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Abstract: In this study, we examined the focal surfaces of tubular surfaces in Euclidean 3-
space E3. We achieved some significant results for these surfaces in accordance with the modified
orthogonal frame. Additionally, we proposed a few geometric invariants that illustrated the geometric
characteristics of these surfaces, such as flat, minimal, Weingarten, and linear-Weingarten surfaces,
using the traditional methods of differential geometry. Additionally, the asymptotic and geodesic
curves of these surfaces have been researched. At last, we presented an example as an instance of
use to validate our theoretical findings.
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1. Introduction

In the study of line congruence, focal surfaces are well recognized. A focal surface is one of these
line congruences, which are surfaces that are created by changing one surface to another by lines.
Line congruence has been presented in the field of visualization by Pottmann et al. in [1]. They can
be utilized to envision the strain and intensity circulation on a plane, temperature, precipitation, and
ozone over the earth’s surface, and so forth. Prior to further processing, the quality of a surface is
evaluated using focal surfaces; for further information, see, for instance, [2–5]. Numerous researches
have been done on focal surfaces and curves; for examples, see [6–9]. Sasai [10] described the modified
orthogonal frame of a space curve in Euclidean 3-space as a helpful tool for examining analytic curves
with singular points when the Frenet frame is ineffective. The modified orthogonal frame has recently
been the subject of various investigations [11–16].
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The envelope of a moving sphere with variable radius is characterized as a canal surface, which is
frequently used in solid and surface modeling. A canal surface is an envelope of a one-parameter set
of spheres centered at the center curve c(s) with radius r(s). The spheres that are specified by r(s) and
c(s) are combined to form a canal surface, which is obtained by the spine curve. These surfaces have a
wide range of uses, including form reconstruction, robot movement planning, the creation of blending
surfaces, and the easy sight of long and thin objects like pipes, ropes, poles, and live intestines. The
term “tubular surface” refers to these canal surfaces if r(s) is constant. Different frames have been
used to study tubular surfaces; for more details, see [17–23]. The paper is organized as follows:
The fundamental ideas and the modified orthogonal frame are presented in Section 2. In Section 3,
we create tubular surfaces with a modified orthogonal frame and provide some findings from these
surfaces. Section 4 provides the focal surfaces of tubular surfaces in accordance with the modified
orthogonal frame in E3. At last, an example that confirms our findings is presented in Section 5.

2. Basic concepts

Let α = α(s) be a space curve with respect to the arc-length s in E3 and t,n,b be the tangent,
principal, and binormal unit vectors at each point on α(s), respectively, then we have the Serret-Frenet
equations: 

t′(s)
n′(s)
b′(s)

 =


0 κ 0
−κ 0 τ

0 −τ 0




t(s)
n(s)
b(s)

 , (2.1)

where κ and τ are, respectively, the curvature and torsion functions of α.
Since, the Serret-Frenet frame is inadequate for studying analytic space curves, of which curvatures

have discrete zero points since the principal normal and binormal vectors may be discontinuous at zero
points of the curvature, Sasai presented an orthogonal frame and obtained a formula, which corresponds
to the Frenet-Serret equation [10].

Let α : I −→ E3 be an analytic curve. We suppose that the curvature κ(s) of α is not identically
zero. We express an orthogonal frame {T,N,B} as

T =
dα
ds
, N =

dT
ds
, B = T × N. (2.2)

The relations between the frames {T,N,B} and {t,n,b} at nonzero points of κ are expressed as follows:

T = t,
N = κn,
B = κb, (2.3)

and we have

⟨T,T⟩ = 1, ⟨N,N⟩ = ⟨B,B⟩ = κ2,
⟨T,N⟩ = ⟨T,B⟩ = ⟨N,B⟩ = 0. (2.4)

AIMS Mathematics Volume 9, Issue 5, 12479–12493.



