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1. Introduction

The uncertainty principle is one of the most famous theories of quantum mechanics. Gabor’s
work [10] is considered to be the foundation for the study of uncertainty principle in the area of signal
analysis. Since then, rich forms of the uncertainty principle have appeared in mathematical forms.
In [1–4,6,7,16,17], the uncertainty principle for signal functions defined on the real line, on the circle,
on the Euclidean space, and on the sphere, etc., were intensively studied. In [4], the so called phase
and amplitude derivatives of signal function are defined in the sense of the Fourier transform, so it
provides us a method for studying the uncertainty principle based on the Fourier transform of signal
functions. In [5,13], the theory of uncertainty principle is generalized from the complex domain to the
hypercomplex domain using quaternion algebras, associated with the quaternion Fourier transform.
The algorithm in [5] provides us a method to estimate the probability by the data and predict whether
the missing signals can be recovered. In [8, 15], the uncertainty principle for doubly periodic signal
functions was studied. A doubly periodic signal function is regarded as a function of L2(R2). The
uncertainty principle for signal functions belonging to L2(Rn) was studied in [11], and the result is the
following theorem:
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Theorem 1.1. [11] Let h ∈ L2(Rn) and let ĥ be the Fourier transformation of h. Then for any
x0, ξ0 ∈ R

n

(
∫
Rn
|ξ − ξ0|

2|ĥ(ξ)|2dξ)(
∫
Rn
|x − x0|

2|h(x)|2dx) ≥
n2

16π2 ‖h‖
4
2. (1.1)

The equality holds if and only if h(x) = ce2πix·ξ0e−α|x−x0 |
2/2, where α > 0 and c ∈ C.

Here, ĥ, the Fourier transform of h, is given by

ĥ(ω) :=
∫
Rn

h(t)e−2πiω·tdt. (1.2)

Let t = (t1, t2, · · · , tn) ∈ Rn, and let f j ∈ L2(Rn), j = 1, . . . ,m. Denote by f = ( f1, · · · , fm) a vector-
valued function from Rn to Rm. Thus, f ∈ L2(Rn,Rm), and the norm of f can be written as

‖ f ‖2 =

∫
Rn
| f (t)|2dt =

m∑
j=1

∫
Rn
| f j(t)|2dt.

Since each entry f j of f is in L2(Rn), the Fourier transform of f j is well defined. As a consequence, the
Fourier transform of f is denoted by

f̂ := ( f̂1, f̂2, · · · , f̂m),

where f̂ j are given by (1.2). In the following definition, we define several concepts which are frequently
used in the rest of this paper.

Definition 1.2. Let f ∈ L2(Rn,Rm). The mean of time t and of Fourier frequency ω is defined by

〈t〉 := (
m∑

j=1

∫
Rn

t1| f j(t)|2dt,
m∑

j=1

∫
Rn

t2| f j(t)|2dt, · · · ,
m∑

j=1

∫
Rn

tn| f j(t)|2dt),

and by

〈ω〉 := (
m∑

j=1

∫
Rn
ω1| f̂ j(ω)|2dω,

m∑
j=1

∫
Rn
ω2| f̂ j(ω)|2dω, · · · ,

m∑
j=1

∫
Rn
ωn| f̂ j(ω)|2dω).

Let 〈tk〉 =
∑m

j=1

∫
Rn tk| f j(t)|2dt and let 〈ωk〉 =

∑m
j=1

∫
Rn ωk| f̂ j(ω)|2dω for k = 1, 2, · · · , n. The variance of

t and of ω is defined by

σ2
t :=

n∑
k=1

m∑
j=1

∫
Rn
|tk − 〈tk〉|

2| f j(t)|2dt,

and by

σ2
ω :=

n∑
k=1

m∑
j=1

∫
Rn
|ωk − 〈ωk〉|

2| f̂ j(ω)|2dω.
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In Theorem 1.1, inequality (1.1) is the uncertainty principle for f ∈ L2(Rn,Rm) with the special case
when n ≥ 2 and m = 1. In our notations, it can be represented as

σ2
tσ

2
ω ≥

n2

16π2 ‖ f ‖
4
2. (1.3)

When m = 1, the definitions of the means and the variances about time and about frequency of the
signal function f (t) = ρ(t)eiϕ(t) ∈ L2(Rn) can be found in [14]. Meanwhile, the following theorem
proposes a stronger form of the uncertainty principle for f ∈ L2(Rn) when n ≥ 2.

