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Abstract: This paper studied the numerical approximation of the stochastic differential equations
driven by non-global Lipschitz drift coefficient and multiplicative noise. An efficient data-driven
method, called extended continuous latent process flow, was proposed for the underlying problem.
Compared with the piecewise construction of a variational posterior process used in the classical
continuous latent process flow developed by Deng et al. [13], the principle idea of our method
was to derive a variational lower bound by constructing a posterior latent process conditional
on all information over the whole time interval to maximize the log-likelihood generated by
the observations, which reduces the computational cost and, thus, provides a convenient way to
approximate the considered equation. Particularly, our new method showed a better approximation
to the underlying equation than the classical drift-θ discretization scheme through numerical error
comparison. Numerical experiments were finally reported to demonstrate the effectiveness and
generalization performance of the proposed method.
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1. Introduction

Stochastic differential equations (SDEs) are widely applied in scientific areas such as phase
transitions, electromagnetic scattering, tumor growth, neural dynamics, and many other branches of
science. However, in most cases, analytical solutions of nonlinear SDEs are not available, which
makes the research on numerical methods of SDEs receive widespread attention in practice. In
general, imposing global Lipschitz conditions on the coefficient functions of SDEs facilitates the
numerical analysis of SDEs; see, e.g., [28,34] and references therein. Nevertheless, SDEs arising from
practical applications rarely follow this traditional but restrictive condition, such as the 3
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model [25], Ait-Sahalia interest rate model [1] and so on [29, 39], which are SDEs with non-global
Lipschitz coefficients. As an active research field, a great amount of work has been performed
and a wide literature may be found on the numerical approximation for the SDEs under non-global
Lipschitz conditions. For example, Chassagneux et al. [10] presented a modified explicit Euler-
Maruyama discretization scheme for approximating the one-dimensional SDEs with non-Lipschitz
drift or diffusion coefficients. Zhang et al. [43] showed an explicit balanced scheme that is order-
preserving for SDEs with superlinear growth coefficients, and deduced the strong convergence rate
of the corresponding scheme. Andersson et al. [3] first proved a strong convergence rate for a
multistep method applied to equations with superlinearly growing drift and diffusion coefficient
functions. Beyn et al. [7, 8] analyzed the mean-square convergence error of Euler-type and Milstein-
type schemes using the concepts of “C-stability” and “B-consistency” for SDEs with a global
monotonicity condition. Zong et al. [44] studied the convergence and stability of the two classes
of theta-Milstein scheme for SDEs with non-global Lipschitz continuous coefficients. Kumar et
al. [24] proposed a new explicit Milstein schemes for SDEs with superlinearly growing drift and
diffusion coefficients and derived its optimal convergence in Lp sense. Gan et al. [15] introduced a
family of explicit tamed stochastic Runge-Kutta methods for commutative SDEs with superlinearly
growing drift and diffusion coefficients. Kelly et al. [22] developed an explicit adaptive Milstein
method for SDEs with no commutativity condition and proved that the scheme is strongly convergent
of order one. Wang et al. [39] investigated a class of implicit Milstein-type methods for SDEs
with non-globally Lipschitz drift and diffusion coefficients, and offered upper mean-square error
bounds for the proposed schemes under certain assumptions. Of course, the works mentioned above
are not, by far, an exhaustive list of research touching the subject. We refer to the papers and
manuscripts in [2, 11, 16, 18, 19, 21, 30–33, 35, 38, 41, 42] and references therein as a complementary
for the relevant respect. Although great progress has been made in the analysis and calculation of
numerical discretization schemes for SDEs with non-global Lipschitz coefficients, not much work
has been done on numerically solving SDEs using stochastic neural networks. In this regard, Raja
et al. [4] respectively used Adams method and Kloeden-Platen-Schurz methods to numerically solve
the deterministic and stochastic vector-borne plant epidemic model. Additionally, Raja et al. [5, 6]
employed separately a novel neuro-stochastic adaptive processing as well as stochastic predictive
computing networks to investigate the dynamics of the SIS (Susceptible-Infectious-Susceptible) with
a vaccination impact-based epidemic model represented by nonlinear SDEs.

