1, 2, 3, 4} and R4,o

+ := {(a1, a2, a3, a4)|ak > 0,
k = 1, 2, 3, 4}. Es,i,q,r,l represents the expectation and Ps,i,q,r,l indicates the probability with initial value
(s, i, q, r, l) ∈ R4

+ × S. Assume that α̌ := maxl∈S{α(l)}, α̂ := minl∈S{α(l)} and α1 ∨ α2 = max{α1, α2}.
Similar symbols for other variables are defined identically. Take into account the general hybrid
stochastic differential equations(short for SDEs),

dXt = f1(Xt, θt)dt + f2(Xt, θt)dW(t).

For the function V(Xt, θt), the operator LV(X, l) is defined by

LV(X, l) = f T
1 Vx(X, l) +

1
2

tr( f T
2 Vxx(X, l) f2) +

M∑
k=1

γlkV(X, k). (2.1)

Then the generalized Itô’s formula is presented as

V(Xt, θt) =V(X0, θ0) +

∫ t

0
LV(Xs, θs)ds +

∫ t

0
VT

x (Xs, θs) f2(Xs, θs)dW(s)

+

∫ t

0

∫
R

[V(Xs, θ0 + ν(θs, l)) − V(Xs, θs)]µ(ds, dl).

We recommend the Theorem 1.45 in [25] to grasp the details on the measure µ(ds, dl) and the function
ν.

We are going to lay out the following theorem to get the properties of the solution to model (1.4).

Theorem 2.1. For any initial condition (S 0, I0,Q0,R0, θ0) ∈ R4
+ × S in (1.4), the following statements

hold true: (1) model (1.4) has the unique solution (S t, It,Qt,Rt, θt), which stay in R4
+ × S with

probability 1. In addition, the five-component solution (S t, It,Qt,Rt, θt) is the Markov-Feller process.
(2) For any 0 < α < ϑ < 1, there exist constants A1 > 0 and A2 > 0 satisfying

E[(S t + It + Rt + Qt)1+ϑ + S −αt ] ≤ [(S 0 + I0 + R0 + Q0)1+ϑ + S −α0 ]e−A1t +
A2

A1
. (2.2)

Proof. The solution must satisfy the changing characteristics of the model (1.4). We primarily pay
attention to (2) due to (1) is analogous to the proof of Theorem 2.2 in [26]. Construct the function
V1(S , I,Q,R) := (S + I + Q + R)1+ϑ + S −α and σ(l) := maxi=1,2,3,4{σi(l)}, then it has
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LV1(S , I,Q,R)

=(1 + ϑ)(S + I + R + Q)ϑ
[
Λ(l) − (µ(l) − b(l))(S + I + R + Q) − γ1(l)I

− γ2(l)Q
]

+
ϑ(1 + ϑ)

2
(S + I + Q + R)ϑ−1[σ2

1(l)S 2 + σ2
2(l)I2

+ σ2
3(l)Q2 + σ2

4(l)R2] − αS −α−1[Λ(l) − (µ(l) − b(l))S −G(S , I, l)I

+ qb(l)I + (r1(l) + b(l))R + b(l)Q
]
+
α(1 + α)σ2

1(l)
2

S −α

≤(1 + ϑ)(S + I + R + Q)ϑ[Λ(l) − (µ(l) − b(l))(S + I + R + Q)

+
ϑσ2(l)

2
(S + I + R + Q)] − αΛ(l)S −α−1

+ α(µ(l) − b(l))S −α + αc(l)S −αI +
α(1 + α)

2
σ2

1(l)S −α.

Choose sufficiently small α > 0 such that A1 := minl∈S{µ(l) − b(l) − ασ2(l)
2 } > 0, ∀l ∈ S. Because

S −αI ≤
α3

1 + α3
(S −α)

1+α3
α3 +

1
1 + α3

I1+α3 ≤
α3

1 + α3
S
−α(1+α3)

α3 + (S + I + Q + R)1+α3 ,

for 0 < α < α3 < ϑ < 1, we have

LV1(S , I,Q,R) ≤(1 + ϑ)Λ(l)(S + I + R + Q)ϑ − A1(1 + ϑ)(S + I + R + Q)1+ϑ

+ αS −α{−Λ(l)S −1 + µ(l) − b(l) +
(1 + α)σ2

1(l)
2

}

+ αc(l)[
α3

1 + α3
S −

α
α3
−α

+ (S + I + R + Q)1+α3]

≤(1 + ϑ)Λ̌(S + I + R + Q)ϑ − A1(1 + ϑ)(S + I + R + Q)1+ϑ

+ αS −α
{
− Λ̂S −1 + µ̌ − b̂ +

(1 + α)σ̌2
1

2
+

α3č
1 + α3

S −
α
α3

}
+ αč(S + I + R + Q)1+α3 .

Hence, owing to α
α3
< 1 and α3 < ϑ, it yields LV1(S , I,Q,R) + A1V1(S , I,Q,R) ≤ A2, where

A2 = sup
(S ,I,Q,R)∈R4

+

{
(1 + ϑ)Λ̌(S + I + R + Q)ϑ − A1ϑ(S + I + R + Q)1+ϑ

+ αS −α{−Λ̂S −1 + µ̌ − b̂ +
(1 + α)σ̌2

1

2
+

čα3

1 + α3
S −

α
α3 }

+ αč(S + I + R + Q)1+α3 + A1S −α
}
< ∞.

Calculating eA1tV1(S + I + R + Q) by the Itô’s formula leads to

L(eA1tV1) = A1eA1tV1 + eA1tLV1 ≤ A2eA1t.
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Integrating from 0 to t and taking expectation, it has

Es,i,q,rV1(S , I,Q,R) ≤ [(S 0, I0,Q0,R0)1+ϑ + S −α0 ]e−A1t +
A2

A1
.