12481

From Eqs (2.1) and (2.3), a straightforward calculation leads to


T′(s)
N′(s)
B′(s)

 =


0 1 0

−κ2
κ′

κ
τ

0 −τ
κ′

κ




T(s)
N(s)
B(s)

 , (2.5)

and

τ(s) =
det(α

′

, α
′′

, α
′′′

)
κ2

,

is the torsion of α. Therefore, the frame denoted by Eq (2.5) is called the modified orthogonal frame.
Let Υ(s, θ) be a surface in E3 and U(s, θ) be the unit normal vector field on Υ(s, θ) defined by

U = Υs×Υθ
∥Υs×Υθ∥

,whereΥs =
∂Υ
∂s andΥθ = ∂Υ∂θ are the tangent vectors ofΥ(s, θ). The metric (first fundamental

form) I of Υ(s, θ) is defined by

I = g11ds2 + 2g12dsdθ + g22dθ2,

where g11 = ⟨Υs,Υs⟩, g12 = ⟨Υs,Υθ⟩, and g22 = ⟨Υθ,Υθ⟩.
Also, we can define the second fundamental form of Υ(s, θ) as

II = h11ds2 + 2h12dsdθ + h22dθ2,

where h11 = ⟨Υss,U⟩, h12 = ⟨Υsθ,U⟩, h22 = ⟨Υθθ,U⟩, and U is the unit normal vector of the surface.
The Gaussian curvature K and the mean curvature H are, respectively, expressed as:

K =
h11h22 − h2

12

g11g22 − g2
12

,

H =
h11g22 − 2g12h12 + g11h22

2(g11g22 − g2
12)

. (2.6)

3. Tubular surfaces with modified orthogonal frame

In this part, we obtain a tubular surface with modified orthogonal frame and give some important
properties of this surface in E3. The tubular surface with respect to the modified orthogonal frame has
the parametrization:

Υ(s, θ) = c(s) +
r
κ(s)

(cos θN(s) + sin θB(s)), (3.1)

where c(s) is the center curve, r = constant, and κ , 0. The derivatives of Υ(s, θ) are given by

Υs = (1 − rκ cos θ)T +
τr
κ

(− sin θN + cos θB),

Υθ =
r
κ

(− sin θN + cos θB),

Υss = (−rκ′ cos θ + rκτ sin θ)T

+ (1 − rκ cos θ −
r
κ
τ′ sin θ −

r
κ
τ2 cos θ)N + (

r
κ
τ′ cos θ −

r
κ
τ2 sin θ)B,
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Υsθ = (rκ sin θ)T +
τr
κ

(− cos θN − sin θB),

Υθθ =
r
κ

(− cos θN − sin θB). (3.2)

Therefore, we obtain

g11 = (1 − rκ cos θ)2 + r2τ2,

g12 = τr2,

g22 = r2,

g = g11g22 − g2
12 = r2(1 − rκ cos θ)2 , 0. (3.3)

The unit normal vector field U is given by

U(s) = −
1
κ

cos θN −
1
κ

sin θB, (3.4)

and we have

h11 = −κ cos θ(1 − rκ cos θ) + τ2r,

h12 = τr,

h22 = r. (3.5)

From Eq (2.6), we find

K = −
κ cos θ

r(1 − rκ cos θ)
,

H =
1 − 2rκ cos θ

2r(1 − rκ cos θ)
. (3.6)

From Eqs (3.1) and (3.6), we note that, if the Gaussian curvature K is zero, then the tubular surface is
generated by a moving sphere with the radius r = 1, [18].

Also, the curvatures of the tubular surface Υ(s, θ) satisfy the relation:

H =
1
2

(Kr +
1
r

), (3.7)

and the shape operator of Υ(s, θ) is given by

S =
1
g

[
h11g22 − h12g12 h12g22 − h22g12

−h11g12 + h12g11 −h12g12 + h22g11

]
=

1
r2(1 − rκ cos θ)2

[
r2(−κ cos θ(1 − rκ cos θ)) 0
τr(1 − rκ cos θ) r(1 − rκ cos θ)2

]
. (3.8)

It follows that the principal curvatures of Υ(s, θ) are obtained as:

k1 =
1
r
,

k2 = −
κ cos θ

1 − rκ cos θ
= Kr. (3.9)
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Proposition 3.1. Let Υ(s, θ) be a tubular surface in E3, then Υ(s, θ) is not a flat surface.

Proof. The proof can be obtained by straightforward calculations from Eq (3.6).

Proposition 3.2. Let Υ(s, θ) be a tubular surface in E3, then Υ(s, θ) is minimal if and only if

r =
1

2κ cos θ
.

Proof. The result is obtained directly from Eq (3.6).

Theorem 3.1. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame, then
(i) the s-curves of Υ(s, θ) are asymptotic curves if and only if

r =
κ cos θ

κ2 cos θ2 + τ2 ,

(ii) the θ-curves of Υ(s, θ) cannot be asymptotic curves.