Theorem 1.3. [14] Let f (t) = ρ(t)eiϕ(t) ∈ L2(Rn) with ‖ f ‖2 = 1. Suppose that the gradients ∇ρ, ∇ϕ,
and ∇ f all exist and that ∂ f

∂tk
, tk f ∈ L2(Rn) for k = 1, 2, · · · , n. Then

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

∫
Rn
|(tk − 〈tk〉)(

∂ϕ(t)
∂tk
− 2π〈ωk〉)|ρ2(t)dt

]2
. (1.4)

If ∂ϕ

∂tk
are continuous and ρ(t) , 0 almost everywhere, then the equality of (1.4) holds if and only if f is

in one of the following 2n forms

f (t) = d1e−λ1 |t−〈t〉|2/2e
i
2λ2

∑n
k=1(−1)`k (tk−〈tk〉)2+c+2πit·〈ω〉, k = 1, 2, · · · , n,

where λ1 > 0, λ2 > 0, `k ∈ N+, and d1, λ1 satisfy the equation d
2
n
1

√
π
λ1

= 1.

In this paper, we propose a form of uncertainty principle for f ∈ L2(Rn,Rm) with n,m ≥ 2:

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

m∑
j=1

∫
Rn
|(tk − 〈tk〉)(

∂ϕ j

∂tk
− 2π〈ωk〉)|ρ2

j(t)dt
]2
. (1.5)

It is straightforward to verify that (1.5) reduces to (1.4) if m = 1. Hence, (1.5) can be regarded as an
appropriate generalization of (1.4) into the case of vector-valued functions.

In Theorem 1.3, it is required that ∇ρ, ∇ϕ, and ∇ f all exist. However, general signal functions do
not have such good properties. We establish Fourier partial derivatives of f and prove a form of the
uncertainty principle, which is

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

∫
Rn
|(tk − 〈tk〉)(Dkϕ(t) − 2π〈ωk〉)|ρ2(t)dt

]2
, (1.6)

where Dkϕ(t) are properly defined in our proof. Easy verification shows that (1.6) reduces to (1.4) if
∇ρ, ∇ϕ, and ∇ f all exist. Therefore, (1.6) can be regard as a generalization of (1.4).

This paper is organized as follows. In Section 2, we prove a form of uncertainty principle for
vector-valued signal functions f ∈ L2(Rn,Rm) with conditions that the classical first order partial
derivatives of f j, ρ j, and ϕ j exist at all points, and that ∂ f j/∂tk, tk f j ∈ L2(Rn) for j = 1, . . . ,m and
k = 1, . . . , n. This result generalizes the uncertainty principle obtained in [14]. In Section 3, we
assume that t j f (t), ω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n for signal functions f ∈ L2(Rn). The Fourier phase
and amplitude derivatives ∇Fϕ(t) and ∇Fρ(t) are properly defined. We prove a form of the uncertainty
principle based on these Fourier transform derivatives, which also generalizes the result in [14].

AIMS Mathematics Volume 9, Issue 5, 12494–12510.



12497

2. Uncertainty principle for vector-valued functions

In this section, we study uncertainty principle for functions f ∈ L2(Rn,Rm). Each entry of f =

( f1, f2, · · · , fm) can be written as f j(t) = ρ j(t)eiϕ j(t), j = 1, . . . ,m. We assume that the classical first
order partial derivatives of f j, ρ j, and ϕ j exist at all points, and that ∂ f j/∂tk, tk f j ∈ L2(Rn) for j=1, . . . ,m
and k = 1, . . . , n. The main theorem of this section is Theorem 2.3. We will use the relation∫

Rn

n∑
k=1

tkρ j
∂ρ j

∂tk
dt = −

n
2

∫
Rn
|ρ j(t)|2dt (2.1)

in the proof of the main theorem. Equality (2.1) holds because of∫
Rn

n∑
k=1

tkρ j
∂ρ j

∂tk
dt =

1
2

n∑
k=1

∫
Rn

tkρ j
∂ρ j

∂tk
+ tkρ j

∂ρ j

∂tk
dt

=
1
2

n∑
k=1

( ∫
Rn
−
∂(tkρ j)
∂tk

ρ jdt +

∫
Rn

tkρ j
∂ρ j

∂tk
dt

)
= −

1
2

n∑
k=1

∫
Rn

[∂(tkρ j)
∂tk

− tk
∂ρ j

∂tk

]
ρ jdt

= −
n
2

∫
Rn
|ρ j(t)|2dt.

Here, we have used the fact that if f j ∈ L2(Rn), then ρ j = | f j| → 0 when |t| → ∞.

Lemma 2.1. Let f = ( f1, f2, · · · , fm) ∈ L2(Rn,Rm) and write f j(t) = ρ j(t)eϕ j(t), j = 1, 2, · · · ,m.
Suppose that 〈ω〉 = 0 and that ∇ρ j(t), ∇ϕ j(t), and ∇ f j(t) all exist and ∂ f j(t)

∂tk
∈ L2(Rn) for j = 1, 2, · · · ,m,

k = 1, 2, · · · , n. Then,

σ2
ω =

1
4π2

m∑
j=1

n∑
k=1

∫
Rn

(∂ρ j(t)
∂tk

)2
dt +

1
4π2

m∑
j=1

n∑
k=1

∫
Rn
ρ2

j(t)
(∂ϕ j(t)
∂tk

)2
dt.