The purpose of this work is to attempt to develop a data-driven approach called extended continuous
latent process flows (ECLPF) to numerically approximate the SDEs with non-global Lipschitz drift
coefficients and multiplicative noise. To the best of our knowledge, there has been no work on the
numerical study of SDEs with non-global Lipschitz coefficients using this ECLPF network. The basic
construction of this new method is inspired by the classical CLPF approach proposed in paper [13],
which is a typical generative time series model and has shown remarkable potential in enhancing
the representation power and variational inference quality of the existing time series models. It is
worth mentioning that in paper [13], researchers employed a variational approximation based on the
piecewise construction of the posterior latent process, but at the expense of a lot of time in actual
calculations. In the current work, the variational posterior process on the ECLPF is constructed
using a neural SDE (NSDE) conditioned on the information over the whole time interval, which has
the advantage of reducing computational cost. In particular, such posterior NSDE is related to the
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derivation of the variational lower bound [37] that will be used together with the stochastic adjoint
sensitivity method, originally proposed by Li et al. [26], to maximize the log-likelihood function
induced by partial observations. Besides an efficient network architecture, the initial input data is
supposed to be provided as accurately as possible to better numerically approximate the underlying
problem. In this work, we will make use of a temporal discretization method called drift-θ Milstein
scheme [39, 44] to compute the initial inputs of ECLPF.

The main contributions/novelties of this paper are summarized as follows:
• The well-posedness of the underlying problem is established. That is, the existence, uniqueness,

and the stability of the solution are provided.
• The structure of ECLPF consists of three major components: (i) a prior SDE that acts as

a variational autoencoder to describe the continuous latent dynamics of the observed data, (ii) a
continuously normalizing flow serving as a time-dependent decoder, and (iii) a posterior process
conditional on the information over the entire time interval, which is used to derive the variational lower
bound so that the maximum of the observed log-likelihood function can be approximated conveniently.
Notably, the network architecture of our new method is different from that of the classic CLPF in
paper [13], which we will explain in detail in Section 3. The approximation behavior of the ECLPF
will be presented through a series of numerical experiments to demonstrate the effectiveness of our
proposed method.

The rest of the paper is organized as follows. In Section 2, we establish the well-posedness of the
considered problem under certain standard assumptions and introduce the drift-θ Milstein scheme for
time discretization. The architecture of the ECLPF as well as the training and inference procedures are
described in Section 3. In Section 4, several numerical experiments are provided to demonstrate the
approximation and generalization capabilities of the ECLPF method.

2. Problem description and temporal discretization

In this section, we first introduce the problem to be studied and state the main assumptions on
the well-posedness of the considered model, then a time-stepping scheme called the drift-θ Milstein
method is made use of to discretize the underlying problem.

Let T ∈ (0,∞), d,m ∈ N, and (Ω,F , {Ft}t∈[0,T ],P) be a filtered probability space with a normal
filtration {Ft}t∈[0,T ]. Denote by Wk(t) : [0,T ] × Ω → R, k ∈ {1, · · · ,m}, an independent family of real-
valued standard {Ft}t∈[0,T ]-adapted Brownian motions on probability space (Ω,F ,P). We are interested
in the problem written as the following SDE: For u(t, ω) : [0,T ] ×Ω→ Rd,

du(t) = f (u(t))dt +
m∑

k=1

gk(u(t))dWk(t), 0 < t ≤ T,

u(0) = u0,

(2.1)

where f : Rd → Rd represents the drift coefficient function and gk : Rd → Rd, k ∈ {1, · · · ,m}, stands
for the diffusion coefficient function. Let ⟨·, ·⟩ be the Euclidean inner product, and the corresponding
norm on Rd is | · |. Assume the noise term appearing in (2.1) to be commutative [28, 40] and the initial
condition u0 ∈ Lp(Ω;Rd) for p ∈ [2,∞). Throughout the paper, we use c to mean generic positive
constants, which may not be the same at different occurrences.
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In order to establish the well-posedness of the problem (2.1), some assumptions imposed on the
drift and the diffusion coefficient functions are needed, which are collected below:

Suppose the coefficient functions f and gk, k ∈ {1, · · · ,m}, are first-order continuously Fréchet
differentiable, and there exist constants c > 0 such that: For all v1, v2 ∈ R

d,

⟨v1 − v2, f (v1) − f (v2)⟩ ≤ c|v1 − v2|
2, (2.2)

m∑
k=1

|gk(v1) − gk(v2)|2 ≤ c|v1 − v2|
2. (2.3)

Note that according to (2.2) and (2.3), one deduces readily that there exists a constant c such that for
every k ∈ {1, · · · ,m},

⟨v, f (v)⟩ ∨ |gk(v)|2 ≤ c(1 + |v|2), ∀v ∈ Rd, (2.4)

where a ∨ b represents max{a, b}.