Proof. From the definition of asymptotic curves, we obtain

⟨Υss,U⟩ =0,
⟨Υθθ,U⟩ =0.

i. From Eq (3.5), we can get

h11 = −κ cos θ(1 − rκ cos θ) + τ2r = 0,

r =
κ cos θ

κ2 cos θ2 + τ2 .

ii. Υ(s, θ) is regular if h22 , 0. Thus, the s-curves of Υ(s, θ) cannot be asymptotic curves.

Theorem 3.2. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame, then
i. s-curves of Υ(s, θ) are geodesic if and only if,

rκ2 cos2 θ − 2κ cos θ + τ2r = c,

where c is a constant.
ii. θ-curves of Υ(s, θ) are geodesic.

Proof. From the definition of geodesic curves, we find that, Υss × U = 0 and Υθθ × U = 0.
i. According to Eqs (3.2) and (3.4), we obtain

Υss × U =(κ sin θ(rκ cos θ − 1) + rτ′)T + (
r
κ

sin θ(τκ sin θ − κ′ cos θ))N

+(
r
κ

cos θ(−τκ sin θ + κ′ cos θ))B.

Since T,N, and B are linearly independent, then Υss × U = 0 if and only if

κ sin θ(rκ cos θ − 1) + rτ′ = 0,
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r
κ

sin θ(τκ sin θ − κ′ cos θ) = 0,

−r
κ

cos θ(τκ sin θ − κ′ cos θ) = 0.

When the last two equations are taken into consideration together and the necessary operations are
done, we get

rκκ′ cos2 θ − κ′ cos θ + rττ′ = 0,
rκ2 cos2 θ − 2κ cos θ + τ2r = c,

where c is constant.
ii. Also, from Eqs (3.2) and (3.4), we have Υθθ × U = 0. Thus, θ- parameter curves are geodesic

curves.

Definition 3.1. The pair (X,Y), X , Y of the curvatures K,H of a tubular surface Υ(s, θ) is said to be
a (X,Y)-Weingarten surface if Φ(X,Y) = 0 , where the Jacobi function Φ is defined as XsYθ − YsXθ = 0
[24].

Definition 3.2. The pair (X,Y), X , Y of the curvatures K,H of the tubular surface Υ(s, θ) is said to
be a (X,Y)-linear Weingarten surface if Υ(s, θ) satisfies the following relation:

aX + bY = c,

where (a, b, c)ϵR and (a, b, c) , (0, 0, 0) [25].

Now, we define the partial derivatives of the curvatures of Υ(s, θ):

Ks = −
κ′ cos θ

r(1 − rκ cos θ)2 ,

Kθ =
κ sin θ

r(1 − rκ cos θ)2 ,

Hs = −
r
2

(
κ′ cos θ

r(1 − rκ cos θ)2 ),

Hθ =
r
2

(
κ sin θ

r(1 − rκ cos θ)2 ). (3.10)

Proposition 3.3. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame, then Υ(s, θ)
is a Weingarten surface.

Proof. (K,H)-Weingarten surface Υ(s, θ) satisfies Jacobi equation:

HsKθ − HθKs = 0,

HsKθ = HθKs.

Thus, the conclusion follows from Eq (3.10).

Proposition 3.4. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame. If (K,H) is
a linear Weingarten surface, then for c = 1, the relations a = −r2 and b = 2r, hold.
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Proof. The (K,H)-linear Weingarten surface satisfies:

aK + bH = 1,

where a, b ∈ R and (a, b) , 0. From Eq (3.7), we get

2r − b = (−
κ cos θ

r(1 − rκ cos θ)
)(br + 2a),

and
2κ cos θ(−r2 + rb + a) + 2r − b = 0,

so we find,

2r − b = 0,
2κ cos θ(−r2 + rb + a) = 0,

since b = 2r; therefore, a = −r2 is obtained.