This proves the assertion. �

3. Main results

In this section, we will present the main conclusions of this paper. Before this, we briefly discuss
the generation of the threshold of disease extinction in model (1.4).

Consider the first equation in model (1.4) on the boundary It = 0, Qt = 0 and Rt = 0, we have

dS̃ t =
[
Λ(θt) − (µ(θt) − b(θt))S̃ t

]
dt + σ1(θt)S̃ tdW (1)

t . (3.1)

For the initial value s of Eq (3.1), let S̃ s
t be its solution. Direct calculation to the non-negative

function S̃ − ln S̃ − 1 and exploiting the results in [27] say that non-degenerate system (3.1) is positive
recurrent, thus, the unique invariant measure χ0(·, ·) for (3.1) on [0,∞)×S satisfying χ0([0,∞),S) = 1
exists. Moreover, the stationary distribution π of {θt}t≥0 is the marginal distribution of χ0(·, ·). Due to
Theorem 2.1, it has ∑

l∈S

∫
(0,∞)

s1+ϑχ0(ds, l) < ∞.

Hence, the value

∆ :=
∑
l∈S

∫
(0,∞)

[
G(s, 0, l) − (a1(l) − pb(l)) −

σ2
2(l)
2

]
χ0(ds, l) (3.2)

is well-defined.
Using the Itô’s formula to ln It and dividing by t, one has

ln It

t
−

lni
t

=
1
t

∫ t

0
G(S s, Is, θs)ds −

1
t

∫ t

0

(
a1(θs) − pb(θs) +

σ2
2(θs)
2

)
ds +

∫ t

0
σ2(θs)dW (2)

s

t
. (3.3)

If lim supt→∞
ln It

t < 0, then limt→∞ It = 0. Using the Fatou lemma implies limt→∞ Qt = 0 and
limt→∞ Rt = 0. Thus, for t sufficiently large, It ≈ 0 and S t will approach S̃ t on the boundary, then

1
t

∫ t

0
G(S s, Is, θs)ds ≈

1
t

∫ t

0
G(S̃ s, 0, θs)ds

and lim supt→∞
ln It

t will be near to the threshold ∆.
Sketchily, when ∆ < 0, for the initial condition (s, i, q, r, l) with small enough i, it yields

lim supt→∞
ln It

t ≈ ∆ < 0, that is, the disease will die out. Conversely, when ∆ > 0, lim supt→∞
ln It

t ≈

∆ > 0 will let It be not small in the long term. This procedure seems simple, but the strict proof is not
simple and needs scrupulous treatment.

Now, we present our main conclusions, in which ∆ will be proved to distinguish different behaviors
of disease in model (1.4).
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Theorem 3.1. For ∆ in (3.2), we have
(1). When ∆ < 0, the solution (S t, It,Qt,Rt, θt) of model (1.4) with initial condition (s, i, q, r, l) ∈

R4,o
+ × S has that

lim
t→∞

ln It

t
= ∆, a.s., (3.4)

which means the disease will become extinct in exponential form with rate ∆.
(2). For model (1.4), when ∆ > 0, there exists a constant ∇ > 0 such that

lim
t→∞

1
t

∫ t

0
Iudu ≥ ∇, a.s., (3.5)

which signifies the disease It is persistent in the mean and the model has the unique invariant measure
χ∗.

4. The proof of Theorem 3.1

In this section, we will prove the two conclusions of Theorem 3.1, and implement them separately
in two subsections.

4.1. The proof of Part 1 of Theorem 3.1

We shall first prove the Part 1 in Theorem 3.1 in this subsection. Let’s start with the following
lemma.

Lemma 4.1. If ∆ < 0, for any K > 0 and ε > 0, the constant k1 > 0 can be found so that for any initial
value (s, i, q, r, l) ∈ [0,K] × [0, k1]3 × S(where [0, k1]3 denotes [0, k1] × [0, k1] × [0, k1]), it yields

P
{
lim
t→∞

It = 0
}
≥ 1 − ε, P

{
lim
t→∞

Qt = 0
}
≥ 1 − ε, P

{
lim
t→∞

Rt = 0
}
≥ 1 − ε, a.s. (4.1)

Proof. The idea of this proof is that when the initial values of It, Qt, and Rt are all very small and
under the condition of ∆ < 0, It, Qt, and Rt shall always be small enough. Define a constant ν by
ν = min{−∆, â2 +

σ̂2
3

2 , µ̂ + r̂1 +
σ̂2

4
2 }. Thus, ν > 0. For S̃ t in (3.1), due to the existence of terms qb(θt)I,

b(θt)Q and (r1(θt) + b(θt))R in the first equation of (1.4), we can’t use the comparison theorem to get
S t ≤ S̃ t with the same initial condition. Take into account the equation

dS̃ (k)
t =

[
Λ(θt) − (µ(θt) − b(θt))S̃

(k)
t + [(q + 2)b(θt) + r1(θt)]k

]
dt + σ1(θt)S̃

(k)
t dW (1)

t . (4.2)

Let S̃ (k)
t be the solution of (4.2) with initial condition s ∈ [0,K]. Similar to (3.1), (4.2) admits the

unique invariant measure denoted by χk. Lemma 3.1 in [28] says that there is k0 satisfying ∆̃ ≤ ∆ + ν
9

with

∆̃ :=
∑
l∈S

∫
(0,∞)

[
G(s, 0, l) − (a1(l) − pb(l)) −

σ2
2(l)
2

]
χk0(ds, l). (4.3)

Due to (1.3), for any s > 0, l ∈ S and 0 ≤ i ≤ k0, it has

|G(s, i, l) −G(s, 0, l)| ≤
ν

9
. (4.4)
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Consider (4.2) with k replaced by k0 above, by virtue of the ergodicity of S̃ (k0)
t , one has

lim
t→∞

1
t

∫ t

0

(
G(S̃ (k0)

u , 0, θu) − (a1(θu) − pb(θu)) −
σ2

2(θu)
2

)
du = ∆̃. (4.5)

Thus, there exist constants sufficiently small ε > 0 and T1 > 0 so that PK,l(Ω1) ≥ 1 − ε
4 for ∀t ≥ T1,

where

Ω1 :=
{
ω ∈ Ω :

1
t

∫ t

0
(G(S̃ (k0)

u , 0, θu) − (a1(θu) − pb(θu)) −
σ2

2(θu)
2

)du ≤ ∆̃ +
ν

9

}
.