Remark 2.1. Assumption (2.2) on the drift f is known as the one-sided Lipschitz condition.
Assumption (2.3) on the diffusions {gk}k=1,··· ,m is the global Lipschitz condition, and assumption (2.4)
is the one-sided linear growth condition. These assumptions are often applied in proving the well-
posedness of SDEs with non-global Lipschitz drift terms; see, e.g., [29, 44].

We are now in a position to establish the well-posedness of the problem (2.1). Let H2
T be the

Rd-valued predictable processes {v(t) : t ∈ [0,T ]} such that

∥v∥H2
T

:= sup
0≤t≤T
E[|v|2]

1
2 < ∞

with E[·] being the expectation on the probability space (Ω,F ,P). According to the known result
reported on [29, Theorem 3.6], there exists a unique solution u(t) ∈ H2

T to the problem (2.1). Precisely,
there exists an {Ft}t∈[0,T ]-adapted stochastic process u(t, ω) : [0,T ] ×Ω→ Rd, which satisfies P-almost
surely the integral equation

u(t) = u0 +

∫ t

0
f (u(τ))dτ +

m∑
k=1

∫ t

0
gk(u(τ))dWk(τ). (2.5)

Furthermore, by [17, Lemma 3.2], one can obtain the following stability inequality for u(t):

sup
0≤t≤T
E[|u(t)|p] ≤ c(1 + E[|u0|

p]), p ∈ [2,∞).

Next, we focus on the time discretization to the problem (2.1). The numerical approach used in the
current work is called the drift-θMilstein scheme that has been applied to solve SDEs, see, e.g., [39,44]
and references therein. However, this paper appears to be the first attempt to combine this temporal
discretization with a CLPF-type network to numerically approximate SDEs. Below we briefly describe
this temporal scheme.

Define time step ∆t := T/N, with N being a positive integer. For a fixed k ∈ {1, · · · ,m}, let
gk(x) := [g1k(x), · · · , gdk(x)]T ∈ Rd, ∀x = [x1, · · · , xd]T ∈ Rd. Denote

L jgk(x) :=
d∑

q=1

gq, j(x)
∂gk(x)
∂xq

, j, k ∈ {1, · · · ,m}.
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The drift-θMilstein scheme reads: Find a Rd-valued approximation {yi}i=1,··· ,N , such that for θ ∈ ( 1
2 , 1],

yi+1 = yi +
(
θ f (yi+1) + (1 − θ) f (yi)

)
∆t + g(yi)∆Wi +

1
2

m∑
j,k=1

L jgk(yi)(∆W j
i ∆Wk

i − δk j∆t),

y0 = u0,

(2.6)

where yi is the approximation to u(ti), ∆Wi = W((i + 1)∆t) −W(i∆t), ∆W j
i = W j((i + 1)∆t) −W j(i∆t),

δk j = 1 for k = j, and δk j = 0 for k , j.

Remark 2.2. Since the problem (2.1) has the commutative noise, the scheme (2.6) does not involve
the Lévy area [27, 28], thus avoiding extra computational effort. Furthermore, as an implicit scheme,
the well-posedness of the scheme (2.6) is straightforward to establish; see, e.g., [44] for details. In
particular, when θ = 1, (2.6) becomes the drift-implicit Milstein scheme investigated in [35].

We further assume that f , {gk}k=1,··· ,m are twice continuously Fréchet differentiable and there exists a
constant c such that for any v, v1, v2 ∈ R

d and j, k ∈ {1, · · · ,m},

|L jgk(v1) − L jgk(v2)|2 ≤ c|v1 − v2|
2,

| f ′(v)| ∨ | f ′′(v)| ≤ c(1 + |v|q), q ≥ 2,
|g′′k (v)| ≤ c.

