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Abstract: Entropy is an important tool of information measurement in the fuzzy set and its inference.
The research on information measurement based on interval-valued Pythagorean fuzzy sets mostly
involves the distance formula for interval-valued Pythagorean fuzzy numbers, but seldom involves the
measurement of fuzziness. In view of this situation, we have aimed to propose new interval-valued
Pythagorean fuzzy entropy and weighted exponential entropy schemes. Based on the interval-valued
Pythagorean fuzzy weighted averaging operator, a strategy based on weighted exponential entropy is
proposed to solve the multi-criteria group decision-making (MCGDM) problem in the interval-valued
Pythagorean environment. Two examples illustrate that this paper provides a feasible new method to
solve the MCGDM problem in an interval-valued Pythagorean fuzzy (IVPF) environment. Finally,
by comparing with the existing methods, it is concluded that the entropy measure of IVPF schemes
and the corresponding MCGDM method can select the optimal solution of the practical problem more
precisely and accurately. Therefore, the comparative analysis shows that the proposed measurement
method has the characteristics of flexibility and universality.
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1. Introduction

Numerous academics have studied the fuzzy set theory in-depth and extensively since Zadeh [1]
first introduced it in 1965. With focus on fuzzy sets, Bulgarian academic Atanassov [2] introduced
the idea of intuitive fuzzy sets in 1986. Subsequently, his related research [3–9] produced positive
findings, indicating that the intuitive fuzzy set should take into account three information measures:
membership, non-membership, and hesitancy. However, the intuitive fuzzy set can only describe the
case in which the sum of membership and non-membership is greater than or equal to 0 and less than
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or equal to 1(u2 + v2 ≤ 1), which introduces significant limitations to the decision making process
and narrows its scope of application. For example, it is simple to observe that 0.3 + 0.9 > 1 does
not match the constraints provided by the intuitive fuzzy set when the number of members is 0.3 and
the non-membership is 0.9. To this end, Yager [10, 11] defined the Pythagorean fuzzy complement
operation in 2014 to propose the Pythagorean fuzzy set with the sum of squares of membership and
non-membership less than or equal to 1(0 ≤ u2 + v2 ≤ 1), which allows decision makers to perform
decision-making without modifying the intuitive fuzzy decision value. Compared to the intuitive fuzzy
set, the Pythagorean fuzzy set is more flexible to the multi-attribute decision-making problem [12,13].
At present, Pythagorean fuzzy sets have been widely applied and far-reaching in the fields of medical
diagnosis [14–20], attribute decision making, and pattern recognition.

The generalization based on the original theory is the hot topic of fuzzy mathematical theory
research. With the concept of an interval-valued Pythagorean fuzzy set(IVPFS), Peng and Yang [21]
expanded the range of membership and non-membership from the number between closed
intervals [0,1] to sub-intervals of closed intervals [0,1]. To date, many achievements have been made
in the fuzzy set. For example, Peng and Yang [21] presented the IVPFS operator and its basic
properties; Wei and Lu [22] newly defined the accuracy functions for two IVPFSs and their
application in the decision-making process. A multi-attribute decision-making technique based on
interval-valued Pythagorean fuzzy linguistic information has been presented by Du et al. [23].

In fuzzy set theory, entropy is a useful tool for measuring fuzzy information since it can measure it
effectively. The information gets increasingly unclear the higher the entropy measure. The fuzzy
entropy notion was initially introduced by Zadeh [24] in 1965. Interval-valued conceptual
formulation of the fuzzy entropy measure was also added to the literature [25]. Sun and Li [26]
proposed the IVPFS entropy measure and similarity and applied them to the field of pattern
recognition. Peng et al. [27] proposed several new definitions of the Pythagorean fuzzy entropy
measure and provided the relationship between entropy, distance measure, and similarity measure.
Xu [28] applied two-stage multi-criteria decision making based on interval valued Pythagorean
normal fuzzy information to the location of COVID-19 fighting hospital module. Scholars such as
Mishra et al. [29] used a decision support system based on interval-valued Pythagorean fuzzy entropy
to evaluate blockchain-based healthcare supply chains, applying theory to practice. The distance
measure and similarity measure have been discussed and studied by many scholars, and they are all
important measures in solving multi-attribute decision-making problems. Therefore, the metric
method for IVPFS has a very broad research prospect.

The major topic of discussion is the IVPFS weighted exponential entropy metric. This work
addresses decision-making difficulties by utilizing the weighted exponential entropy measure of
IVPFSs. However, decision-making approaches using the interval-valued Pythagorean fuzzy entropy
measure have yielded few studies that address uncertain socioeconomic environments. Driven by the
growing practical significance of fuzzy decision-making techniques, we use the membership and
non-membership of IVPFSs to introduce the exponential entropy measure. Additionally, the weighted
interval-valued Pythagorean fuzzy exponential entropy metric is shown in analogous mode.

The parameters of the entropy measure of the IVPFS that was employed in the study are among
the fundamental definitions and ideas pertaining to Pythagorean fuzzy sets and IVPFSs that are briefly
reviewed in Section 2 of this paper. In Section 3, we define the corresponding weighted exponential
entropy measure and introduce and establish the exponential entropy measure of the IVPFS. First,
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through two instances, we present the use of the interval-valued Pythagorean fuzzy exponential entropy
measure in decision-making in Section 4. Second, we present a proposal for the multi-criteria group
decision-making (MCGDM) technique based on IVPFSs by using the weighted exponential entropy
measurement. We then solve two case studies to examine the advantageous aspects of the suggested
MCGDM approach. The advantages of the IVPFS over the Pythagorean fuzzy set in practical problem
application are further demonstrated in the same section through a comparative analysis of the proposed
MCGDM method with the existing entropy and the corresponding group decision-making method.

2. Preliminaries

First, we introduce the basic criteria of the IVPFS uncertainty measure and the construction process
for the interval-valued fuzzy entropy measure by using the theory of fuzzy sets. Second, we assess the
drawbacks of the current Pythagorean fuzzy entropy measure and its use in multi-attribute decision-
making.