Here (K, l) in symbol PK,l denotes the initial condition of (4.2) with k0. For s ≤ K, t ≥ 0, it has
S̃ (k0)

s,l (t) ≤ S̃ (k0)
K,l (t) by the uniqueness of solution. This makes Ps,l(Ω1) ≥ 1 − ε

4 .

Assume M(k)
t :=

∫ t

0
σk(θu)dW (k)

u , k = 1, 2, 3, 4. According to limt→∞
M(k)

t
t = 0, a.s., then there is

T2 > 0 so that ∀t ≥ T2, P(Ω2) ≥ 1 − ε
4 with

Ω2 := {ω ∈ Ω :
|M(k)

t |

t
≤
ν

9
, k = 1, 2, 3, 4}. (4.6)

Assume T = max{T1,T2}, let

Ω3 := {ω ∈ Ω :
∫ T

0
G(S u, 0, θu)du ≤ M1}

and

Ω4 :=
{
ω ∈ Ω :

∣∣∣∣∣∣
∫ t

0
σk(θu)dW (k)

u

∣∣∣∣∣∣ ≤ M1, k = 1, 2, 3, 4, ∀t ∈ [0,T ]
}
,

then Theorem 2.1 and the fact that G(S , I, l) ≤ čS lead to P(Ω3) ≥ 1 − ε
4 and P(Ω4) ≥ 1 − ε

4 for a
sufficiently large M1.

Let C1 := eM1 + δ̌e4M1T , choose the constant k1 > 0 to be small enough so that

k1

(
1 + e2M1 + C1 + C2 + α̌1e4M1T + α̌2C1e2M1T + C3

)
< k0, (4.7)

where the constants C2 > 0, C3 > 0 will be found in (4.17) and (4.20). Define a stopping time τ1 as

τ1 := inf{t > 0 : max{It,Qt,Rt} ≥ k0}.

By the expressions of It, Qt, Rt in (1.4) with initial data (I0,Q0,R0) = (i, q, r) ∈ [0, k1]3, using the
method of constant variation yields

It = i exp
{ ∫ t

0

[
G(S u, Iu, θu) −

(
a1(θu) − pb(θu) +

σ2
2(θu)
2

)]
du +

∫ t

0
σ2(θu)dW (2)

u

}
, (4.8)

Qt = Υ1(t)q + Υ1(t)
∫ t

0
δ(θu)IuΥ

−1
1 (u)du, (4.9)

and

Rt = Υ2(t)r + Υ2(t)
∫ t

0
(α1(θu)Iu + α2(θu)Qu)Υ−1

2 (u)du, (4.10)

AIMS Mathematics Volume 9, Issue 5, 12529–12549.



12537

where Υ1(t) = e−
∫ t

0 (a2(θv)+
σ2

3(θv)
2 )dv+

∫ t
0 σ3(θv)dW(3)

v , Υ2(t) = e−
∫ t

0 (µ(θv)+r1(θv)+
σ2

4(θv)
2 )dv+

∫ t
0 σ4(θv)dW(4)

v .
Therefore, by virtue of (4.8), we get with ω ∈ Ω3 ∩Ω4 and t ∈ [0,T ] that

It ≤ ie
∫ t

0 G(S u,0,θu)du+
∫ t

0 σ2(θu)dW(2)
u ≤ ie2M1 . (4.11)

For t ≤ T , the expressions of Υ1(t) and Υ2(t) with ω ∈ Ω4 result in

e−
∫ t

0 (a2(θv)+
σ2

3(θv)
2 )dv−M1 ≤ Υ1(t) ≤ e−

∫ t
0 (a2(θv)+

σ2
3(θv)

2 )dv+M1 ≤ eM1 ,

e−
∫ t

0 (µ(θv)+r1(θv)+
σ2

4(θv)
2 )dv−M1 ≤ Υ2(t) ≤ e−

∫ t
0 (µ(θv)+r1(θv)+

σ2
4(θv)

2 )dv+M1 ≤ eM1 .

Using the results above and (4.9), we get

Qt ≤ eM1q + eM1−
∫ t

0 (a2(θv)+
σ2

3(θv)
2 )dv

∫ t

0
δ̌ie2M1e

∫ u
0 (a2(θv)+

σ2
3(θv)

2 )dv+M1du ≤ eM1q + iδ̌e4M1T ≤ k1C1. (4.12)

In addition,

Rt ≤ eM1r + eM1

∫ t

0
(α̌1ie2M1 + α̌2k1C1)eM1du ≤ k1(eM1 + α̌1e4M1T + α̌2C1e2M1T ). (4.13)

Hence, for almost every ω ∈ ∩4
i=3Ωi and t ≤ T , (4.7) and (4.11)–(4.13) can deduce that

max{It,Qt,Rt} < k0, which implies T < τ1.
τ1 = ∞ will be proved next for almost every ω ∈ ∩4

l=1Ωl.
Observe that for S t = S̃ (k0)