It is known from [44, Theorem 4.1] that the strong convergence rate of the numerical approximation yi

to the solution u(ti) satisfies: For i = 1, · · · ,N,

E[|yi − u(ti)|2]
1
2 ≤ c∆t. (2.7)

Here we show this convergence rate intuitively through a numerical example. For instance, set d =
m = 2, u = [u1, u2]T , f (u) = [u1,−u2]T , g1(u) = [u1, 0]T , g2(u) = [0, 2u2]T , u0 = [1, 1]T . The strong
convergence rate is measured in terms of mean-square approximation errors at the endpoint T = 1. In
actual calculations, we will use the reference solution computed in the fine time mesh size as the exact
solution. To be specific, we take the reference solution calculated by ∆t = 2 × 10−4 for the temporal
accuracy test. Additionally, we employ the mean of 3000 samples to approximate the expected value
of the numerical error, i.e., the strong convergence error E[|yN − u(T )|2]

1
2 is computed approximately

by

E[|yN − u(T )|2]
1
2 ≈
( 1
3000

3000∑
j=1

|u j
ref − y j

N |
2
) 1

2
=: uerror,

where u j
ref and y j

N denote separately the reference solution and the numerical solution of the j-th sample.
Under different θ, we compute uerror with different time steps ∆t = 8×10−3, 4×10−3, 2×10−3, 1×10−3.
The error behavior is presented in Figure 1, also given in Table 1 for specific convergence rate data,
from which we see that the strong convergence rate for scheme (2.6) with different θ is consistent with
the theoretical first-order convergence result shown in (2.7).

Note that the scheme (2.6) provides a convenient way to generate an observed time series associated
with the solution u(t), which we will use as the initial input to the ECLPF network introduced in the
next section.

AIMS Mathematics Volume 9, Issue 5, 11975–11991.



11980

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

=0.7

=0.8

=0.9

=1.0

Slope=1

Figure 1. Temporal convergence rate test of scheme (2.6) on log-log scale.

Table 1. Strong error and convergence rate with different θ.

Time step ∆t
θ = 0.7 θ = 0.8 θ = 0.9 θ = 1.0

uerror Order uerror Order uerror Order uerror Order

8.00E-3 8.23E-1 – 5.28E-2 – 3.14E-2 – 3.58E-2 –
4.00E-3 4.39E-1 0.91 2.73E-2 0.95 1.81E-2 0.79 2.04E-2 0.81
2.00E-3 2.38E-1 0.88 1.25E-2 1.13 9.80E-3 0.89 1.76E-2 1.02
1.00E-3 1.08E-1 1.14 6.10E-3 1.04 4.72E-3 1.05 8.40E-3 1.07

3. Extended CLPF

This section is devoted to describing the architecture of the ECLPF. It consists of three parts:
(i) a prior SDE, (ii) a normalizing flow, and (iii) a posterior SDE, which will be presented below
individually. Before that, we first denote by {ũti}i=1,··· ,N a sequence of d-dimensional observations
sampled at time ti. These observations are related to the solution of the problem (2.1) and are assumed
to be partial realizations of a stochastic process X(t) ∈ Rd that we use to approximate u(t). Our training
goal is to maximize the observational log-likelihood function defined by

L = logP(ũt1 , · · · , ũtN ), (3.1)
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where P(ũt1 , · · · , ũtN ) represents the probability of observing {ũti}i=1,··· ,N .

3.1. Latent dynamics and decoding

We use an NSDE driven by m-dimensional Wiener process W(t) to model the evolution of an d-
dimensional time-continuous latent state Z(t). Specifically, Z(t) satisfies:

dZ(t) = µγ(Z(t))dt + σγ(Z(t))dW(t), 0 < t ≤ T,

Z(0) = z0, z0 ∈ R
d,

(3.2)

where γ stands for the learnable parameters of the drift µγ ∈ Rd and diffusion σγ ∈ Rd×m. Notice
that the system (3.2) is usually called a prior SDE, and µγ as well as σγ can be implemented by using
deep neural networks; see, e.g., [13, 23, 26] for more details. Motivated by [13], the latent process
Z(t) is commonly decoded into a continuous trajectory of the stochastic process X(t) by exploiting the
dynamic normalizing flows [9, 14]. To be precise, X(t) can be modeled by

X(t) = Fξ(O(t),Z(t)),
X(0) = x0, x0 ∈ R

d,
(3.3)

where O(t) is the d-dimensional base process generated by Ornstein-Uhlenbeck process, and it has
closed-form transition density. Fξ(O(t),Z(t)) is a normalizing flow with parameter ξ for any Z(t),
which plays an important role in decoding each sample path of Z(t) into a trajectory satisfying the
distribution on X(t). Let {zti}i=1,··· ,N be the samples of {Z(ti)}i=1,··· ,N .