Definition 1. Yager [11] defines an IVPFS P; a finite universe of discourse X is expressed as

P = {⟨x, µ̃p(x), ν̃p(x)⟩|x ∈ X}

where µ̃p(x) = [µ̃−p(x), µ̃+p(x)] ⊆ [0, 1], ν̃p(x) = [ν̃−p(x), ν̃+p(x)] ⊆ [0, 1].
The numbers µ̃p(x), ν̃p(x) ⊆ [0, 1] indicate the degree of membership and non-membership of x to P,

respectively.
For every IVPFS in X we will suppose that π̃p(x) = [π̃−p(x), π̃+p(x)] ⫅ [0, 1], i.e., the interval valued

Pythagorean fuzzy index, degree of interval-valued Pythagorean fuzzy index, degree of hesitation of x
in P. For a fuzzy set P in X, π̃−p(x) =

√
1 − (µ̃+p(x))2 − (ν̃+p(x))2, π̃+p(x) =

√
1 − (µ̃−p(x))2 − (ν̃−p(x))2 when

µ̃−p(x) ⩾ 0, ν̃−p(x) ⩾ 0, (µ̃+p(x))2 + (ν̃+p(x))2 ⩽ 1,∀x ∈ X.
IVPFS(X) is the total IVPFS on X.
For ease of use, <µ̃p(x), ν̃p(x)> is called the interval-valued Pythagorean fuzzy number, and it is

and abbreviated as <µ̃p, ν̃p>.
When an IVPFS(P) satisfies that, ∀x ∈ X, µ̃−p(x) = µ̃+p(x), ν̃−p(x) = ν̃+p(x), then IVPFS(P) degenerates

into a PFS(P), where PFS denotes a Pythagorean fuzzy set.

Definition 2. For all P1, P2 ∈ IVPFS (X), their relations and operations are defined by Peng and
Yang [21] as follows:

(1) P1 ⩽ P2 if and only if µ̃−p1
(x) ⩽ µ̃−p2

(x), µ̃+p1
(x) ⩽ µ̃+p2

(x), ν̃−p1
(x) ⩾ ν̃−p2

(x), ν̃+p1
(x) ⩾ ν̃+p2

(x);
(2) P1 = P2 if and only if µ̃−p1

(x) = µ̃−p2
(x), µ̃+p1

(x) = µ̃+p2
(x), ν̃−p1

(x) = ν̃−p2
(x), ν̃+p1

(x) = ν̃+p2
(x);

(3)
P1
⋃

P2={⟨x, [max(µ̃−p1
(x), µ̃−p2

(x)),max(µ̃+p1
(x), µ̃+p2

(x))], [min(ν̃−p1
(x), ν̃−p2

(x)),min(ν̃+p1
(x), ν̃+p2

(x))]⟩|x ∈

X};
(4)

P1
⋂

P2={⟨x, [min(µ̃−p1
(x), µ̃−p2

(x)),min(µ̃+p1
(x), µ̃+p2

(x))], [max(ν̃−p1
(x), ν̃−p2

(x)),max(ν̃+p1
(x), ν̃+p2

(x))]⟩|x ∈

X};
(5) Pc = {⟨x, [ν̃−p(x), ν̃+p(x)], [µ̃−p(x), µ̃+p(x)]⟩|x ∈ X}.
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Definition 3. For any P ∈ IVPFS (X), a real function F(P) : IVPFS (X)→ [0, 1] is called an entropy
measure for IVPFSs, if F(P) satisfies the conditions of the following axioms:

(F1) F(P) = 0 if P is a crisp set, i.e., P = ([1, 1], [0, 0]) or P = ([0, 0], [1, 1]) for each xi ∈ X;
(F2) F(P) = 0 if and only if [µ̃−p(xi), µ̃+p(xi)] = [ν̃−p(xi), ν̃+p(xi)], for each xi ∈ X;
(F3) F(P) = F(Pc);
(F4) F(P1) ⩽ F(P2) if P1 ⊆ P2 when µ̃−p2

(xi) ⩽ ν̃−p2
(xi) and µ̃+p2

(xi) ⩽ ν̃+p2
(xi) for each xi ∈ X,

or P2 ⊆ P1 when µ̃−p2
(xi) ⩾ ν̃−p2

(xi) and µ̃+p2
(xi) ⩾ ν̃+p2

(xi) for each xi ∈ X.

Definition 4. Let p = ([µ̃−, µ̃+], [ν̃−, ν̃+]), p1 = ([µ̃−p1
, µ̃+p1

], [ν̃−p1
, ν̃+p1

]), and p2 = ([µ̃−p2
, µ̃+p2

], [ν̃−p2
, ν̃+p2

])
be three interval-valued Pythagorean fuzzy numbers (IVPFNs), and Bengio et al. [30] gave these
following operations:

(1)p1 ⊕ p2 = ⟨[
√

(µ̃−p1
)2 + (µ̃−p2

)2 − (µ̃−p1
)2(µ̃−p2

)2,
√

(µ̃+p1
)2 + (µ̃+p2

)2 − (µ̃+p1
)2(µ̃+p2

)2], [ν̃−p1
ν̃−p2
, ν̃+p1
ν̃+p2

]⟩;

(2)p1 ⊗ p2 = ⟨[µ̃−p1
µ̃−p2
, µ̃+p1
µ̃+p2

], [
√

(ν̃−p1
)2 + (ν̃−p2

)2 − (ν̃−p1
)2(ν̃−p2

)2,
√

(ν̃+p1
)2 + (ν̃+p2

)2 − (ν̃+p1
)2(ν̃+p2

)2]⟩;

(3)λp = ⟨[
√

1 − (1 − (µ̃−)2)λ,
√

1 − (1 − (µ̃+)2)λ], [(ν−)λ, (ν+)λ]⟩;
(4)pλ = ⟨[(µ−)λ, (µ+)λ], [

√
1 − (1 − (ν̃−)2)λ,

√
1 − (1 − (ν̃+)2)λ]⟩.

Definition 5. Using an interval-valued Pythagorean fuzzy weighted average (IPFWA) operator, the
aggregated value of pi = ([µ̃−pi

, µ̃+pi
], [ν̃−pi

, ν̃+pi
]) (i = 1, 2, ..., n), given a collection of IVPFNs, is defined

by Garg [31] as

IPFWA(p1, p2, ..., pn) = ⊕n
i=1λiαi

= ⟨[

√√
1 −

n∏
i=1

(1 − (µ−i )2)λi ,

√√
1 −

n∏
i=1

(1 − (µ+i )2)λi],

[
n∏

i=1

(1 − (ν−i ))λi , [
n∏

i=1

(1 − (ν+i ))λi]⟩.

(2.1)

3. Interval-valued Pythagorean fuzzy entropy and its application to multi-criterion group
decision-making

This section begins with a review of Pal and Pal’s [32] exponential entropy measure for the fuzzy
set P, as shown below:

eH(P) =
1

n(
√

e − 1)

n∑
i=1

[µp(xi)e(1 − µp(xi)) + (1 − µp(xi))eµp(xi) − 1]. (3.1)

Assuming for the moment that P is an interval-valued intuitionistic fuzzy set (IVIFS), the procedure
described by Zhang et al. [25], It is reasonable to think of the element xi average potential membership
degree to IVIFS P as follow:

µ̃p(xi) =
1
2

[
µ̃−p(xi) + µ̃+p(xi)

2
+ 1 −

ν̃−p(xi) + ν̃+p(xi)

2
]

=
µ̃−p(xi) + µ̃+p(xi) + 2 − ν̃−p(xi) − ν̃+p(xi)

4
.