Proof. By the definition of σ2
ω and by the assumption of 〈ω〉 = 0, it follows that

σ2
ω =

∫
Rn
|ω|2| f̂ (ω)|2dω

=

m∑
j=1

∫
Rn
|ω|2| f̂ j(ω)|2dω

=

m∑
j=1

1
4π2

∫
Rn
|∇̂ f j(ω)|2dω

=
1

4π2

m∑
j=1

∫
Rn
|∇ f j(t)|2dt

=
1

4π2

m∑
j=1

n∑
k=1

∫
Rn
|
∂ f j(t)
∂tk
|2dt
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=
1

4π2

m∑
j=1

n∑
k=1

∫
Rn

(∂ρ j(t)
∂tk

eiϕ j(t) + iρ j(t)
∂ϕ j(t)
∂tk

eiϕ j(t)
)2

dt

=
1

4π2

m∑
j=1

n∑
k=1

∫
Rn

(∂ρ j(t)
∂tk

)2
+ ρ2

j(t)
(∂ϕ j(t)
∂tk

)2
dt

=
1

4π2

m∑
j=1

n∑
k=1

∫
Rn

(∂ρ j(t)
∂tk

)2
dt +

1
4π2

m∑
j=1

n∑
k=1

∫
Rn
ρ2

j(t)
(∂ϕ j(t)
∂tk

)2
dt.

This completes the proof. �

The following lemma proves a form of uncertainty for f ∈ L2(Rn,Rm) with the extra assumption
that 〈t〉 = 0 and 〈ω〉 = 0. The main result of Theorem 2.3 can be derived easily from the following
lemma.

Lemma 2.2. Let f = ( f1, f2, · · · , fm) ∈ L2(Rn,Rm) with ‖ f ‖2 = 1, and write f j(t) = ρ j(t)eϕ j(t),
j=1, 2, · · · ,m. Suppose that 〈t〉 = 0, 〈ω〉 = 0, ∇ρ j(t), ∇ϕ j(t), and ∇ f j(t) all exist, and that
∂ f j(t)
∂tk

, tk f j(t) ∈ L2(Rn), j = 1, 2, · · · ,m, k = 1, 2, · · · , n. Then

σ2
ωσ

2
t ≥

n2

16π2 +
1

4π2

[ ∫
Rn

n∑
k=1

m∑
j=1

|tk
∂ϕ j

∂tk
|| f j|

2dt
]2
. (2.2)

If ∂ϕ j

∂tk
are continuous and ρ j , 0 almost everywhere, then the equality of (2.2) holds if and only if

f j(t) = d je−λ1 |t|2/2e
i
2λ2

∑n
k=1(−1)`k t2k + C, j = 1, . . . ,m. (2.3)

Here, λ j1 , λ j2 , and {d j}
m
j=1 are positive real numbers, while {`k}

n
k=1 are positive integers.

Proof. By Lemma 2.1, it follows that

σ2
tσ

2
ω =

1
4π2

m∑
j=1

n∑
k=1

∫
Rn

(∂ρ j

∂tk

)2
dt

∫
Rn

m∑
j=1

n∑
k=1

|tk|
2| f j|

2dt

+
1

4π2

m∑
j=1

n∑
k=1

∫
Rn
ρ2

j

(∂ϕ j

∂tk

)2
dt

∫
Rn

m∑
j=1

n∑
k=1

|tk|
2| f j|

2dt.

So, in order to prove (2.2), we could prove two separate inequalities. The first inequality can be proved
as follows:

1
4π2 |

∫
Rn

∑
k, j

∂ρ j

∂tk
tkρ jdt|2 ≤

1
4π2

( ∫
Rn

∑
k, j

|
∂ρ j

∂tk
||tk|ρ jdt

)2

≤
1

4π2

∫
Rn

∑
k, j

(∂ρ j

∂tk

)2
dt

∫
Rn

∑
k, j

|tk|
2| f j(t)|2dt.

(2.4)

Equality (2.1) shows that ∫
Rn

n∑
k=1

tkρ j
∂ρ j

∂tk
dt = −

n
2

∫
Rn
|ρ j|

2dt.
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Thus,

1
4π2

∫
Rn

∑
k, j

(∂ρ j

∂tk

)2
dt

∫
Rn

∑
k, j

|tk|
2| f j|

2dt

≥
1

4π2 | −
n
2

m∑
j=1

∫
Rn
|ρ j|

2dt|2

=
n2

16π2 (
∫
Rn
| f |2dt)2

=
n2

16π2 .

(2.5)

The second inequality holds because of

1
4π2

m∑
j=1

n∑
k=1

∫
Rn
ρ2

j

(∂ϕ j

∂tk

)2
dt

∫
Rn

m∑
j=1

n∑
k=1

|tk|
2| f j|

2dt

≥
1

4π2 (
∫
Rn

∑
k, j

|
∂ϕ j

∂tk
||tk|ρ

2
jdt)2

=
1

4π2 (
∫
Rn

∑
k, j

|
∂ϕ j

∂tk
tk|ρ

2
jdt)2.