3.2. Training and inference

With the model specified, we are now in a position to focus on the training and inference. It involves
the calculation and optimization of the observational log-likelihood function (3.1) induced by a time-
dependent decoding of (3.3), which seems to be subtle and challenging since only few SDEs have
closed-form transition densities. Here we resort to an appropriate method of approximating the log-
likelihood (3.1) based on the variational posterior latent process conditioned on all information in the
interval [0,T ]. Below we present this method in detail.

The log-likelihood function L can be expressed as a conditional expectation with respect to the
latent process Z(t), i.e., we have

L = logP(ũt1 , · · · , ũtN ) = logE[P(ũt1 , · · · , ũtN |Z(t))], 0 ≤ t ≤ T,

where P(ũt1 , · · · , ũtN |Z(t)) denotes the probability of observing {ũti}i=1,··· ,N conditioned on the trajectory
of the latent process Z(t) in the interval [0,T ]. Inspired by [26], we then use the variational bound to
approximate L, for which we need to introduce a posterior SDE defined by: For µϕ ∈ Rd,

dZ̃(t) = µϕ(Z̃(t))dt + σγ(Z̃(t))dW(t), 0 < t ≤ T,

Z̃(0) = z̃0, z̃0 ∈ R
d,

(3.4)

where, except for drift µϕ, W(t) and diffusion σγ are the same as those shown in (3.2). Note that the
parameter ϕ is the output of an encoder Long Short-Term Memory (LSTM) that takes the sequence of
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observations {ũti}i=1,··· ,N and the sampled latent states {zti}i=1,··· ,N as inputs. The system (3.4) is called
the posterior SDE, which plays an important role in variational approximation; see, e.g., [37] and
references therein.

Suppose there exists a mapping h(v) : Rd → Rm, ∀v ∈ Rd, such that σγ(·)h(·) = µϕ(·) − µγ(·) and h
satisfies Novikov’s condition [36, Chapter 8.6], then we obtain: For t ∈ [0,T ],

L = logP(ũt1 , · · · , ũtN ) = logE[P(ũt1 , · · · , ũtN |Z(t))] = logE[P(ũt1 , · · · , ũtN |Z̃(t))MT ]

with MT := exp
(
−
∫ T

0
1
2 |h(Z̃(s))|2ds −

∫ T

0
h(Z̃(s))T dW(s)

)
representing a weighting between (3.2) and

(3.4); see, e.g., [26] for details. Furthermore, applying Jensen’s inequality yields:

L = logE[P(ũt1 , · · · , ũtN |Z̃(t))MT ] ≥ E[log
(
P(ũt1 , · · · , ũtN |Z̃(t))MT

)
]

≥ E[log MT + logP(ũt1 , · · · , ũtN |Z̃(t))],
(3.5)

where E[log MT + logP(ũt1 , · · · , ũtN |Z̃(t))] is known as an evidence lower bound [37]. One more thing
to mention is that Li et al. [26] has successfully realized the optimization of the log-likelihood function
L through this lower bound using the adjoint sensitivity method, and we will also use this adjoint
approach for calculations in the current work.

Note that parameter ϕ is a function of latent states {zti}i=1,··· ,N , and {zti}i=1,··· ,N is a function of
parameter γ, so the parameter ϕ can also be characterized by parameter γ. In summary, we implement
the relevant calculation in the following steps:

i) Use the adjoint sensitivity method to calculate the gradient of the expected value E[log MT +

logP(ũt1 , · · · , ũtN |Z̃(t))] on the right side of (3.5) (i.e., approximately computing the maximum
value of the log-likelihood function L), thereby obtaining the parameter γ;

ii) Compute latent state Z(t) by (3.2);

iii) Employ dynamic normalizing flow to compute X(t) appeared in (3.3), which will be used as the
approximation to the solution u(t) shown in (2.5).