0 = s in (1.4) and the Eq (4.2) with k replaced by k0, S t ≤ S̃ (k0)
t , ∀t < τ1 is

established due to max{It,Qt,Rt} < k0 and the comparison theorem. Thus, when t ∈ [T, τ1) and almost
every ω ∈ ∩4

l=1Ωl, we obtain from (4.4) and (4.8) that

It = i exp
{ ∫ t

0

[
G(S u, Iu, θu) −

(
a1(θu) − pb(θu) +

σ2
2(θu)
2

)]
du +

∫ t

0
σ2(θu)dW (2)

u

}
≤ i exp{

∫ t

0

[
G(S u, 0, θu) +

ν

9
−

(
a1(θu) − pb(θu) +

σ2
2(θu)
2

)]
du +

∫ t

0
σ2(θu)dW (2)

u }

≤ i exp{
∫ t

0

[
G(S̃ (k0)

u , 0, θu) +
ν

9
−

(
a1(θu) − pb(θu) +

σ2
2(θu)
2

)]
du +

∫ t

0
σ2(θu)dW (2)

u }

≤ ie∆̃t+ ν
9 t+ ν

9 t+ ν
9 t ≤ ie∆t+ 4ν

9 t ≤ ie−
5ν
9 t≤ k1.

(4.14)

For Qt on t ≥ T , (4.9) can be reorganized as

Qt = Υ1(t)
(
q +

∫ T

0
δ(θu)IuΥ

−1
1 (u)du

)
+ Υ1(t)

∫ t

T
δ(θu)IuΥ

−1
1 (u)du. (4.15)
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For the second term in (4.15), we get that

Υ1(t)
∫ t

T
δ(θu)IuΥ

−1
1 (u)du

=

∫ t

T
δ(θu)Iue−

∫ t
u (a2(θv)+

σ2
3(θv)

2 )dv+
∫ t

u σ3(θv)dW(3)
v du

≤i
∫ t

T
δ̌e−

5ν
9 ue−(â2+

σ̂2
3

2 )(t−u)+ ν
9 (t+u)du

≤iδ̌e−(â2+
σ̂2

3
2 )t+ ν

9 t
∫ t

T
e(â2+

σ̂2
3

2 −
4ν
9 )udu

≤
iδ̌

â2 +
σ̂2

3
2 −

4ν
9

e−
ν
3 t ≤ k1

δ̌

â2 +
σ̂2

3
2 −

4ν
9

e−
ν
3 t.

(4.16)

For the first term of (4.15), one has

Υ1(t)
(
q +

∫ T

0
δ(θu)IuΥ

−1
1 (u)du

)
≤e−

∫ t
0 (a2(θv)+

σ2
3(θv)

2 )dv+ ν
9 tq +

∫ T

0
iδ̌e2M1e−

∫ t
u (a2(θv)+

σ2
3(θv)

2 )dv+ ν
9 t+M1du

≤e−(â2+
σ̂2

3
2 −

ν
9 )t(q + iδ̌e3M1

∫ T

0
e(â2+

σ̂2
3

2 )udu)

≤e−(â2+
σ̂2

3
2 −

ν
9 )t

q + i
δ̌e3M1

â2 +
σ̂2

3
2

e(â2+
σ̂2

3
2 )T

 .
This as well as (4.16) results in

Qt ≤
iδ̌

â2 +
σ̂2

3
2 −

4ν
9

e−
ν
3 t + e−(â2+

σ̂2
3

2 −
ν
9 )t

q + i
δ̌e3M1

â2 +
σ̂2

3
2

e(â2+
σ̂2

3
2 )T

 ≤ k1C2e−
ν
3 t, (4.17)

for some constant C2 > 0.
Now, consider Rt in (4.10), one has

Rt = Υ2(t)
(
r +

∫ T

0
(α1(θu)Iu + α2(θu)Qu)Υ−1

2 (u)du
)

+ Υ2(t)
∫ t

T
(α1(θu)Iu + α2(θu)Qu)Υ−1

2 (u)du. (4.18)

For the second expression in (4.18), we have

Υ2(t)
∫ t

T
(α1(θu)Iu + α2(θu)Qu)Υ−1

2 (u)du

≤

∫ t

T
(α̌1ie−

5ν
9 u + α̌2k1C2e−

ν
3 u)e−

∫ t
u (µ(θv)+r1(θv)+

σ2
4(θv)

2 )dv+ ν
9 (u+t)du

≤e−(µ̂+r̂1+
σ̂2

4
2 −

ν
9 )t

∫ t

T
(α̌1ie−

5ν
9 u + α̌2k1C2e−

ν
3 u)e(µ̂+r̂1+

σ̂2
4

2 + ν
9 )udu

≤k1
α̌1

µ̂ + r̂1 +
σ̂2

4
2 −

4ν
9

e−
ν
3 t + k1

α̌2C2

µ̂ + r̂1 +
σ̂2

4
2 −

2ν
9

e−
ν
9 t.

(4.19)
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Similar to the first term in (4.15), we have from the first term in (4.18) that

Υ2(t)
(
r +

∫ T

0
(α1(θu)Iu + α2(θu)Qu)Υ−1

2 (u)du
)

≤e−(µ̂+r̂1+
σ̂2

4
2 −

ν
9 )t

(
r +

∫ T

0
[α̌1ie2M1e(µ̂+r̂1+

σ̂2
4

2 )ueM1 + α̌2C1k1e(µ̂+r̂1+
σ̂2

4
2 )ueM1]du

)
≤e−(µ̂+r̂1+

σ̂2
4

2 −
ν
9 )t(r + iα̌1e(µ̂+r̂1+

σ̂2
4

2 )T e3M1T + α̌2C1k1e(µ̂+r̂1+
σ̂2

4
2 )T eM1T ).