(3.2)
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However, the above method does not consider the hesitancy of IVIFSs when converting an IVIFS
into a fuzzy set. Using the above method of converting a fuzzy set to an IVIFS, an IVPFS entropy
measure similar in form to the exponential entropy measure of Pal and Pal is introduced below.

3.1. Interval-valued Pythagorean fuzzy exponential entropy

3.1.1. Basic theory

Definition 6. Let P ∈ IVPFS (X), X = x1, x2, ..., xn; then, the exponential entropy of the IVPFS is
defined as

EH(P) =
1

n(
√

e − 1)

n∑
i=1

{(
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
)e(1−

µ̃−p (xi)
2+µ̃+p (xi)

2+2−ν̃−p (xi)
2−ν̃+p (xi)

2

4 )

+ (1 −
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
)e(

µ̃−p (xi)
2+µ̃+p (xi)

2+2−ν̃−p (xi)
2−ν̃+p (xi)

2

4 −1)}.

(3.3)

We demonstrate the validity and logic of the exponential entropy measure (3.3) of the suggested
IVPFS in the ensuing theorem.

Theorem 1. The EH(P) defined in (3.3) is the exponential entropy measure of an interval-valued
Pythagorean fuzzy set (IVPFS).

Proof. All we have to do is demonstrate that the IVPFS satisfies the (F1)–(F4) in Definition 3 in order
to establish its entropy measure.

(F1): Let P be a crisp set; then, we have either P = ([1, 1], [0, 0]) or P = ([0, 0], [1, 1]) i.e.
[µ̃−p(xi), µ̃+p(xi)] = [1, 1] and [ν̃−p(xi), ν̃+p(xi)] = [0, 0] or [µ̃−p(xi), µ̃+p(xi)] = [0, 0] and
[ν̃−p(xi), ν̃+p(xi)] = [1, 1] for each xi ∈ X; we can get EH(P) = 0.

Conversely, let
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
= ζp(xi). (3.4)

Then,

EH(P) =
1

n(
√

e − 1)

n∑
i=1

[ζp(xi)e(1−ζp(xi)) + (1 − ζp(xi))eζp(xi) − 1] (3.5)

is the same as that derived by Pal and Pal [32], as the exponential entropy measure (3.1) becomes zero
if ζp(xi) = 0 or 1 for each xi ∈ X.

i.e.
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
= 0 (3.6)

or
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
= 1 (3.7)

for each xi ∈ X. Now, ( 3.6) and (3.7) hold if either P = ([1, 1], [0, 0]) or P = ([0, 0], [1, 1]) i.e. P is a
crisp set.

(F2): If [µ̃−p(xi), µ̃+p(xi)] = [ν̃−p(xi), ν̃+p(xi)] for each xi ∈ X, obviously by (3.3), we to get EH(P) = 1.
In turn, assuming that EH(P) = 1, the need to prove that [µ̃−p(xi), µ̃+p(xi)] = [ν̃−p(xi), ν̃+p(xi)].
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From (3.5), we get

EH(P) =
1
n

n∑
i=1

g(ζp(xi))

where

g(ζp(xi)) =
ζp(xi)e1−ζp(xi) + (1 − ζp(xi))eζp(xi) − 1

√
e − 1

(3.8)

for each xi ∈ X.
Now,

EH(P) = 1⇒
1
n

n∑
i=1

g(ζp(xi)) = 1

⇒ g(ζp(xi) = 1

(3.9)

for each xi ∈ X.
Equation (3.8) is differentiated with respect to (w.r.t.) ζp(xi) and is equal to zero, we get

∂g(ζp(xi))
∂(ζp(xi))

=
e(1−ζp(xi)) − ζp(xi)e(1−ζp(xi)) − eζp(xi) + (1 − ζp(xi))eζp(xi)

√
e − 1

= 0

⇒
∂g(ζp(xi))
∂(ζp(xi))

=
(1 − ζp(xi))e(1−ζp(xi)) − ζp(xi)eζp(xi))

√
e − 1

= 0

⇒ (1 − ζp(xi))e(1−ζp(xi)) = ζp(xi)eζp(xi)

⇒ 1 − ζp(xi) = ζp(xi)

⇒ ζp(xi) =
1
2
,

(3.10)

for each xi ∈ X.

∂2g(ζp(xi))
∂2(ζp(xi))

=
−e(1−ζp(xi)) − (1 − ζp(xi))e(1−ζp(xi)) − eζp(xi) + (1 − ζp(xi))eζp(xi)

√
e − 1

=
(ζp(xi) − 2)e(1−ζp(xi)) − (1 + ζp(xi))eζp(xi)

√
e − 1

< 0,
(3.11)

for each xi ∈ X.
So g(ζp(xi)) is maximum at ζp(xi) = 1

2 . From above, we see that it is a convex function. Therefore,
the (3.8) can yield the maximum value at the time, i.e., [µ̃−p(xi), µ̃+p(xi)] = [ν̃−p(xi), ν̃+p(xi)].

(F3): Given that Fc = {⟨xi, [ν̃−p(xi), ν̃+p(xi)], [µ̃−p(xi), µ̃+p(xi)]⟩|xi ∈ X} and (3.3), it is obvious to get that
F(P) = F(Pc).

(F4): If we set α = (µ̃−p(xi))2 + (µ̃+p(xi))2, β = (ν̃−p(xi))2 + (ν̃+p(xi))2, then

EH(P) =
1

n(
√

e − 1)

n∑
i=1

f (α, β).

Then, we have

f (α, β) =
α + 2 − β

4
e(1− α+2−β

4 ) + (1 −
α + 2 − β

4
)e
α+2−β

4 − 1, (3.12)
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where α, β ∈ [0, 1].
Subtracting α and β from (3.12) to obtain the partial derivative, we get

∂ f
∂α
=

1
4

[
β + 2 − α

4
e(1− α+2−β

4 ) −
α + 2 − β

4
e
α+2−β

4 ], (3.13)

∂ f
∂β
=

1
4

[
α + 2 − β

4
e(1− β+2−α

4 ) −
β + 2 − α

4
e
β+2−α

4 ]. (3.14)

Setting ∂ f
∂α
= 0 and ∂ f

∂β
= 0 to find the critical points, we get

α = β. (3.15)

According to (3.13) and (3.15), we get that ∂ f
∂α
⩾ 0 when α ⩽ β and ∂ f

∂α
⩽ 0 when α ⩾ β for any

α, β ∈ [0, 1]. Therefore, f (α, β) is increasing w.r.t. α for α ⩽ β and decreasing when α ⩾ β.
Similarly, we get that ∂ f