Remark 3.1. Our ECLPF can actually be viewed as a hybridization of the classical CLPF [13]
and latent SDE [26], but it is different from both. In fact, compared with the latent SDE [26], our
ECLPF additionally adds a normalizing flow structure (3.3), which helps to improve the stability in
computation; see, e.g., [13, Section 3.1]. Moreover, compared to the classical CLPF model [13],
instead of constructing a piecewise posterior process, our ECLPF model uses a variational posterior
process based on all information in the interval [0,T ] to derive the variational lower bound, which
reduces the computational cost.

4. Numerical experiments

In this section, we take several SDEs with non-global Lipschitz nonlinearity as test examples
to show the effectiveness of the ECLPF method. More details on hyperparameter settings and
implementation of the ECLPF are motivated by papers [13, 26]. Our code is available at
https://github.com/JHUNAI/ECLPF.
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Example 4.1. The first example is called the stochastic Ginzburg-Landau equation, which is often
used to describe phase transition [20] and is expressed as:

du(t) =
u − u3

0.01
dt +

u
2

dW(t), 0 < t ≤ T,

u(0) = u0 = 1.
(4.1)

To begin, we concentrate on the strong and weak errors at endpoint t = T . These two types of errors
are, respectively, presented as follows:

E[|u(T ) − X(T )|2]
1
2 =: estrong,

∣∣∣E[u(T )] − E[X(T )]
∣∣∣ =: eweak, (4.2)

where u(T ) and X(T ) denote separately the exact solution of the problem (4.1) and the solution
generated by ECLPF method. In actual calculation, since it is difficult to get the explicit exact solution,
we will use the reference solution calculated at fine time steps ∆tref = 5 × 10−4 instead of the exact
solution for error measurement. The observed input data {ũti}i=1,··· ,N is obtained through the calculation
of the scheme (2.6) with ∆t = T

N = 0.01 (i.e., N = 100). Additionally, we employ the mean of M ∈ N+
samples to approximate the expected value of the numerical errors, i.e., the strong error estrong and the
weak error eweak can be computed approximately by:

estrong ≈
( 1

M

M∑
j=1

|uref
j − X j(T )|2

) 1
2
=: ustrong,

eweak ≈

∣∣∣∣ 1M
M∑
j=1

(uref
j − X j(T ))

∣∣∣∣ =: uweak,

where uref
j represents the j-th sample of the reference solution, and X j(T ) stands for the j-th sample

of X(T ). Under different values of θ, we compute ustrong and uweak with different M by taking T = 1
and compare these errors to those computed by scheme (2.6). The error behavior is shown in Table 2,
from which we see that the strong and weak errors of the ECLPF method are smaller than those of the
scheme (2.6) for θ = 0.6, 0.8, 1.0. It means that the proposed new method shows a better approximation
effect to the equation (4.1) compared to the scheme (2.6).

Next, we pay attention to the fitting and generalization performance of the ECLPF method to the
reference solution. To be specific, we randomly select one sample path with θ = 1 to simulate the
fitting effect, as shown in (a) in Figure 2, where we observe that the time evolution trajectory of the
ECLPF solution is basically able to fit the reference solution. We then investigate the generalization
performance of the ECLPF method on the time interval [T, 2T ]. Precisely, we take the mean of 10
sample paths of the reference solution and the ECLPF solution, and let

ūref(T + i∆t) :=
1
10

10∑
j=1

uref
j (T + i∆t), X̄(T + i∆t) :=

1
10

10∑
j=1

X j(T + i∆t), i = 1, · · · ,N,

where uref
j (T + i∆t) and X j(T + i∆t) separately represent the j-th sample of the reference solution and

the ECLPF solution at time T + i∆t. We calculate the generalization relative error eg by

eg :=

(∑N
i=1
(
ūref(T + i∆t) − X̄(T + i∆t)

)2
∆t
) 1

2(∑N
i=1 ūref(T + i∆t)2∆t

) 1
2

≈ 0.01633. (4.3)

AIMS Mathematics Volume 9, Issue 5, 11975–11991.