This result, combined with (4.19), leads to that

Rt ≤k1
α̌1

µ̂ + r̂1 +
σ̂2

4
2 −

4ν
9

e−
ν
3 t + k1

α̌2C2

µ̂ + r̂1 +
σ̂2

4
2 −

2ν
9

e−
ν
9 t

+ k1e−(µ̂+r̂1+
σ̂2

4
2 −

ν
9 )t(1 + α̌1e(µ̂+r̂1+

σ̂2
4

2 )T e3M1T + α̌2C1e(µ̂+r̂1+
σ̂2

4
2 )T eM1T )

≤C3k1e−
ν
9 t,

(4.20)

for some constant C3 > 0.
Let a positive integer n0 > T . By virtue of (4.7), (4.14), (4.17) and (4.20), it easy to get that for

t ∈ [0, τ1 ∧ n0) and almost every ω ∈ ∩4
l=1Ωl, It ≤ k1(e2M1 + 1) ≤ k0, Qt ≤ k1(C1 + C2) ≤ k0 and

Rt ≤ k1(eM + α̌1e4M1T + α̌2C1e2M1T + C3) ≤ k0.

Hence, max{It,Qt,Rt} ≤ k0 implies τ1 > n0. Due to n0 is arbitrary, we have τ1 = ∞, which means that
limt→∞

ln It
t ≤ −

5ν
9 < 0, limt→∞

ln Qt
t ≤ − ν3 < 0 and limt→∞

ln Rt
t ≤ −

ν
9 < 0. It’s easy to figure out that

P(∩4
l=1Ωl) ≥ 1 − ε. Therefore, (4.1) is proved. �

With Lemma 4.1, the following proof when ∆ < 0 is analogous to Section 2 of Theorem 2.2 in [28].
In this way, we have proved Part 1 of Theorem 3.1.

4.2. The proof of Part 2 in Theorem 3.1

Next, we will prove Part 2 in Theorem 3.1. We first prove the persistence of the disease in (1.4) by
taking advantage of a new way when ∆ > 1.

Let c̄ = (c(1), · · · , c(M))T (c(l) appears in Assumption 1 and K = diag(µ(1) − b(1), µ(2) −
b(2), · · · , µ(M) − b(M)), take into account the equation (K − Q)η = c̄, then it has a unique positive
solution (Theorem 2.10 in [25]). Assume that η = (η(1), η(2), · · · , η(M))T is its solution, then
(µ(l) − b(l))η(l) −

∑
j∈S γl jη( j) = c(l).

Let V2 := − ln I and V3 := 1{S̃≥S }(S̃ − S )(where 1 denotes the indicator function), then direct
calculation by the Itô’s formula to V2 + η(l)V3 and using the monotonicity of G(S , I, l) at S result in
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L(V2 + η(l)V3 − η̌I)

≤ −
1
I

[G(S , I, l)I − (a1(l) − pb(l))I] +
σ2

2(l)
2

+ 1S̃≥S

∑
j∈S

γl jη( j)(S̃ − S )

+ 1S̃≥Sη(l)[−(µ(l) − b(l))(S̃ − S ) + G(S , I, l)I]
+ 1S̃≥Sη(l)[−qb(l)I − b(l)Q − (r1(l) + b(l))R]

≤ −G(S̃ , 0, l) + G(S̃ , 0, l) −G(S , 0, l) + G(S , 0, l) −G(S , I, l)

+ (a1(l) − pb(l) +
σ2

2(l)
2

) + 1S̃≥S

∑
j∈S

γl jη( j)(S̃ − S )

+ 1S̃≥S [−η(l)(µ(l) − b(l))](S̃ − S ) + η(l)G(S , I, l)I
− η̌[G(S , I, l)I − (a1(l) − pb(l))I]

≤ −G(S̃ , 0, l) + 1S̃≥S [c(l) +
∑
j∈S

γl jη( j) − η(l)(µ(l) − b(l))](S̃ − S ))

+ G(S , 0, l) −G(S , I, l) + (a1(l) − pb(l) +
σ2

2(l)
2

) + η̌(a1(l) − pb(l))I

≤ −G(S̃ , 0, l) + (a1(l) − pb(l) +
σ2

2(l)
2

) + [č1 + η̌(ǎ1 − pb̂)]I.

(4.21)

Integrate for (4.21) and divide by t as well as take the limit, then the ergodicity of S̃ means

lim
t→∞

1
t

∫ t

0
Iudu ≥ lim

t→∞

1
t

∫ t

0

G(S̃ u, 0, θu) − (a1(θu) − pb(θu) +
σ2

2(θu)
2 )

č1 + η̌(ǎ1 − pb̂)
du ≥

∆

č1 + η̌(ǎ1 − pb̂)
.

In this way, we have proved the persistence of the disease. Next, we shall prove that model (1.4)
has an invariant probability measure.

Let V4 = V2+η(l)V3−η̌I, V5 = 1
1+α4

(S +I+Q+R)1+α4 , V6 = − ln S−ln Q−ln R and V̄ = H1V4+V5+V6,
where H1 > 0 and α4 ∈ (0, 1) will be detailed later. The continuity of V̄ leads to that there is a minimum
value V̄∗ such that Ṽ = V̄ − V̄∗ is non-negative.