∂β
⩽ 0 when α ⩽ β and ∂ f

∂β
⩾ 0 when α ⩾ β. Therefore, f (α, β) is decreasing

w.r.t. β for α ⩽ β and increasing when α ⩾ β.
Now, if P1 ⊆ P2 with µ̃−p2

(xi) ⩽ ν̃−p2
(xi) and µ̃+p2

(xi) ⩽ ν̃+p2
(xi) for each xi ∈ X, then we have that

µ̃−p1
(xi) ⩽ µ̃−p2

(xi) ⩽ ν̃−p2
(xi) ⩽ ν̃−p1

(xi) and µ̃+p1
(xi) ⩽ µ̃+p2

(xi) ⩽ ν̃+p2
(xi) ⩽ ν̃+p1

(xi). It implies that µ̃−p1
(xi) ⩽

ν̃−p1
(xi) and µ̃+p1

(xi) ⩽ ν̃+p1
(xi) for each xi ∈ X. Therefore, from the monotonic nature of f (α, β) and (3.3),

we obtain that EH(P1) ⩽ EH(P2).
Likewise, when P1 ⊇ P2 with µ̃−p2

(xi) ⩾ ν̃−p2
(xi) and µ̃+p2

(xi) ⩾ ν̃+p2
(xi) for each xi ∈ X, one can also

prove that EH(P1) ⩽ EH(P2). □

3.1.2. Case application

The application and consistency of the suggested exponential and weighted exponential entropy
measurements of the IVPFS are shown in this section.

Example 1. Consider the decision-making case presented by Wang et al. [33]. Assume that a
corporate entity’s treasurer is assessing the four possibilities G = {G1,G2,G3,G4}. The company
requires the plans that are evaluated by senior financial executives to have the following
characteristics: risk (a1), development (a2), social and political issues (a3), and environmental impact
(a4). Assume that a treasurer frequently assesses the available options for each feature by using the
IVPFN. The assumed decision matrix is given by

R =


⟨[0.42, 0.48], [0.4, 0.5]⟩ ⟨[0.6, 0.7], [0.05, 0.25]⟩ ⟨[0.4, 0.5], [0.2, 0.5]⟩ ⟨[0.55, 0.75], [0.15, 0.25]⟩
⟨[0.4, 0.5], [0.4, 0.5]⟩ ⟨[0.5, 0.8], [0.1, 0.2]⟩ ⟨[0.3, 0.6], [0.3, 0.4]⟩ ⟨[0.6, 0.7], [0.1, 0.3]⟩
⟨[0.3, 0.5], [0.4, 0.5]⟩ ⟨[0.1, 0.3], [0.2, 0.4]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩
⟨[0.2, 0.4], [0.4, 0.5]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩

 .
With the help of the suggested entropy measure (3.1), we can quickly compute the following:

eH(G1) = 0.9213,e H(G2) = 0.9215,e H(G3) = 0.9001,e H(G4) = 0.8821,

i.e.
eH(G4) <e H(G3) <e H(G1) <e H(G2),

which coincides with the ranking result obtained in [31]. This can illustrate the rationality of
exponential fuzzy entropy.
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3.2. Interval-valued Pythagorean fuzzy weighted exponential entropy

3.2.1. Basic theory

By taking the weight of each element xi ∈ X, a weighted exponential entropy measure of an IVPFS
P is proposed as follows:

EωH(P) =
1

n(
√

e − 1)
×

n∑
i=1

ωi{(
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
)e(1−

µ̃−p (xi)
2+µ̃+p (xi)

2+2−ν̃−p (xi)
2−ν̃+p (xi)

2

4 )

+ (1 −
µ̃−p(xi)2 + µ̃+p(xi)2 + 2 − ν̃−p(xi)2 − ν̃+p(xi)2

4
)e(

µ̃−p (xi)
2+µ̃+p (xi)

2+2−ν̃−p (xi)
2−ν̃+p (xi)

2

4 ) − 1}
(3.16)

where ωi ∈ [0, 1], i = 1, 2, ..., n, and
∑n

i=1 ωi = 1.
If we consider that ωi =

1
n , i = 1, 2, ..., n, then EωH(P) = EH(P).

It can easily be shown that the weighted exponential entropy EωH(P) of an IVPFS also satisfies the
conditions of the entropy properties (F1)–(F4) in Definition 3.

In this part, the axiomatic definitions of IVPFSs exponential entropy and weighted exponential
entropy are introduced and proved. Then, the application of IVPFSs exponential entropy is given via
an example, and its rationality is verified.

3.2.2. Case application

Example 2. Consider the decision-making situation given in [34]. The project manager of an asset
management company plans to evaluate the investment projects, and there are four investment projects
I = {I1, I2, I3, I4}, namely, the automobile company (I1), food company (I2), computer company (I3)
and equipment company (I4). The three factors a = {a1, a2, a3} should be considered in the evaluation,
respectively indicating the potential electronic risks (a1), development vitality (a2), social influence and
development prospects (a3). Suppose that the decision matrix is interval-valued in the Pythagorean
fuzzy environment, as follows:

R =


⟨[0.4, 0.5], [0.3, 0.4]⟩ ⟨[0.4, 0.6], [0.2, 0.4]⟩ ⟨[0.1, 0.3], [0.5, 0.6]⟩
⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.4, 0.7], [0.1, 0.2]⟩
⟨[0.3, 0.6], [0.3, 0.4]⟩ ⟨[0.5, 0.6], [0.3, 0.4]⟩ ⟨[0.5, 0.6], [0.1, 0.3]⟩
⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.6, 0.7], [0.1, 0.3]⟩ ⟨[0.3, 0.4], [0.1, 0.2]⟩

 .
Each element in the matrix represents the evaluation value for the investment project under the

corresponding attribute, represented by the Pythagorean fuzzy number. The standard weight is ω =
(0.35, 0.25, 0.4)T .

By using the proposed entropy measure (3.16), we can easily compute the following:
eH(I1) = 0.3223,e H(I2) = 0.2970,e H(I3) = 0.3214,e H(I3) = 0.2879.

i.e.
eH(I4) <e H(I2) <e H(I3) <e H(I1).

According to the principle of minimum uncertainty, the project I1 should be invested in principle,
which is the same conclusion as [34], so the above definition of the exponential fuzzy entropy
measure (3.16) can be justified.
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3.3. Group decision-making method based on interval-valued Pythagorean weighted exponential
fuzzy entropy

Now the proposed interval-valued Pythagorean weighted exponential fuzzy entropy will be applied
to the MCGDM problem. Before this, a MCGDM method using interval-valued Pythagorean weighted
exponential fuzzy entropy is introduced, and a case study is presented to illustrate its application in
practice.