(2.6)

By (2.5) and (2.6), inequality (2.2) follows.
Next, we discuss the conditions such that the equality of (2.2) holds. The second inequality of (2.4)

is going to be an equality if and only if there exists λ1 ∈ R with λ1 > 0 such that

|
∂ρ j

∂tk
| = λ1|tk|ρ j, k = 1, . . . , n, j = 1, . . . ,m,

for all t ∈ Rn. The first inequality of (2.4) is going to be an equality if and only if either

∂ρ j

∂tk
= λ1tkρ j(t), k = 1, . . . , n, j = 1, . . . ,m

or

∂ρ j

∂tk
= −λ1tkρ j(t), k = 1, . . . , n, j = 1, . . . ,m

is true. If the first one is true, it follows that

ρ j(t) = d jeλ1 |t|2/2, j = 1, . . . ,m.

Obviously, the function ρ j(t) = d jeλ1 |t|2/2 is not in L2(Rn). Therefore, we must have

∂ρ j

∂tk
= −λ1tkρ j(t), k = 1, . . . , n, j = 1, . . . ,m
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and then

ρ j(t) = d je−λ1 |t|2/2, j = 1, . . . ,m.

Here, d j are positive real numbers.
The equality of (2.6) holds if and only if there exists λ2 ∈ R with λ2 > 0 such that

ρ j|
∂ϕ j

∂tk
| = λ2|tk|ρ j, k = 1, . . . , n, j = 1, . . . ,m,

for all t ∈ Rn. Since ρ j(t) , 0 almost everywhere and since ∂ϕ j

∂tk
are continuous for k = 1, . . . , n,

j = 1, . . . ,m, we have

|
∂ϕ j

∂tk
| = λ2|tk|, k = 1, . . . , n, j = 1, . . . ,m.

When k = 1, we have

∂ϕ j

∂t1
= ±λ2t1.

Thus,

ϕ j(t) = ±
1
2
λ2t2

1 + C1. (2.7)

When k = 2, we have

∂ϕ j

∂t2
= ±λ2t2. (2.8)

Plugging (2.7) into (2.8) implies that

C1 = ±
1
2
λ2t2

1 + C2,

and then

ϕ j(t) = ±
1
2
λ2t2

1 ±
1
2
λ2t2

2 + C2.

Continue this process, when k = n, we have

ϕ j(t) = (−1)`1
1
2
λ2t2

1 + (−1)`2
1
2
λ2t2

2 + · · · + (−1)`n
1
2
λ2t2

n + C,

where `1, . . . , `n are positive integers. Combining the formulas of ρ j we have obtained, then

f j(t) = ρ j(t)eiϕ j(t) = d je−λ1 |t|2/2e
i
2λ2

∑n
k=1(−1)`k t2k + C, j = 1, . . . ,m.

Therefore, the equality of (2.2) holds if and only if every f j(t) is in one of the forms of (2.3). This
completes the proof. �
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By Lemma 2.2, we can prove a form of uncertainty principle for f ∈ L2(Rn,Rm) without the
assumption that 〈t〉 = 0 and 〈ω〉 = 0, which is the main result of this section. In the proof of the
following theorem, the notations ρg, ϕg, 〈t〉g, 〈ω〉g, σg

t , and σg
ω represent the corresponding notation

with respect to the function g.

Theorem 2.3. Let f = ( f1, f2, · · · , fm) ∈ L2(Rn,Rm) with ‖ f ‖2 = 1, and write f j(t) = ρ j(t)eϕ j(t),
j=1, 2, · · · ,m. Suppose that∇ρ j(t), ∇ϕ j(t), and∇ f j(t) all exist and ∂ f j(t)

∂tk
, tk f j(t) ∈ L2(Rn), j=1, 2, · · · ,m,

k = 1, 2, · · · , n. Then

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

m∑
j=1

∫
Rn
|(tk − 〈tk〉)(

∂ϕ j

∂tk
− 2π〈ωk〉)|ρ2

j(t)dt
]2
. (2.9)

If ∂ϕ j

∂tk
are continuous and ρ j , 0 almost everywhere, then the equality of (2.9) holds if and only if

f j(t) = e2πit·〈ω〉d je−λ1 |t−〈t〉|2/2e
i
2λ2

∑n
k=1(−1)`k (tk−〈tk〉)2

+ C, j = 1, . . . ,m.

Here, λ j1 , λ j2 , and {d j}
m
j=1 are positive real numbers, while {`k}

n
k=1 are positive integers.