4. Focal surfaces of a tubular surface

Let Υ(s, θ) be a surface in E3 parameterized by

C(s, θ, z) = Υ(s, θ) + zE(s, θ), (4.1)

where E(s, θ) is the set of all unit vectors and z is a marked distance. For each (s, θ), Eq (4.1) indicates a
line congruence and called a generatrix. Additionally, there exist two special points (real, imaginary, or
unit) on the generatrix of C. These points are called focal points, which are the osculating points with
generatrix. Hence, focal surfaces are defined as a geometric locus of focal points. If E(s, θ) = U(s, θ),
then C = Cu is a normal congruence. The parametric equation of focal surfaces of Cu is given as

Υ∗i (s, θ) = Υ(s, θ) +
1
ki

U(s, θ); i = 1, 2, (4.2)

where k1 and k2 are the principle curvature functions of surfaces Υ(s, θ) [1].
In this section, we get focal surfaces of a tubular surface with the modified orthogonal frame in E3.

Also, we investigate the properties obtained for the tubular surface within the focal surfaces. Since

k1 =
1
r
, the focal surface is the curve c(s). Hence, we obtain the focal surface Υ∗(s, θ) of Υ(s, θ) with

the function k2 = −
κ cos θ

1 − rκ cos θ
, as follows:

Υ∗(s, θ) = c(s) +
1

κ cos θ
(
1
κ

cos θN +
1
κ

sin θ B), (4.3)

where κ , 0.
The derivatives of Υ∗(s, θ) are

Υ∗s =
1
κ2

(−
κ′

κ
− τ tan θ)N +

1
κ2

(τ −
κ′

κ
tan θ)B,
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Υ∗θ =
1
κ2

sec2 θB,

Υ∗ss = (
κ′

κ
+ τ tan θ)T + (

2κ′2

κ4
+

2κ′τ tan θ
κ3

−
κ′′

κ3
−
τ′

κ2
tan θ −

τ2

κ2
)N

+ (−
2κ′τ
κ3
+

2κ′2 tan θ
κ4

+
τ′

κ2
−
τ2

κ2
tan θ −

κ′′

κ3
tan θ)B,

Υ∗θθ =
2
κ2

sec2 θ tan θ B. (4.4)

From Eq (4.4), we get

g∗11 =
1
κ2

sec2 θ(τ2 +
κ′2

κ2
),

g∗12 =
1
κ2

sec2 θ

(
τ −
κ′

κ
tan θ

)
,

g∗22 =
1
κ2

sec4 θ,

g∗ = g∗11g∗22 − g∗212 =
1
κ4

sec4 θ(τ tan θ +
κ′

κ
)2 , 0, (4.5)

and

Υ∗s × Υ
∗
θ = −

(
1
κ4

sec2 θ(
κ′

κ
+ τ tan θ)

)
T,

∥Υ∗s × Υ
∗
θ∥ =

1
κ4

sec2 θ(
κ′

κ
+ τ tan θ),

U∗(s, θ) = −T. (4.6)

From Eqs (4.4) and (4.6), we obtain

h∗11 = (−
κ′

κ
− τ tan θ),

h∗12 = 0,
h∗22 = 0. (4.7)

Also, from Eqs (4.5) and (4.7), we get

K∗ = 0,

H∗ = −
κ3

2 (κτ tan θ + κ′)
. (4.8)

Further, the shape operator of the surface Υ∗(s, θ) is expressed as

S ∗ =
1
γ

[
− 1
κ2

sec4 θ( κ
′

κ
+ τ tan θ) 0

1
κ2

sec2 θ(τ − κ
′

κ
tan θ)( κ

′

κ
+ τ tan θ) 0

]
, (4.9)

where, γ = 1
κ4

sec4 θ(τ tan θ + κ
′

κ
)2.
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Proposition 4.1. LetΥ(s, θ) be a tubular surface in E3 with a modified orthogonal frame obtained with
the parametrization given by Eq ( 3.1) and let Υ∗(s, θ) be its focal surface with the parametrization
given by Eq (4.3), then the focal surface Υ∗(s, θ) is a flat surface.

Proof. The proof can be obtained by using Eq (4.8) and straightforward calculations.

Proposition 4.2. LetΥ(s, θ) be a tubular surface in E3 with a modified orthogonal frame obtained with
the parametrization given by Eq ( 3.1) and let Υ∗(s, θ) be its focal surface with the parametrization
given by Eq (4.3), then the focal surface Υ∗(s, θ) is not minimal surface.

Proof. From Eq (4.8), we get

−
κ3

2 (κτ tan θ + κ′)
, 0.

So, Υ∗(s, θ) is not minimal.