Let σ(l) and A1 be the same as in Theorem 2.1, using the Itô’s formula to V5 and V6, one has

LV5 =(S + I + R + Q)α4[Λ(l) − (µ(l) − b(l))(S + I + R + Q) − γ1(l)I − γ2(l)Q]

+
α4

2
(S + I + R + Q)α4−1[σ2

1(l)S 2 + σ2
2(l)I2 + σ2

3(l)Q2 + σ2
4(l)R2]

≤Λ̌(S + I + R + Q)α4 −
(
µ(l) − b(l) −

α4σ
2(l)

2
)
(S + I + Q + R)α4+1

≤Λ̌(S + I + R + Q)α4 − A1(S + I + Q + R)α4+1,
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and
LV6 = −

1
S
[
Λ(l) − (µ(l) − b(l))S −G(S , I, l)I + qb(l)I + b(l)Q

+ (r1(l) + b(l))R
]
−

1
Q

[δ(l)I − a2(l)Q] +
σ2

1(l)
2

+
σ2

3(l)
2

−
1
R

[α1(l)I + α2(l)Q − (µ(l) + r1(l))R] +
σ2

4(l)
2

≤ −
Λ̂

S
+ µ̌ − b̂ + čI −

δ̂I
Q

+ ǎ2 −
α̂1I
R

+ µ̌ + ř1 +
σ̌2

1

2
+
σ̌2

3

2
+
σ̌2

4

2
.

Hence,

LṼ ≤H1[−G(S̃ , 0, l) + G(S , 0, l) −G(S , I, l) + (a1(l) − pb(l) +
σ2

2(l)
2

) + η̌(a1(l) − pb(l))I]

+ Λ̌(S + I + Q + R)α4 − A1(S + I + Q + R)α4+1

−
Λ̂

S
+ µ̌ − b̂ + čI −

δ̂I
Q

+ ǎ2 −
α̂1I
R

+ µ̌ + ř1 +
σ̌2

1

2
+
σ̌2

3

2
+
σ̌2

4

2

≤H1[−∆ + G(S , 0, l) −G(S , I, l) + η̌(a1(l) − pb(l))I] −
A1

2
(S + I + Q + R)α4+1

−
Λ̂

S
−
δ̂I
Q
−
α̂1I
R

+ K1 + H1[−G(S̃ , 0, l) + (a1(l) − pb(l) +
σ2

2(l)
2

) + ∆]

=:V7(S , I,Q,R, l) + H1[−G(S̃ , 0, l) + (a1(l) − pb(l) +
σ2

2(l)
2

) + ∆],

where
K1 := sup

(S ,I,Q,R)∈R4
+

{−
A1

4
(S + I + Q + R)α4+1 + Λ̌(S + I + Q + R)α4

+ µ̌ − b̂ + čI + ǎ2 + µ̌ + ř1 +
σ̌2

1

2
+
σ̌2

3

2
+
σ̌2

4

2
} < ∞.

From the assumption that G(S , I, l) is continuous uniformly at I = 0, hence, when I is sufficiently
small and H1 is sufficiently large, it has

−∆ + G(S , 0, l) −G(S , I, l) + η̌(a1(l) − pb(l))I < 0

and V7 ≤ −1.
Next, when S → 0+ or Q→ 0+ or R→ 0+, V7 ≤ −1 can be obtained due to the terms − Λ̂

S , − δ̂I
Q , − α̂1I

R .
Moreover, the term −A1

2 (S + I + Q + R)α4+1 leads to V7 ≤ −1 when S (orI,Q,R) → ∞. The detailed
proof process is similar to Theorem 4.1 in [29].

For the sufficiently small constant ε, define Dε = {(S , I,Q,R, l) ∈ R4
+ × S : ε ≤ S ≤ 1

ε
, ε ≤ I ≤

1
ε
, ε2 ≤ Q ≤ 1

ε2 , ε
2 ≤ R ≤ 1

ε2 }, it can be concluded from the above that V7 ≤ −1 in R4
+ × S\Dε.

Due to the compactness of the set Dε and continuity of the function V7(S , I,Q,R, l), we get that
there exists a constant K3 > 0 such that V7(S , I,Q,R, l) ≤ K3 for (S , I,Q,R, l) ∈ Dε × S. Therefore,

EṼ(S t, It,Qt,Rt, θt) − EṼ(S 0, I0,Q0,R0, θ0)
t

=
1
t

∫ t

0
ELṼ(S u, Iu,Qu,Ru, θu)du

≤
1
t

∫ t

0
EV7(S u, Iu,Qu,Ru, θu)du +

H1

t
E

∫ t

0
[−G(S̃ u, 0, θu) + (a1(θu) − pb(θu) +

σ2
2(θu)
2

) + ∆]du.
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The ergodicity of S̃ and θt reaches to

lim
t→∞

1
t

∫ t

0
[G(S̃ u, 0, θu) − (a1(θu) − pb(θu) +

σ2
2(θu)
2

)]du = ∆.

From the non-negativity of Ṽ and taking the limit, we get

0 ≤ lim inf
t→∞

1
t

∫ t

0
EV7(S u, Iu,Qu,Ru, θu)du

= lim inf
t→∞

1
t

∫ t

0
[EV7(S u, Iu,Qu,Ru, θu)I(S u,Iu,Qu,Ru,θu)∈Dε

+ EV7(S u, Iu,Qu,Ru, θu)I(S u,Iu,Qu,Ru,θu)∈Dc
ε
]du

≤ lim inf
t→∞

1
t

∫ t

0
[K3P((S u, Iu,Qu,Ru, θu) ∈ Dε) − P((S u, Iu,Qu,Ru, θu) ∈ Dc

ε)]du

=(1 + K3) lim inf
t→∞

1
t

∫ t

0
P((S u, Iu,Qu,Ru, θu) ∈ Dε)du − 1,

which means

lim inf
t→∞

1
t

∫ t

0
P((S u, Iu,Qu,Ru, θu) ∈ Dε)du ≥

1
1 + K3

. (4.22)

For the Markov-Feller process (S t, It,Qt,Rt, θt), (4.22) and the compactness of the set Dε results in
the invariant probability measure marked as χ∗ by virtue of Theorem 2 in [30].