Proof. Now the quantities 〈t〉 and 〈ω〉 are not 0. Let

g j(t) = e−2πi(t+〈t〉)·〈ω〉 f j(t + 〈t〉) = ρ
g
j(t)e

iϕg
j (t),

for j = 1, 2, · · · ,m. Then g = (g1, . . . , gm) ∈ L2(Rn,Rm). The mean of time t of the signal g is

〈tk〉g =

m∑
j=1

∫
Rn

tk|g j(t)|2dt

=

m∑
j=1

∫
Rn

tk| f j(t + 〈t〉)|2dt

=

m∑
j=1

∫
Rn

(tk − 〈tk〉)| f j(t)|2dt

=

m∑
j=1

∫
Rn

tk| f j(t)|2dt − 〈tk〉

m∑
j=1

∫
Rn
| f j(t)|2dt

=0.

Also, it is straightforward to obtain that

ĝ j(ω) = e2πiω·〈t〉 f̂ j(ω + 〈ω〉),

and then

〈ωk〉g = 0.

Therefore, the vector-valued function g satisfies the conditions of Lemma 2.2. Then we have

(σg
t )2(σg

ω)2 ≥
n2

16π2 +
1

4π2

[ ∫
Rn

n∑
k=1

m∑
j=1

|tk

∂ϕ
g
j

∂tk
||g j|

2dt
]2
. (2.10)
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Because of ∫
Rn
|tk|

2|g j(t)|2dt =

∫
Rn
|tk − 〈tk〉|

2| f j(t)|2dt

and ∫
Rn
|ωk|

2|ĝ j(ω)|2dω =

∫
Rn
|ωk − 〈ωk〉|

2| f̂ j(ω)|2dω,

we have (σg
t )2 = σ2

t and (σg
ω)2 = σ2

ω. Also, since

‖g‖2 = ‖ f ‖2 = 1

and ∫
Rn

n∑
k=1

|tk

∂ϕ
g
j(t)

∂tk
|(ρg

j)
2(t)dt =

∫
Rn

n∑
k=1

|(tk − 〈tk〉)(
∂ϕ j

∂tk
− 2π〈ωk〉)|ρ2

j(t)dt,

we obtain (2.9), which is

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

m∑
j=1

∫
Rn
|(tk − 〈tk〉)(

∂ϕ j

∂tk
− 2π〈ωk〉)|ρ2

j(t)dt
]2
.

The equality of (2.9) holds if and only if the equality of (2.10) holds. By Lemma 2.2, the equality
of (2.10) holds if and only if

g j(t) = d je−λ1 |t|2/2e
i
2λ2

∑n
k=1(−1)`k t2k + C.

By the relationship between f and g, i.e.,

f j(t) = e2πit·〈ω〉g j(t − 〈t〉),

the equality of (2.9) holds if and only if

f j(t) = e2πit·〈ω〉d je−λ1 |t−〈t〉|2/2e
i
2λ2

∑n
k=1(−1)`k (tk−〈tk〉)2

+ C.

This completes the proof. �

3. Fourier gradient and uncertainty principle

In this section, we go back to the situation of m = 1. The so called Fourier phase and amplitude
derivatives of f ∈ L2(Rn) are defined. Because, in general, the signal functions may not have ideal
smoothness conditions, such as that ∇ρ, ∇ϕ, and ∇ f all exist, which are assumed in Theorem 1.3.
Lemma 3.1 guarantees that the Fourier transform derivative of f ∈ L2(R) is valid once t f (t), ω f̂ (ω) ∈
L2(R). This lemma is also fundamental for Definition 3.2.
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Lemma 3.1. [4] Assume that f (t), t f (t), and ω f̂ (ω) ∈ L2(R). Then f̂ ∈ L1(R), and f (t) is almost
everywhere equal to a function in C0(R). Moreover, there exists the Fourier transform derivative
(D f )(t) ∈ L2(R) of f such that (D f )∧(ω) = iω f̂ (ω) ∈ L2(R) and

lim
a→0

∫ +∞

−∞

|a−1( f (t + a) − f (t)) − (D f )(t)|2dt = 0.

Therefore,

lim inf
a→0

|a−1( f (t + a) − f (t)) − (D f )(t)| = 0

holds almost everywhere on R. If, in particular, f has classical derivatives f ′ almost everywhere on R,
then (D f )(t) = f ′ almost everywhere on R.

It is worth noting that the definition of the Fourier transform in [4] is slightly different from our
definition. They define the Fourier transform of f to be

f̂ (ω) :=
1
√

2π

∫ ∞

−∞

f (t)e−iωtdt.

However, we define the Fourier transform by (1.2). Under our definition, f̂ ′(ω) = 2πiω f̂ (ω), and then
the definition of Fourier derivative should be slightly changed. It should be a function (D f )(t) ∈ L2(R)
such that (D f )∧(ω) = 2πiω f̂ (ω). Now we can introduce our definition of the Fourier partial derivative.

Definition 3.2. Let f ∈ L2(Rn). If t j f (t), ω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n, and denote
g j(ω) :=2πiω j f̂ (ω), j = 1, . . . , n. Then the Fourier transform partial derivative of f with respect
to t j is defined by

D j f (t) := F −1(g j)(t).