Theorem 4.1. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame obtained with
the parametrization given by Eq ( 3.1) and let Υ∗(s, θ) be its focal surface with the parametrization
given by Eq (4.3), then
(i) s-curves of Υ∗(s, θ) cannot be asymptotic curves.
(ii) θ-curves of Υ∗(s, θ) are asymptotic curves.

Proof. (i) From Eq (4.7), we get

h∗11 = ⟨Υ
∗
ss,U

∗⟩,

= (−
κ′

κ
− τ tan θ) , 0.

Since Υ∗(s, θ) is regular; h∗11 , 0. Thus, s-parameter curves of the focal surface Υ∗(s, θ) cannot be
asymptotic curves.
(ii) Also, from Eq (4.7), we get

h∗22 = ⟨Υ
∗
θθ,U

∗⟩ = 0.

Since h∗22 = 0, then θ-curves of Υ∗(s, θ) are asymptotic curves.

Theorem 4.2. Let Υ(s, θ) be a tubular surface in E3 with a modified orthogonal frame obtained with
the parametrization given by Eq ( 3.1) and let Υ∗(s, θ) be its focal surface with the parametrization
given by Eq (4.3), then
(i) s-parameter curves of Υ∗(s, θ) are geodesic curves if and only if,

2κ
κ′
=
τ

τ′
.

(ii) θ-parameter curves of Υ∗(s, θ) are not geodesic curves.

Proof. (i) From Eqs (4.4) and (4.6), we have

Υ∗ss × U∗ = −(−
2κ′2τ
κ3
+

2κ′2 tan θ
κ4

+
τ′

κ2
−
τ2 tan θ
κ2

−
κ′′ tan θ
κ3

)N

+(
2κ′

κ4
+

2κ
′

τ tan θ
κ3

−
τ′ tan θ
κ2

−
κ′′

κ3
−
τ2

κ2
)B.
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Therefore, Υ∗ss × U∗ = 0 if and only if
2κ
κ′
=
τ

τ′
.

(ii) From Eqs (4.4) and (4.6), we get

Υ∗θθ × U∗ =
−2 sec2 θ tan θ

κ2
N.

Since Υ∗θθ × U∗ , 0, then θ-parameter curves are not geodesic curves of Υ∗(s, θ).
Hence, the proof is completed.

The partial derivatives of the curvatures of Υ∗(s, θ) are

K∗s = 0, K∗θ = 0,

H∗s = −
3κ2κ′

2 (κτ tan θ + κ′)
+
κ3 (τκ′ tan θ + κτ′ tan θ + κ′′)

2 (κτ tan θ + κ′) 2 ,

H∗θ =
κ4τ sec2 θ

2 (κτ tan θ + κ′)2 . (4.10)

Thus, we get the result:

Proposition 4.3. LetΥ(s, θ) be a tubular surface in E3 with a modified orthogonal frame obtained with
the parametrization given by Eq ( 3.1) and let Υ∗(s, θ) be its focal surface with the parametrization
given by Eq (4.3), then the focal surface Υ∗(s, θ) is a Weingarten surface but not a linear-Weingarten
surface.

Proof. The conclusion can be obtained easily from Eqs (4.8) and (4.10).

Definition 4.1. [8] A surface Υ(s, θ) in E3 with principal curvatures k1 , k2 has a generalized focal
surface Υ̃(s, θ) given by

Υ̃(s, θ) = Υ(s, θ) + f (k1, k2)U(s, θ),

where f (k1, k2) is related to its principal curvatures.
If

f (k1, k2) =
k2

1 + k2
2

k1 + k2
,

then Υ̃(s, θ) is expressed as

Υ̃(s, θ) = Υ(s, θ) + (
k2

1 + k2
2

k1 + k2
)U(s, θ).