11984

This is a number less than 5%, indicating that our new method shows acceptable generalization
performance. Furthermore, we plot the evolution trajectories of the sample mean of the reference
solution and the ECLPF solution in (b) in Figure 2, from which we see that the proposed new method
exhibits effective generalization behavior.

Example 4.2. In this example, we consider the Duffing-van der Pol system as a test model, which
reads:

du1(t) = u2(t)dt + u2(t)dW(t),
du2(t) =

(
− u2(1 + u2

1) + (u1 − u3
1)
)
dt + u1dW(t),

(4.4)

where the term −u2(1 + u2
1) stands for nonlinear dissipation and the term (u1 − u3

1) denotes potential
conservative force. This model is typically used to simulate the unstable limit cycles in two-
dimensional phase space; see, e.g., [12] for more detail.

Let u(t) := [u1(t), u2(t)]T . Denote the ECLPF solution by X(t) := [X1(t), X2(t)]T with Xk(t), k = 1, 2,
being the k-th component. Like the Example 4.1, we use the reference solution instead of exact solution
to approximately compute the strong error estrong and weak error eweak at endpoint t = T , as below:

estrong ≈
( 1

M

M∑
j=1

(
|uref

1, j − X1, j(T )|2 + |uref
2, j − X2, j(T )|2

)) 1
2
=: ustrong,

eweak ≈
1
M

M∑
j=1

(
|uref

1, j − X1, j(T )| + |uref
2, j − X2, j(T )|

)
=: uweak,

where uref
k, j and Xk, j(T ), k = 1, 2, respectively represent the j-th sample of the k-th component of

the reference solution and the CLPF solution. Set θ = 1, T = 1, and the initial value u(0) =
[u1(0), u2(0)]T = [ 1

2 , 0]T . We calculate ustrong and uweak with different sample numbers and compare
these errors with those computed by scheme (2.6). The numerical results are listed in Table 3, from
which we find that the strong and weak errors of the ECLPF method are smaller than those of the
scheme (2.6). This means that our proposed new method can approximate model (4.4) more accurately
than scheme (2.6).

We next focus on the ability of the fitting and generalization of the ECLPF method to the model
(4.4). Similar to the Example 4.1, we randomly take one sample path for fitting, and the numerical
behavior of the time evolution of each component of the CLPF solution and the reference solution
is shown in (a) and (b) of Figure 3, respectively. We observe that the ECLPF solution exhibits good
fitting capabilities. Now, we consider the generalization performance of the ECLPF method on the time
interval [T, 2T ]. As like in Example 4.1, we first take the mean of 10 sample paths of the reference
solution and the ECLPF solution, and define

ūref(T + i∆t) :=
1
10

10∑
j=1

uref
j (T + i∆t), X̄(T + i∆t) :=

1
10

10∑
j=1

X j(T + i∆t), i = 1, · · · ,N,

where uref
j (T + i∆t) := [uref

1, j(T + i∆t), uref
2, j(T + i∆t)]T and X j(T + i∆t) := [X1, j(T + i∆t), X2, j(T + i∆t)]T .

Once again, we calculate the generalization relative error eg by

eg :=

(∑N
i=1

∥∥∥ūref(T + i∆t) − X̄(T + i∆t)
∥∥∥2

2
∆t
) 1

2(∑N
i=1

∥∥∥ūref(T + i∆t)
∥∥∥2

2
∆t
) 1

2

≈ 0.03723 < 5%, (4.5)
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which shows a satisfactory generalization performance of our ECLPF method. Moreover, we
individually plot the time evolution of the sample mean of the reference solution and the ECLPF
solution in (c) and (d) of Figure 3, from which we see that the proposed new method exhibits effective
generalization behavior.