Here, F −1 is the inverse Fourier transform operator.

Call ∇F := (D1,D2, · · · ,Dn) the Fourier gradient operator, and we have

∇F f = (D1 f ,D2 f , · · · ,Dn f ).

Definition 3.3. Let f (t) ∈ L2(Rn). Suppose that ω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n. Rewrite f (t) = ρ(t)eiϕ(t).
The Fourier transform phase and amplitude derivatives are defined to be

(D jρ)(t) :=

ρ(t) Re (D j f )(t)
f (t) , if f (t) , 0,

0, if f (t) = 0,

and

(D jϕ)(t) :=

Im (D j f )(t)
f (t) , if f (t) , 0,

0, if f (t) = 0.

Here, j = 1, . . . , n.
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The following lemma proves that f (t) is identical with an absolutely continuous function almost
everywhere. It is crucial in one proof, which concerns the uncertainty principle studied by the Fourier
transform of [4].

Lemma 3.4. [4] Assume that 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ 2, f (t) ∈ Lp1(R), and h(ω) = iω f̂ (ω) ∈ Lp2(R).
Let

g(t) =

∫ t

a
(D f )(u)du + f (a),

where a is a Lebesgue point of f . Then f (t) is identical almost everywhere with the absolutely
continuous function g(t), and

(D f )(t) = g′(t) for almost all t ∈ R.

The following lemma generalizes Lemma 3.4 to a higher dimensional case.

Lemma 3.5. Assume that f (t) ∈ L2(Rn), and h j(ω) = iω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n. Let

g(t) =

n∑
j=1

∫ t j

a j

(D j f )(a1, . . . , u j, . . . , an)du j + f (a),

where a is a Lebesgue point of f . Then f (t) is identical almost everywhere with g(t), and

(D j f )(t) =
∂g
∂t j

(t) for almost all t ∈ Rn and j = 1, . . . , n.

Moreover, g is absolutely continuous in each argument.

Proof. Let a = (a1, . . . , an) be a Lebesgue point of f . It can be observed that

g(a1, . . . , t j, . . . , an) =

∫ t j

a j

(D j f )(a1, . . . , u j, . . . , an)du j + f (a).

By Lemma 3.4, f (a1, . . . , t j, . . . , an) is identical almost everywhere with the absolutely continuous
function g(a1, . . . , t j, . . . , an), and

(D j f )(a1, . . . , t j, . . . , an) =
∂g
∂t j

(a1, . . . , t j, . . . , an) for almost all t j ∈ R.

Then we have g(a) = f (a) and

(D j f )(a) =
∂g
∂t j

(a), j = 1, . . . , n.

Since the points of Rn are almost everywhere Lebesgue points of f , we conclude that g(t) = f (t)
almost everywhere; meanwhile,

(D j f )(t) =
∂g
∂t j

(t) for almost all t ∈ Rn and j = 1, . . . , n.

This completes the proof. �
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In the following lemma, the variance of ω, which is σ2
ω, of a signal function is represented by its

Fourier phase and amplitude derivatives.

Lemma 3.6. Assume that f (t) ∈ L2(Rn), and h j(ω) = iω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n. Then

σ2
ω =

1
4π2

∫
Rn
|∇Fρ|

2(t) +
1

4π2

∫
Rn
|∇Fϕ(t) − 2π〈ω〉|2ρ2(t)dt.

Proof. Since f (t) ∈ L2(Rn) and ω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n, σ2
ω is well defined. By the definition of

σ2
ω, we know that

σ2
ω =

n∑
k=1

∫
Rn
|ωk − 〈ωk〉|

2| f̂ (ω)|2dω.

For each fixed k, we obtain that∫
Rn
|ωk − 〈ωk〉|

2| f̂ (ω)|2dω

=

∫
Rn

(ωk − 〈ωk〉) f̂ (ω)(ωk − 〈ωk〉) f̂ (ω)dω

=

∫
Rn

[
−i
2π

(Dk f )(t) − 〈ωk〉 f (t)][
−i
2π

(Dk f )(t) − 〈ωk〉 f (t)]dt.

The last equality follows from the Plancherel theorem, which states that ‖ f̂ ‖L2 = ‖ f ‖L2 , see [12, p.156]
for details. Also,∫

Rn
[
−i
2π

(Dk f ) − 〈ωk〉 f ][
−i
2π

(Dk f ) − 〈ωk〉 f ]dt

=
1

4π2

∫
Rn

(Dk f )(Dk f )dt +
i

2π

∫
Rn
〈ωk〉(Dk f ) f̄ dt −

i
2π

∫
Rn
〈ωk〉 f (Dk f )dt +

∫
Rn
〈ωk〉

2| f |2dt

=
1

4π2

∫
Rn\E

∣∣∣Dk f
f

∣∣∣2| f |2dt −
〈ωk〉

π

∫
Rn

Im[(Dk f ) f̄ ]dt +

∫
Rn
〈ωk〉

2| f |2dt,

where E := {t ∈ Rn : f (t) = 0}. Then we have∫
Rn
|ωk − 〈ωk〉|

2| f̂ (ω)|2dω =
1

4π2

∫
Rn\E

∣∣∣Dk f
f

∣∣∣2| f |2dt −
〈ωk〉

π

∫
Rn

Im[(Dk f ) f̄ ]dt +

∫
Rn
〈ωk〉

2| f |2dt.