This section provides a group decision-making approach with IVPFSs as the preferred alternative.
When the weight part is known, the weighted exponential entropy of IVPFSs is used to solve the
MCGDM problem in the interval-valued Pythagorean fuzzy environment with known experts and
unknown standard weights.

Assuming that set A = {A1, A2, ..., An} is n alternatives, k experts need to rank n schemes according
to m criteria. The set of experts is denoted as Y = {Y1,Y2, ...,Yk}, and λ = {λ1, λ2, ..., λk}

T is the weight

vector
k∑

i=1
λi = 1 and λi ∈ [0, 1] (i ∈ N), corresponding to all experts. The criterion set is denoted

as Z = {Z1,Z2, ...,Zm}, ω = {ω1, ω2, ..., ωk}
T is the weight vector corresponding to all criteria, and the

weight ω j of the criterion Z j satisfies
m∑

j=1
ω j = 1 and ω j ∈ [0, 1] ( j ∈ N).

To solve this problem effectively, we propose a group decision-making method based on IVPFS’s
weighted exponential entropy measure EωH(P), as follows:

Step 1. Find the Pythagorean interval-valued fuzzy decision-making matrix (IVPFDM). R(i) =

(r(i)
i j )n×m indicates the score that the expert gives the applicant.

Step 2. During the group decision-making process, the available scores played by the experts are
collected, and according to these available scores, an IVPFDM composed of zl j = ([µ−l j, µ

+
l j], [ν

−
l j, ν

+
l j])

is expressed. To this end, we use the interval-valued Pythagorean power weighted average operator

zl j = ([µ−l j, µ
+
l j], [ν

−
l j, ν

+
l j]) = IVPFWAλ(r

(1)
i j , r

(2)
i j , ..., r

(k)
i j ) = λ1r(1)

i j ⊕ λ2r(2)
i j ⊕ ... ⊕ λkr

(k)
i j

= ([

√√
1 −

k∑
i=1

(1 − (µ−l j)
2)λi ,

√√
1 −

k∑
i=1

(1 − (µ+l j)
2)λi], [

k∑
i=1

(ν−l j)
λi ,

k∑
i=1

(ν+l j)
λi]).

(3.17)

Step 3. The weight vector for calculating the criterion.
Here, in the interval-valued Pythagorean fuzzy, we use the (3.3) to determine the standard weights

where the standard values are completely unknown:

ω j =
1 − E j

H

m −
∑m

j=1 E j
H

, j = 1, 2, ...,m. (3.18)

Step 4. For each alternative Ai, the weighted interval-valued information measure EωH(A) was
calculated by using (3.16).

Step 5. Ordering of substitutes:
According to the value obtained in Step 4, the scheme is ranked in ascending order, and the scheme

with the lowest EωH(A) value is the best scheme.
Using the scenarios mentioned by Dugenci [35] and Park et al. [36], we want to confirm the validity

of the suggested MCGDM approach for weighted exponential fuzzy entropy.
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Example 3. Choosing the best employees [35]
Six applicants passed the initial screening and went through additional testing in order to be

considered for a position as advertising experts with a service company. A review team comprising
three specialists was constituted by the company to assess each of the six candidates and carry out
interviews as part of the selection process. In order to make the selection, experts proposed five
criteria: communication skills (C1), international language fluency (C2) , performance stability (C3),
early experience (C4), and confidence (C5).

Use the MCGDM method of the interval-valued Pythagorean weighted exponential fuzzy entropy
measure, to select the best candidate, as follows:

Step 1. Determine the IVPFDM.
Three experts rated the six candidates based on five evaluation criteria, as shown in Tables 1–3.

Table 1. Expert 1’s IVPFDM R(1) for the personnel selection problem.

C1 C2 C3 C4 C5

A1 ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.4, 0.5], [0.2, 0.4]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩
A2 ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.3]⟩ ⟨[0.8, 0.9], [0.0, 0.1]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩
A3 ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩
A4 ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.8], [0.1, 0.2]⟩ ⟨[0.6, 0.8], [0.0, 0.1]⟩ ⟨[0.4, 0.5], [0.3, 0.4]⟩
A5 ⟨[0.4, 0.6], [0.1, 0.3]⟩ ⟨[0.5, 0.7], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.1, 0.2]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩
A6 ⟨[0.5, 0.8], [0.1, 0.2]⟩ ⟨[0.4, 0.6], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.4, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩

Table 2. Expert 2’s IVPFDM R(2) for the personnel selection problem.

C1 C2 C3 C4 C5

A1 ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.3, 0.4], [0.4, 0.6]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.4, 0.5], [0.2, 0.4]⟩
A2 ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.7, 0.9], [0.0, 0.1]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩
A3 ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.6, 0.8], [0.0, 0.1]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩
A4 ⟨[0.4, 0.5], [0.3, 0.4]⟩ ⟨[0.7, 0.9], [0.0, 0.1]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.6, 0.7], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩
A5 ⟨[0.5, 0.6], [0.3, 0.4]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.4, 0.6], [0.2, 0.3]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩
A6 ⟨[0.5, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.3, 0.5], [0.4, 0.5]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩

Table 3. Expert 3’s IVPFDM R(3) for the personnel selection problem.

C1 C2 C3 C4 C5

A1 ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.4, 0.5], [0.2, 0.4]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.4, 0.6], [0.3, 0.4]⟩
A2 ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩
A3 ⟨[0.4, 0.5], [0.2, 0.4]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.7, 0.9], [0.0, 0.1]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.4, 0.6], [0.2, 0.3]⟩
A4 ⟨[0.5, 0.6], [0.3, 0.4]⟩ ⟨[0.5, 0.7], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.0, 0.2]⟩ ⟨[0.7, 0.8], [0.0, 0.1]⟩ ⟨[0.4, 0.7], [0.1, 0.2]⟩
A5 ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.7, 0.9], [0.0, 0.1]⟩ ⟨[0.5, 0.7], [0.0, 0.1]⟩ ⟨[0.6, 0.7], [0.1, 0.2]⟩
A6 ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.5, 0.7], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩
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Step 2. On using (3.17), select the score of the candidate Al, l = 1, 2, ..., n selected by different
experts, expressed by zl j, and construct the interval-valued Pythagorean fuzzy decision matrix of the
expert weight vector, λ = (0.3, 0.5, 0.2)

′

. Table 4 represents the interval-valued Pythagorean fuzzy
matrix of the candidate selection questions.

Table 4. Values zl j in the collective IVPFDM.