5. Some remarks on the results

In the previous sections, we have presented and proved the threshold

∆ =
∑
l∈S

∫
(0,∞)

[
G(s, 0, l) − (a1(l) − pb(l)) −

σ2
2(l)
2

]
χ0(ds, l)

to determine the different properties of the model we have established. However, the value cannot
be calculated obviously, and in this section we examine another form of this value for some specific
incidence functions. Let G(S , I, θt) =

β(θt)S
f (I) , where f (I) is increasing as I with f (0) > 0. The functions

satisfying these conditions have the forms with β(l)S , β(l)S
1+aI , β(l)S

1+aI2 , etc. Then, ∆ can be expressed as

∆ =
∑
l∈S

∫
(0,∞)

[
β(l)s
f (0)

− (a1(l) − pb(l)) −
σ2

2(l)
2

]
χ0(ds, l)

=
∑
l∈S

∫
(0,∞)

β(l)s
f (0)

χ0(ds, l) −
∑
l∈S

πl[a1(l) − pb(l) +
σ2

2(l)
2

],

because π is the marginal distribution of χ0(·, ·). Let us focus on another form of the first term and
provide the following remark first.
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Remark 5.1.
∑

l∈S

∫
(0,∞)

β(l)s
f (0)χ0(ds, l) =

∑
l∈S πl%(l)Λ(l), where % = (%(1), · · · , %(M))T satisfies the

equation (diag(µ(1) − b(1), · · · , µ(M) − b(M)) − Q)% = ( β(1)
f (0) , · · · ,

β(M)
f (0) )T . So,

∆ =
∑
l∈S

πl[%(l)Λ(l) − (a1(l) − pb(l) +
σ2

2(l)
2

)].

Let RS
1 =

∑
l∈S πl%(l)Λ(l)∑

l∈S πl(a1(l)−pb(l)+
σ2

2(l)
2 )

, then ∆ < 0 is equivalent to RS
1 < 1.

Proof. It is easy to see the equation (diag(µ(1) − b(1), · · · , µ(M) − b(M)) − Q)% = ( β(1)
f (0) , · · · ,

β(M)
f (0) )T has

the nonnegative solution % = (%(1), · · · , %(M))T , whose proof is similar to that in Subsection 4.2. This
implies (µ(l) − b(l))%(l) −

∑M
j=1 γl j%( j) =

β(l)
f (0) .

For S̃ t in (3.1), let V8(l) := %(l)S̃ , then we obtain that

LV8(l) =%(l)[Λ(l) − (µ(l) − b(l))S̃ ] +

M∑
j=1

γl j%( j)S̃

=%(l)Λ(l) − [%(l)(µ(l) − b(l)) −
M∑
j=1

γl j%( j)]S̃

=%(l)Λ(l) −
β(l)S̃
f (0)

.

Thus,

E(%(θt)S̃ t − %(θ0)S̃ 0) = E

∫ t

0
(%(θu)Λ(θu) −

β(θu)S̃ u

f (0)
)du

 . (5.1)

Dividing by t, taking the limit and combining with the ergodicity of the Markov chain bring about

lim
t→∞

1
t

∫ t

0

β(θu)S̃ u

f (0)
du = lim

t→∞

1
t

∫ t

0
%(θu)Λ(θu)du =

∑
l∈S

πl%(l)Λ(l). (5.2)

By virtue of the ergodicity of (S̃ t, θt), one has

lim
t→∞

1
t

∫ t

0

β(θu)S̃ u

f (0)
du =

∑
l∈S

∫
(0,∞)

β(l)s
f (0)

χ0(ds, l).

Hence,

∆ =
∑
l∈S

∫
(0,∞)

β(l)s
f (0)

χ0(ds, l) −
∑
l∈S

πl[a1(l) − pb(l) +
σ2

2(l)
2

] =
∑
l∈S

πl[%(l)Λ(l) − (a1(l) − pb(l) +
σ2

2(l)
2

)].

We arrive at the Remark 5.1. �

In what follows, we will compare the results with those of other papers.
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Remark 5.2. The authors have studied the SIQR model in [4] with the incidence rate G =
βS I

1+αI and
no Markovian switching, obtained the value RS

0 =
βΛ

µ(µ+γ+δ+θ+
σ2

2
2 )

to distinguish the disease extinction

or persistence, and provided another different value R̂S
0 to derive the stationary distribution of the

discussed model. Notice that in order to obtain different properties of the model, another condition
µ >

max4
i=1 σ

2
i

2 is necessary. While in this paper with f (0) = 1 and b = 0, we get the same value
∆(∆ > 0 is equivalent to RS

0 > 1 in [4]) to distinguish different dynamics of the model without additional
conditions.

Remark 5.3. In [21], the authors have discussed a SIS model with vertical transmission and provided
two values RS

0 , R̃S
0 to determine different dynamics, that is, when RS

0 > 1, the model admits a stationary
distribution and the disease will continue, while R̃S

0 < 1, the disease will die out. Obviously, there is
a certain interval between the values that determine two different behaviors, and the two values are
not the same. However, the value ∆ in this paper can be used to judge different dynamics of the SIQRS
model with Markovian switching and vertical transmission.

Remark 5.4. Liu has investigated a hybrid SIS model with the bilinear rate G(S , I, θt) = β(θt)S I and
no vertical transmission, obtained the value R̄0 to determine the ergodic stationary distribution and
extinction [16]. Through the discussion of Remark 5.1, it can be seen that the threshold RS

1 in this
paper is identical to R̄0 in the model with the bilinear rate and no vertical transmission. Hence, ours
can be regarded as the generalization of [16].