Because of

1
4π2

∫
Rn\E

∣∣∣Dk f
f

∣∣∣2| f |2dt

=
1

4π2

∫
Rn\E

Re2[
(Dk f )(t)

f (t)
]| f (t)|2dt +

1
4π2

∫
Rn\E

Im2[
(Dk f )(t)

f (t)
]| f (t)|2dt

=
1

4π2

∫
Rn

(Dkρ)2(t)dt +
1

4π2

∫
Rn

(Dkϕ)2(t)| f (t)|2dt
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and

〈ωk〉

π

∫
Rn

Im[(Dk f ) f̄ ]dt =
〈ωk〉

π

∫
Rn

(Dkϕ)(t)| f (t)|2dt.

It follows that∫
Rn
|ωk − 〈ωk〉|

2| f̂ (ω)|2dω

=
1

4π2

∫
Rn

(Dkρ)2dt +
1

4π2

∫
Rn

(Dkϕ)2| f |2dt −
〈ωk〉

π

∫
Rn

(Dkϕ)| f |2dt +

∫
Rn
〈ωk〉

2| f |2dt

=
1

4π2

∫
Rn

(Dkρ)2dt +
1

4π2

∫
Rn

[(Dkϕ) − 2π〈ωk〉]2| f |2dt.

Therefore we obtain that

σ2
ω =

n∑
k=1

∫
Rn
|ωk − 〈ωk〉|

2| f̂ (ω)|2dω

=
1

4π2

n∑
k=1

∫
Rn

(Dkρ)2dt +
1

4π2

n∑
k=1

∫
Rn

[(Dkϕ) − 2π〈ωk〉]2| f |2dt

=
1

4π2

∫
Rn
|∇Fρ|

2(t) +
1

4π2

∫
Rn
ρ2(t)|∇Fϕ(t) − 2π〈ω〉|2dt.

Then, we have finished the proof. �

Theorem 3.7. Let f ∈ L2(Rn) with ‖ f ‖2 = 1. Suppose that t j f (t), ω j f̂ (ω) ∈ L2(Rn), j = 1, . . . , n. Write
f (t) = ρ(t)eiϕ(t), then

σ2
tσ

2
ω ≥

n2

16π2 +
1

4π2

[ n∑
k=1

∫
Rn
|(tk − 〈tk〉)(Dkϕ(t) − 2π〈ωk〉)|ρ2(t)dt

]2
. (3.1)

Under the extra assumptions that f (t) = ρ(t)eiϕ(t) has the classical partial derivatives ∂ f
∂t j

, ∂ϕ

∂t j
, ∂ρ

∂t j
for

j = 1, . . . , n, where ∂ϕ

∂t j
are continuous and ρ is non-zero almost everywhere, then the equality of (3.1)

is attained if and only if f (t) has one of the following 2n forms:

f (t) = d1e−λ1 |t−〈t〉|2/2e
i
2λ2

∑n
k=1(−1)`k (tk−〈tk〉)2+c+2πit·〈ω〉, k = 1, 2, · · · , n,

where λ1 > 0, λ2 > 0, `k ∈ N+, and d1, λ1 satisfy equation d
2
n
1

√
π
λ1

= 1.

Proof. By Definition 1.2, the variance of time is

σ2
t =

n∑
k=1

∫
Rn
|tk − 〈tk〉|

2| f (t)|2dt =

∫
Rn
|t − 〈t〉|2ρ(t)2dt.

Here, in our considering section, m = 1. Lemma 3.6 provides that

σ2
ω =

1
4π2

∫
Rn
|∇Fρ|

2(t) +
1

4π2

∫
Rn
ρ2(t)|∇Fϕ(t) − 2π〈ω〉|2dt.

AIMS Mathematics Volume 9, Issue 5, 12494–12510.



12507

In order to prove inequality (3.1), it suffices to prove two separate inequalities. The first one is

( ∫
Rn
|t − 〈t〉|2ρ(t)2dt

)( 1
4π2

∫
Rn
|∇Fρ|

2(t)dt
)
≥

n2

16π2 , (3.2)

and the second one is ( ∫
Rn
|t − 〈t〉|2ρ(t)2dt

)( 1
4π2

∫
Rn
ρ2(t)|∇Fϕ(t) − 2π〈ω〉|2dt

)
≥

1
4π2

[ n∑
k=1

∫
Rn
|(tk − 〈tk〉)(Dkϕ(t) − 2π〈ωk〉)|ρ2(t)dt

]2
.