C1 C2 C3 C4 C5

A1 ⟨[0.5542, 0.6547], ⟨[0.5181, 0.6188], ⟨[0.4147, 0.5150], ⟨[0.7000, 0.8000], ⟨[0.4337, 0.5940],
[0.2000, 0.3000]⟩ [0.2000, 0.3178]⟩ [0.2828, 0.4625]⟩ [0.1000, 0.2000]⟩ [0.1762, 0.3249]⟩

A2 ⟨[0.6000, 0.7241], ⟨[0.7000, 0.8000], ⟨[0.5229, 0.7000], ⟨[0.7353, 0.8855], ⟨[0.5940, 0.6967],
[0.1741, 0.2766]⟩ [0.1000, 0.2000]⟩ [0.1149, 0.2449]⟩ [0.0000, 0.1149]⟩ [0.1625, 0.2656]⟩

A3 ⟨[0.5627, 0.6664], ⟨[0.5988, 0.7564], ⟨[0.5813, 0.7287], ⟨[0.6177, 0.7427], ⟨[0.5181, 0.7206],
[0.1625, 0.2814]⟩ [0.1231, 0.2259]⟩ [0.0000, 0.2408]⟩ [0.1149, 0.2169]⟩ [0.1149, 0.2169]⟩

A4 ⟨[0.4542, 0.5940], ⟨[0.6405, 0.8299], ⟨[0.5229, 0.7353], ⟨[0.6232, 0.7560], ⟨[0.4542, 0.5988],
[0.2158, 0.3249]⟩ [0.0000, 0.1732]⟩ [0.0000, 0.2000]⟩ [0.0000, 0.1414]⟩ [0.1966, 0.3016]⟩

A5 ⟨[0.4734, 0.6232], ⟨[0.6331, 0.7748], ⟨[0.5471, 0.7287], ⟨[0.6188, 0.7836], ⟨[0.5229, 0.7000],
[0.1732, 0.3194]⟩ [0.1231, 0.2259]⟩ [0.0000, 0.2132]⟩ [0.0000, 0.1741]⟩ [0.1000, 0.2000]⟩

A6 ⟨[0.5229, 0.7560], ⟨[0.4734, 0.6232], ⟨[0.4170, 0.5542], ⟨[0.4734, 0.6967], ⟨[0.5542, 0.6829],
[0.1414, 0.2449]⟩ [0.1741, 0.2766]⟩ [0.2828, 0.3873]⟩ [0.1625, 0.2656]⟩ [0.1625, 0.2656]⟩

Step 3. On using (3.18), the following different standard weight vectors are obtained
ω = (0.1355, 0.2544, 0.1386, 0.3350, 0.1365)

′

.
Step 4. On using (3.16), and the above standard weight vectors ω, we calculate EωH(Al) for each of

the alternatives Al. The obtained values are given in Table 5.
Step 5. Rank the applicants.
Based on the EωH(Al) values and ranking presented in Table 5, we conclude that A2 is the best

candidate, consistent with the results in [34], which justified the MCGDM method of the interval-
valued Pythagorean weighted exponential fuzzy entropy measure.

Table 5. WIVIM values computed for the personnel selection issue.
EωH(Al) Rank

A1 0.1744 5
A2 0.1469 1
A3 0.1683 4
A4 0.1653 3
A5 0.1654 2
A6 0.1837 6

Example 4. The best air conditioner to choose [36]
In this case, the group decision-making issue involves a city development committee trying to

establish a municipal library. The library should select the most suitable air conditioning equipment
based on its specific needs. The air conditioning supplier offers four recommendations
Bl, (l = 1, 2, 3, 4) among the following five qualities: performance (q1), maintainability (q2), flexibility
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(q3), cost (q4), and safety (q5). Assuming that q = {q1, q2, q3, q4, q5} is a set of quality criteria, four
existing committee experts e = {e1.e2, e3, e4} are invited to evaluate the quality of the air conditioning,
corresponding to a weight vector of λ = (0.3, 0.2, 0.3, 0.2)T . About the quality standard
q = {q1, q2, q3, q4, q5}, the decision matrix R(i) = (r(i)

i j )n×m in the Pythagorean fuzzy environment. Each
element in the matrix indicates the evaluation value for the air conditioner under the corresponding
criterion, which is expressed by the Pythagorean fuzzy number.

Step 1. Determine the IVPFDM.
R(i) = (r(i)

i j )n×m shows the experts’ selection scores, as shown in Tables 6–9.

Table 6. IVPFDM R(1) by expert 1 for the best air-conditioner selection problem.
B1 B2 B3 B4

q1 ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.3, 0.4], [0.4, 0.6]⟩ ⟨[0.4, 0.5], [0.3, 0.5]⟩ ⟨[0.3, 0.5], [0.4, 0.5]⟩
q2 ⟨[0.3, 0.5], [0.4, 0.5]⟩ ⟨[0.1, 0.3], [0.2, 0.4]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.7, 0.8]⟩
q3 ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.3, 0.4], [0.4, 0.5]⟩ ⟨[0.5, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.5, 0.8]⟩
q4 ⟨[0.5, 0.7], [0.1, 0.2]⟩ ⟨[0.2, 0.4], [0.5, 0.6]⟩ ⟨[0.4, 0.6], [0.2, 0.3]⟩ ⟨[0.2, 0.3], [0.4, 0.6]⟩
q5 ⟨[0.1, 0.4], [0.3, 0.5]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.2, 0.3], [0.5, 0.6]⟩

Table 7. IVPFDM R(2) by expert 2 for the best air-conditioner selection problem.
B1 B2 B3 B4

q1 ⟨[0.4, 0.5], [0.2, 0.4]⟩ ⟨[0.3, 0.5], [0.4, 0.5]⟩ ⟨[0.4, 0.6], [0.3, 0.4]⟩ ⟨[0.3, 0.4], [0.4, 0.6]⟩
q2 ⟨[0.3, 0.4], [0.4, 0.6]⟩ ⟨[0.1, 0.3], [0.3, 0.7]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.6, 0.8]⟩
q3 ⟨[0.6, 0.7], [0.1, 0.2]⟩ ⟨[0.3, 0.4], [0.4, 0.5]⟩ ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.7, 0.8]⟩
q4 ⟨[0.5, 0.6], [0.1, 0.3]⟩ ⟨[0.2, 0.3], [0.6, 0.7]⟩ ⟨[0.4, 0.6], [0.3, 0.4]⟩ ⟨[0.3, 0.4], [0.4, 0.6]⟩
q5 ⟨[0.1, 0.3], [0.3, 0.5]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.2, 0.4]⟩ ⟨[0.2, 0.4], [0.5, 0.6]⟩