Remark 5.5. From the above analysis, it can be inferred that when ∆ < 0, the disease will tend to be
extinction, how to take measures to let ∆ < 0 hold true so as to achieve the goal of disease control is a
practical problem. By the expressions of ∆ (or RS

1 ), some feasible measures in practice are as follows:
(i) When the epidemic is severe, medical forces should be increased to improve the cure rate, and the
isolation rate can be increased to separate different populations and reduce mutual infection. (ii) When
epidemics spread vertically, the vertical transmission should be reduced to control the disease. Women
who are willing to have children should undergo testing or treatment. They may prepare for pregnancy
when they are not infected, and when infected, the birth rate of newborns should be reduced.

6. Numerical examples

We will list some examples and show their simulations to check the theoretical results.
Example 1. We first check the persistence and extinction of model (1.4) under Markovian switching.
Let (θt)t≥0 be the Markov chain with spaceM = {1, 2}, the Q− matrix is

Q =

(
−a a
b −b

)
.

So, the stationary distribution π = ( b
a+b ,

a
a+b ). Let the function G(S , I, θ) =

β(θt)S
1+2I and the initial values are

S 0 = 2.1, I0 = 1, Q0 = 0.2, R0 = 1.2, assume that the values of each parameter are as follows: a = 2,
b = 1, q = 0.6, Λ = [0.04, 0.02] (the two numbers represent the values of Λ in two environments, and
the followings are similar), µ = [0.03, 0.05], β = [0.4, 0.15], r1 = [0.25, 0.35], α1 = [0.45, 0.5], α2 =

[0.5, 0.6], δ = [0.45, 0.5], γ1 = [0.03, 0.02], γ2 = [0.02, 0.01], σ1 = [0.05, 0.1], σ2 = [0.15, 0.1], σ3 =
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[0.2, 0.1], σ4 = [0.1, 0.2], then ∆ of this paper in environment 1 denoted by ∆1 equals to 0.6368>0,
∆ in environment 2 denoted by ∆2 is −0.713 < 0 and ∆ in the whole environment is −0.522 < 0. By
virtue of Theorem 3.1, it has that the disease will last in environment 1 (see Figure 1(a)), disappear in
environment 2 (see Figure 1(b)), and will also go extinct in the whole environment (see Figure 1(c)).
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Figure 1. Simulations of Example 1: (a) The trajectory of (S t, It,Qt,Rt) in environment 1;
(b) the trajectory in environment 2; and (c) the trajectory in the whole environment.

Example 2. The example here discusses the impact of isolation on disease control through numerical
simulation. For simplicity, we study only the situation in one environment, that is, there is no
Markovian switching. Take the parameters in environment 1 in Example 1, except the isolation rate δ.
We take two different values to compare the size of S t and It in the model. Let δ1 = 0.3 and δ2 = 0.6
respectively, then ∆ = 0.7868 > 0 and ∆ = 0.4868 > 0, the disease will go on. We see from Figure 2(a)
that the the size of disease It with δ = 0.6 is less than size of disease with δ = 0.3. We know that with
the increase of the isolation rate, more and more infected people are isolated (depending on the severity,
they can be isolated at home), which will reduce the transmission to varying degrees. In addition, the
severity of symptoms of It and Qt people may be different, then different treatment measures for It and
Qt will save a certain amount of medical resources, which can make people recover and increase the
size of susceptible class S t, see Figure 2(b).
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Figure 2. (a) The trajectory of It with δ = 0.3, δ = 0.6 and other parameters in Example 2;
and (b) the trajectory of S t with δ = 0.3, δ = 0.6.
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Example 3. This example will verify the effect of vertical transmission rate p on disease behavior.
Similar to the situation in Example 2, we only discuss one environment. Assume that b = 0.08,
Λ = 0.07, µ = 0.1, β = 0.4, r1 = 0.25, α1 = 0.45, α2 = 0.5, δ = 0.4, γ1 = 0.03, γ2 = 0.02, σ1 = 0.05,
σ2 = 0.15, σ3 = 0.2, σ4 = 0.1, the initial data S 0 = 2.1, I0 = 0.6, Q0 = 0.2, R0 = 1.2. We compare
the size of different classes of p under two values, let p = 0.8 and p = 0.1, then ∆ with p = 0.8 equals
to 0.4727 > 0 and ∆ = 0.4167 under p = 0.1, the disease will last. From Figure 3(a), we see that
a higher vertical transmission rate will produce more infected people. Under the same isolation rate,
Qt will also become larger, see Figure 3(b). The increase of vertical transmission rate p makes the
individuals of the susceptible in population smaller, see Figure 3(c).
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Figure 3. Comparisons of different vertical transmission rates p in Example 3: (a) The
trajectories of It with different p; (b) the trajectories of Qt; and (c) the trajectories of S t.

7. Conclusions and future research

In this article, we study a class of a stochastic hybrid SIQRS model with nonlinear incidence and
vertical transmission and gives a threshold ∆ to distinguish different behaviors of the model. The
disease will die out when ∆ < 0. If ∆ > 0, the model we discuss admits an invariant measure. In
proving the latter conclusion, we construct a new class of Lyapunov functions. The values obtained in
this paper are the same, while many other studies differ in the values of different behaviors.

Some other issues are worthy of concern. Some diseases do not have symptoms at the initial stage
of infection but in the latent period. Therefore, stochastic models with a latent period or time delay
can be studied. Models with other types of noise such as Lévy noise can be discussed. In practice,
measures such as media coverage and vaccination will be taken to control diseases, so introducing
these measures into the model and analyzing their impacts can be further investigated in the future.
Moreover, the optimal control problems of measures that appear in the model can also be discussed.
We leave these issues for further discussion.
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