Therefore, by employing this definition and using Eq (3.9), we can obtain a generalized focal surface
Υ̃(s, θ) of Υ(s, θ) as

Υ̃(s, θ) = c(s) +
1
κ

(r −
K2r4 + 1
Kr3 + r

)(cos θN + sin θB).
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5. Computational example

Let us demonstrate the above considerations in a computational example. So, assume the center
curve α is given by

α(s) =
cos

 √5
3

s
 , sin

 √5
3

s
 , 2s

3

 ,
then, its modified orthogonal frame is calculated as follows:

T =
− √5

3
sin

 √5
3

s
 , √5

3
cos

 √5
3

s
 , 23

 ,
N =

−5
9

cos
 √5

3
s
 ,−5

9
sin

 √5
3

s
 , 0 ,

B =
10
27

sin
 √5

3
s
 ,−10

27
cos

 √5
3

s
 , 5√5

27

 .
When the radius function r(s) = 1, we obtain the tubular surface:

Υ(s, θ) =



cos
 √5

3
s
 − cos θ cos

 √5
3

s
 + 2

3
sin θ sin

 √5
3

s
 ,

sin
 √5

3
s
 − cos θ sin

 √5
3

s
 − 2

3
sin θ cos

 √5
3

s
 ,

2s
3
+

√
5

3
sin θ).


In addition, we get the focal surface of Υ(s, θ) as

Υ∗(s, θ) =



cos
 √5

3
s
 − 9

5 cos
 √5

3
s
 + 6

5
tan θ sin

 √5
3

s
 ,

sin
 √5

3
s
 − 9

5 sin
 √5

3
s
 − 6

5
tan θ cos

 √5
3

s
 ,

2s
3
+

3
√

5
3

tan θ).


The center curve α(s) and the corresponding tubular surface Υ(s, θ) are shown in Figures 1a and 1b,
respectively.

AIMS Mathematics Volume 9, Issue 5, 12479–12493.



12490

(a) (b)

Figure 1. (a) The center curve α(s); (b) the tubular surface Υ(s, θ).

(a) (b)

Figure 2. (a) The focal surface Υ∗(s, θ) with r(s) = 1; (b) the generalized focal surface
Υ̃(s, θ).

Also, the generalized focal surface of Υ(s, θ) is obtained as follows:

Υ̃(s, θ) =



cos
 √5

3
s
 − ρ cos

 √5
3

s
 cos θ + 2

3ρ sin θ sin
 √5

3
s
 ,

sin
 √5

3
s
 − ρ sin

 √5
3

s
 cos θ − ρ 2

3 sin θ cos
 √5

3
s
 ,

2s
3
+ ρ

√
5

3
sin θ.


;

ρ =

1 −
(
−5
9 cos θ

1− 5
9 cos θ

)2
+ 1(

−5
9 cos θ

1− 5
9 cos θ

)
+ 1

 .
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The focal surfaceΥ∗(s, θ) is displayed in Figure 2a and the generalized focal surface Υ̃(s, θ) is displayed
in Figure 2b.

Finally, in the light of aforementioned calculations, we can conclude the above results as follows:

• While Υ(s, θ) is a not flat surface, the focal surface Υ∗(s, θ) is flat.
• Υ(s, θ) is a minimal surface, but the focal surface Υ∗(s, θ) is not minimal.
• The s-parameter curves of Υ(s, θ) are asymptotic, while the s-parameter curves of the Υ∗(s, θ) are

non-asymptotic.
• The θ-parameter curves of the tubular surface Υ(s, θ) are not asymptotic, but the θ-parameter

curves of the focal surface Υ∗(s, θ) are asymptotic.
• The s and θ parameters of the tubular surface Υ(s, θ) are geodesic curves, but the s parameter

curve of Υ∗(s, θ) is a geodesic whereas the θ parameter curve is not a geodesic curve.
• Υ(s, θ) and focal surface Υ∗(s, θ) are Weingarten surfaces.
• Υ(s, θ) can be a linear Weingarten surface while the focal surface Υ∗(s, θ) is not a linear

Weingarten surface.

6. Conclusions

In this paper, tubular surfaces and their focal surfaces have been studied in E3. Some characteristics
of the tubular surfaces have been presented such as minimal, Weingarten, linear-Weingarten, and flat.
Afterward, focal surfaces of tubular surfaces have been obtained with modified orthogonal frame.
Similar properties have been investigated for focal surfaces, that is, it has been shown that the focal
surfaces are flat, Weingarten, and linear Weingarten, but they are not minimal surfaces. In addition,
asymptotic and geodesic curves of the tubular and focal surfaces have been investigated. Finally, to
confirm our results, a computational example is given and plotted.
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16. N. Yüksel, N. Oğraş, Canal surfaces with modified orthogonal frame in Minkowski 3-space, Acta
Universitatis Apulensis, 70 (2022), 65–86. http://dx.doi.org/10.17114/j.aua.2022.70.07
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