Table 8. IVPFDM R(3) by expert 3 for the best air-conditioner selection problem.
B1 B2 B3 B4

q1 ⟨[0.4, 0.7], [0.1, 0.2]⟩ ⟨[0.4, 0.5], [0.2, 0.4]⟩ ⟨[0.2, 0.4], [0.3, 0.4]⟩ ⟨[0.3, 0.4], [0.2, 0.4]⟩
q2 ⟨[0.3, 0.5], [0.3, 0.4]⟩ ⟨[0.2, 0.4], [0.4, 0.5]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.6, 0.8]⟩
q3 ⟨[0.6, 0.7], [0.1, 0.2]⟩ ⟨[0.4, 0.5], [0.3, 0.4]⟩ ⟨[0.5, 0.7], [0.1, 0.3]⟩ ⟨[0.1, 0.3], [0.5, 0.7]⟩
q4 ⟨[0.5, 0.6], [0.1, 0.3]⟩ ⟨[0.1, 0.2], [0.7, 0.8]⟩ ⟨[0.5, 0.7], [0.2, 0.3]⟩ ⟨[0.2, 0.3], [0.5, 0.7]⟩
q5 ⟨[0.3, 0.5], [0.4, 0.5]⟩ ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.6, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.6, 0.8]⟩

Table 9. IVPFDM R(4) by expert 4 for the best air-conditioner selection problem.
B1 B2 B3 B4

q1 ⟨[0.6, 0.7], [0.2, 0.3]⟩ ⟨[0.4, 0.5], [0.4, 0.5]⟩ ⟨[0.4, 0.5], [0.3, 0.4]⟩ ⟨[0.3, 0.4], [0.4, 0.5]⟩
q2 ⟨[0.3, 0.4], [0.3, 0.4]⟩ ⟨[0.1, 0.2], [0.2, 0.3]⟩ ⟨[0.6, 0.7], [0.1, 0.3]⟩ ⟨[0.1, 0.3], [0.6, 0.7]⟩
q3 ⟨[0.7, 0.8], [0.1, 0.2]⟩ ⟨[0.3, 0.4], [0.5, 0.6]⟩ ⟨[0.5, 0.8], [0.1, 0.2]⟩ ⟨[0.1, 0.2], [0.5, 0.8]⟩
q4 ⟨[0.5, 0.6], [0.1, 0.3]⟩ ⟨[0.2, 0.3], [0.4, 0.6]⟩ ⟨[0.4, 0.5], [0.2, 0.3]⟩ ⟨[0.2, 0.3], [0.4, 0.5]⟩
q5 ⟨[0.1, 0.2], [0.5, 0.7]⟩ ⟨[0.6, 0.7], [0.1, 0.2]⟩ ⟨[0.5, 0.6], [0.3, 0.4]⟩ ⟨[0.3, 0.4], [0.5, 0.6]⟩
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Step 2. Table 10 shows a collective IVPFDM with values indicated by zl j based on the expert weight
vector λ = (0.3, 0.2, 0.3, 0.2)T and the scores of the choices Bl, (l = 1, 2, 3, 4) made by various experts
for personnel selection by using (3.17).

Table 10. Collective IVPFDM with the values zl j.
B1 B2 B3 B4

q1 ⟨[0.4807, 0.6405], ⟨[0.3545, 0.4734], ⟨[0.3445, 0.4983], ⟨[0.3000, 0.4337],
[0.1625, 0.2814]⟩ [0.3249, 0.4939]⟩ [0.3000, 0.4277]⟩ [0.3249, 0.4850]⟩

q2 ⟨[0.3000, 0.4639], ⟨[0.1382, 0.3194], ⟨[0.6341, 0.7836], ⟨[0.1000, 0.2241],
[0.3464, 0.4638]⟩ [0.2670, 0.4516]⟩ [0.1000, 0.2169]⟩ [0.6284, 0.7789]⟩

q3 ⟨[0.6232, 0.7241], ⟨[0.3341, 0.4337], ⟨[0.5529, 0.7748], ⟨[0.1000, 0.2351],
[0.1231, 0.2259]⟩ [0.3837, 0.4850]⟩ [0.1000, 0.2259]⟩ [0.5348, 0.7686]⟩

q4 ⟨[0.5000, 0.6341], ⟨[0.1763, 0.3118], ⟨[0.4337, 0.6118], ⟨[0.2241, 0.3232],
[0.1000, 0.2656]⟩ [0.5486, 0.6746]⟩ [0.2169, 0.3178]⟩ [0.4277, 0.6059]⟩

q5 ⟨[0.1863, 0.3907], ⟨[0.6341, 0.7560], ⟨[0.5337, 0.6793], ⟨[0.2035, 0.3231],
[0.3622, 0.5348]⟩ [0.1231, 0.2259]⟩ [0.1762, 0.2980]⟩ [0.5281, 0.6541]⟩

Step 3. Equation (3.18) was used to produce the following criterion weight vector
ω = (0.0437, 0.2672, 0.3059, 0.1523, 0.2308)T .

Step 4. Now, using (3.17) and the weights of the ω criteria, we compute EωH(Bl) for each alternative
Bl, (l = 1, 2, 3, 4). Table 11 displays the calculated values.

Step 5. Sort the calculations.
Based on the calculation results and ranking results in Table 11, we find that B3 is the best choice,

which is the same as the results obtained by Park et al. [36], which can again justify the MCGDM
method of the interval-valued Pythagorean weighted exponential fuzzy entropy measure.

Table 11. WIVIM values for the best air conditioner selection problem.
EωH(Bl) Rank

B1 0.1862 4
B2 0.1847 3
B3 0.1725 1
B4 0.1743 2

4. Comparative analysis

This subsection presents a comparison between the Sun and Li [27] existing approach and the
proposed MCGDM method.

Entropy measure is an important tool to explain ambiguity. Pythagorean fuzzy sets only considers
a single membership value and non-membership value. In order to compare the proposed fuzzy set
entropy with the existing fuzzy entropy measure proposed by Sun and Li [27], this section will describe
the use of the personnel selection problem in Example 3, according to the four classical conversion
methods, i.e., (1): the minimum of the interval; (2): the maximum of the interval; (3): the average
and the geometric mean of the maximum value; (4): Maximum value geometric mean method. The
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IVPFDM R into four Pythagorean fuzzy decision-making matrices R1.R2,R3,R4, and the converted
results are as follows:

R1 =



(0.5528, 0.2) (0.5150, 0.2) (0.4024, 0.2828) (0.7, 0.1) (0, 4319, 0.1762)
(0.6, 0.1741) (0.7, 0.1) (0.5218, 0.1149) (0.7344, 0.0) (0.5898, 0.1625)

(0.5551, 0.1625) (0.5962, 0.0) (0.5778, 0.0) (0.6127, 0.1149) (0.5150, 0.1149)
(0.4523, 0.2158) (0.6378, 0.0) (0.5218, 0.0) (0.6224, 0.0) (0.4523, 0.1966)
(0.4719, 0.1732) (0.6296, 0.1231) (0.5375, 0.0) (0.6163, 0.0) (0.5218, 0.1)
(0.5218, 0.1414) (0.4719, 0.1741) (0.4084, 0.2828) (0.4719, 0.1625) (0.5528, 0.1625)