(3.3)

It is obvious that (3.2) is equivalent to (3.4)

( ∫
Rn
|t − 〈t〉|2ρ(t)2dt

)( ∫
Rn
|∇Fρ|

2(t)dt
)
≥

n2

4
, (3.4)

and that (3.3) is equivalent to (3.5)

( ∫
Rn
|t − 〈t〉|2ρ(t)2dt

)( ∫
Rn
ρ2(t)|∇Fϕ(t) − 2π〈ω〉|2dt

)
≥
[ n∑

k=1

∫
Rn
|tk − 〈tk〉||Dkϕ(t) − 2π〈ωk〉|ρ

2(t)dt
]2
.

(3.5)

Now, we prove (3.4). By Lemma 3.5, we may assume that g(t) is a function that is equal to f (t)
almost everywhere and is absolutely continuous in each argument. Let Mn and Nn be two particular
sequences of numbers tending to infinity as n→ ∞. In the following computation, let (t′, tk) represents
the tuple (t1, ..., tk, ..., tn). Then we have

n2

4
=
[n
2

∫
Rn
| f (t)|2dt

]2

=
[n
2

∫
Rn
|g(t)|2dt

]2

=
[n
2

∫
Rn−1

lim
m→∞

∫ Mm

−Nm

|g(t′, tk)|2dtkdt′
]2

=
{1
2

n∑
k=1

∫
Rn−1

lim
m→∞

∫ Mm

−Nm

|g(t′, tk)|2dtkdt′
}2

=
{1
2

n∑
k=1

∫
Rn−1

{
lim

m→∞
[(tk − 〈tk〉)|g(t′, tk)|2|

Mm
−Nm

] − lim
m→∞

∫ Mm

−Nm

(tk − 〈tk〉)[
∂g
∂tk

(t)ḡ(t) + g(t)
∂g
∂tk

(t)]dtk
}
dt′

}2

=
{1
2

n∑
k=1

∫
Rn−1

∫ ∞

−∞

(tk − 〈tk〉)[
∂g
∂tk

(t)ḡ(t) + g(t)
∂g
∂tk

(t)]dtkdt′
}2

=
{1
2

n∑
k=1

∫
Rn

(tk − 〈tk〉)[
∂g
∂tk

(t)ḡ(t) + g(t)
∂g
∂tk

(t)]dt
}2
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=
{1
2

n∑
k=1

∫
Rn

(tk − 〈tk〉)[(Dk f )(t) f̄ (t) + f (t)(Dk f )(t)]dt
}2

=
{1
2

n∑
k=1

∫
Rn\E

(tk − 〈tk〉)| f (t)|2[
(Dk f )(t)

f (t)
+

(Dk f )(t)
f̄ (t)

]dt
}2

=
{ n∑

k=1

∫
Rn\E

(tk − 〈tk〉)| f (t)|| f (t)|Re
(Dk f )(t)

f (t)
dt

}2

=
{ n∑

k=1

∫
Rn

(tk − 〈tk〉)| f (t)|(Dkρ)(t)dt
}2

=
{ ∫
Rn

(t − 〈t〉)| f (t)| · (∇Fρ)(t)dt
}2

≤

∫
Rn
|(t − 〈t〉)ρ(t)|2dt

∫
Rn
|∇Fρ|

2(t)dt,

where E = {t ∈ Rn : f (t) = 0}.
By Hölder’s inequality of vector-valued functions [9], it implies that[ n∑

k=1

∫
Rn
|tk − 〈tk〉||Dkϕ(t) − 2π〈ωk〉)|ρ2(t)dt

]2

≤
[ ∫
Rn

(
n∑

k=1

|tk − 〈tk〉|
2)

1
2 (

n∑
k=1

|Dkϕ(t) − 2π〈ωk〉)|2)
1
2ρ2(t)dt

]2

≤

∫
Rn

n∑
k=1

|tk − 〈tk〉|
2ρ2(t)dt

∫
Rn

n∑
k=1

|Dkϕ(t) − 2π〈ωk〉)|2ρ2(t)dt

=

∫
Rn
|t − 〈t〉|2ρ(t)2dt

∫
Rn
ρ2(t)|∇Fϕ(t) − 2π〈ω〉|2dt.

Thus we proved (3.5). Therefore, inequality (3.1) holds.
It is not hard to verify that the 2n types of functions in the statement of the theorem make (3.1)

equalities. When we consider the necessity of the 2n types, we assumed that the classical partial
derivatives ∂ f

∂t j
, ∂ϕ

∂t j
, ∂ρ

∂t j
for j = 1, . . . , n all exist, ∂ϕ

∂t j
are continuous, and ρ is almost everywhere non-

zero. In this case,

∇Fϕ(t) = ∇ϕ(t) and ∇Fρ = ∇ρ.

The same proof as in that of Theorem 1.3 is valid. �
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