,

R2 =



(0.6536, 0.3) (0.6163, 0.3178) (0.5505, 0.4625) (0.8, 0.2) (0.5898, 0.3249)
(0.7234, 0.2766) (0.8, 0.2) (0.7, 0.2449) (0.8851, 0.1149) (0.6933, 0.2656)
(0.6603, 0.2814) (0.7538, 0.1597) (0.7219, 0.2408) (0.7405, 0.2169) (0.7186, 0.2169)
(0.5898, 0.3249) (0.8268, 0.1732) (0.7344, 0.2) (0.7551, 0.1414) (0.5962, 0.3016)
(0.6224, 0.3194) (0.7741, 0.2259) (0.7219, 0.2132) (0.7831, 0.1741) (0.7, 0.2)
(0.7551, 0.2449) (0.6224, 0.2766) (0.5528, 0.3873) (0.6933, 0.2656) (0.6822, 0.2656)


,

R3 =


(0.6032, 0.25) (0.56565, 0.2589) (0.47645, 0.37265) (0.75, 0.15) (0.51085, 0.25055)

(0.6077, 0.22195) (0.675, 0.07985) (0.64985, 0.1204) (0.6766, 0.1659) (0.6168, 0.1659)
(0.52105, 0.27035) (0.7323, 0.0866) (0.6281, 0.1) (0.68875, 0.0707) (0.52425, 0.2491)
(0.54715, 0.2463) (0.70185, 0.1745) (0.6297, 0.1066) (0.6997, 0.08705) (0.6109, 0.15)

(0.5, 0.19315) (0.54715, 0.22535) (0.4806, 0.33505) (0.5826, 0.21405) (0.6175, 0.21405)

 ,

R4 =



(0.6, 0.2449) (0.5634, 0.2521) (0.451, 0.3617) (0.7483, 0.1414) (0.5047, 0.2393)
(0.6588, 0.2194) (0.7483, 0.1414) (0.6044, 0.1677) (0.8062, 0.339) (0.6395, 0.2077)
(0.6054, 0.2138) (0.6704, 0.4434) (0.6458, 0.4907) (0.6736, 0.1578) (0.6083, 0.1578)
(0.5165, 0.2648) (0.7262, 0.0) (0.6229, 0.0) (0.6855, 0.0) (0.5193, 0.2448)
(0.542, 0.2352) (0.6981, 0.1668) (0.6229, 0.0) (0.6947, 0.0) (0.6044, 0.1414)
(0.6277, 0.186) (0.5419, 0.2195) (0.4751, 0.3309) (0.572, 0.2077) (0.6141, 0.2077)


.

Moreover, we use the entropy measures provided by Sun and Li [27] and Peng and Yang [21] to
compute the performance of the created MCGDM technique as follows:

Sun and Li [27] interval-valued Pythagorean fuzzy entropy measure :

ES un(P) =
1
n

n∑
i=1

µ̃−p(xi)2∧ ν̃−p(xi)2 + µ̃+p(xi)2∧ ν̃+p(xi)2

µ̃−p(xi)2∨ ν̃−p(xi)2 + µ̃+p(xi)2∨ ν̃+p(xi)2 ,

Peng et al. [21] Pythagorean fuzzy entropy measure :

EPeng(P) =
1
|X|

∑
x j∈X

(µp(x j))2∧(νp(x j))2

(µp(x j))2∨(νp(x j))2 .

In order to illustrate the advantages of the MCGDM method of interval Pythagorean weighted
exponential fuzzy entropy ES un(P), chose to use the interval-valued Pythagorean fuzzy entropy scheme
proposed by Sun and Li [27] and the Pythagorean fuzzy entropy measure EPeng(P) proposed by Peng
et al. [21]. The entropy of Ai, (i = 1, 2, 3, 4, 5, 6) in the four Pythagorean fuzzy decision-making
matrices R1,R2,R3,R4 were calculated separately, and the results are shown in Table 12.
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Table 12. Results of the comparative study.
Method Ranking order of alternatives Best alternative
ES un(P) R : A2 < A3 < A5 < A4 < A6 < A1 A2

R1 : A3 < A5 < A2 < A4 < A6 < A1 A3

EPeng(P) R2 : A2 < A3 < A5 < A4 < A6 < A1 A2

R3 : A3 < A2 < A5 < A4 < A6 < A1 A3

R4 : A3 < A5 < A2 < A4 < A6 < A1 A3

EH(P) R : A2 < A3 < A5 < A4 < A6 < A1 A2

It can be ascertained from Table 12 that the sorting results for the Pythagorean fuzzy
decision-making matrix R2 and the method proposed by Sun and Li show that the proposed method
comprehensively considered most of the decision-making information, whereas the decision matrices
R1,R3,R4 ignored the information in the conversion process, so the Pythagorean fuzzy entropy
measure can be applied to select the optimal solution for many practical problems. It shows that the
IVPFS is more flexible and extensive than the traditional Pythagorean fuzzy set. It can also be easily
seen that the ranking scheme obtained by the proposed MCGDM method is similar to the sorting
order of the existing sorting methods, and that the best selection scheme is consistent with the results
calculated via the proposed decision-making method and entropy.

5. Concluding remarks

(1) the interval-valued Pythagorean fuzzy entropy measure has the following benefits: The
problem can be solved by using the interval-valued Pythagorean fuzzy entropy measure; (2) IVPFSs
can represent different types of multi-attribute decision-making information, with good flexibility and
practicability; (3) the interval-valued Pythagorean fuzzy entropy measure is an important
measurement tool to solve multi-attribute decision-making problems.

As a generalization of Pythagorean fuzzy sets, IVPFSs are frequently utilized in cluster analysis,
pattern recognition, and multi-attribute decision making. The idea of an interval-valued intuitionistic
fuzzy entropy definition has been used in this research to construct an interval-valued Pythagorean
fuzzy entropy measure following the establishment of the axiomatic criterion of this type of measure.
Based on the example of an interval-valued intuitionistic fuzzy entropy measure, the proposed entropy
has been used to solve the MCGDM problem in the interval-valued Pythagorean fuzzy environment.
Lastly, the suggested method’s reasonable stability and applicability to the solution selection problem
have been demonstrated through a comparative study of the results in the existing literature, and this
has been supplemented with the example results to support the conclusions drawn from the examples.
As a result, the approach may effectively handle real-world decision-making problems and act as a
substitute for the current approaches. We plan to extend the application of this strategy to more complex
multi-objective optimization problems, pattern recognition, clustering, and economic decision-making
problems.
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