Example 4.3. In the last example, we will use an SDE with a Nagumo potential function, which
is commonly used to model the dynamics of activation and deactivation of spiking neurons [28], to
demonstrate the computational performance of our proposed ECLPF method. The specific test model
is as follows:

du(t) = u(1 − u)(u +
1
2

)dt + udW(t), 0 < t ≤ T,

u(0) = u0 = 1.
(4.6)

It is first devoted to the comparison for the calculation efficiency of the ECLPF and the
classical CLPF methods. The code of classical CLPF has been provided by Deng et al. [13];
see “https://github.com/BorealisAI/continuous-latent-process-flows” for details. All the solvers are
implemented using Python. The numerical experiments are performed on a computer with 64GB
memory and CPU (central processing unit) “AMD-7950X”. Let T = 1. We employ, respectively, the
ECLPF and CLPF methods to calculate the CPU time consumption under different sample numbers
and time steps. The relevant numerical results are listed in Table 4, where the left one is the result
with ∆t = 5 × 10−4 and the right one is the result when the sample number is fixed at 1000. We see
from this Table that the ECLPF method saves a lot of time compared with the classical CLPF method.
Therefore, the computational cost of our proposed method is lower than the classical CLPF method.

Next, we use the calculation rules shown in Example 4.1 to compute the strong and weak errors of
problem (4.6) again using the ECLPF method and the scheme (2.6) individually. The numerical errors
are given in Table 5, where we find that the strong and weak errors of the ECLPF method are smaller
than those computed by scheme (2.6). Therefore, the ECLPF method shows a better approximation
effect to the underlying model (4.6) compared to the scheme (2.6).

Finally, we compute the generalization error of the ECLPF method on the time interval [T, 2T ].
Similar to the Example 4.1, we take the mean of 10 sample paths of the reference solution and the
ECLPF solution, and let

ūref(T + i∆t) :=
1
10

10∑
j=1

uref
j (T + i∆t), X̄(T + i∆t) :=

1
10

10∑
j=1

X j(T + i∆t), i = 1, · · · ,N,

where uref
j (T + i∆t) and X j(T + i∆t) separately represent the j-th sample of the reference solution and

the ECLPF solution at time T + i∆t. The generalization relative error eg satisfies:

eg :=

(∑N
i=1
(
ūref(T + i∆t) − X̄(T + i∆t)

)2
∆t
) 1

2(∑N
i=1 ūref(T + i∆t)2∆t

) 1
2

≈ 0.02997,

which is a small number less than 5%. Once again, it implies that our ECLPF method exhibits good
generalization performance for the problem (4.6).
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Table 2. Error comparison. Upper: θ = 0.6; Middle: θ = 0.8; Lower: θ = 1.0.

θ-value Sample number M
ECLPF method Scheme (2.6)

ustrong uweak ustrong uweak

100 6.9862E-2 5.5620E-2 7.6799E-2 6.4412E-2
200 6.9136E-2 5.3978E-2 7.8656E-2 6.3444E-2

θ = 0.6 500 6.3581E-2 5.2564E-2 7.6496E-2 6.2053E-2
800 6.3812E-2 5.1136E-2 7.5558E-2 6.1835E-2

1000 6.3061E-2 5.0718E-2 7.5544E-2 6.1225E-2
100 6.9843E-2 5.5602E-2 9.1942E-2 7.3036E-2
200 6.9116E-2 5.3966E-2 9.0315E-2 7.2722E-2

θ = 0.8 500 6.7042E-2 5.2549E-2 9.0001E-2 7.2137E-2
800 6.3796E-2 5.1122E-2 8.8917E-2 7.1399E-2

1000 6.3563E-2 5.0703E-2 8.8803E-2 7.0612E-2
100 7.3940E-2 5.8470E-2 1.0304E-1 8.1380E-2
200 6.9090E-2 5.5310E-2 1.0404E-1 8.0470E-2

θ = 1.0 500 6.7710E-2 5.4340E-2 1.0275E-1 8.0880E-2
800 6.6830E-2 5.4160E-2 1.0129E-1 7.9690E-2

1000 6.5890E-2 5.3310E-2 1.0135E-1 7.9240E-2

0.0 0.2 0.4 0.6 0.8 1.0
t

0.90

0.95

1.00

1.05

1.10

u

Extended CLPF solution
Reference solution

(a)

1.0 1.2 1.4 1.6 1.8 2.0
t

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

u

Sample mean of the extended CLPF solution
Sample mean of the reference solution

(b)

Figure 2. Fitting and generalization demonstration of the the ECLPF method. (a): Fitting
performance. (b): Generalization performance.
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Table 3. Strong and weak error comparison.

Sample number M
ECLPF method Scheme (2.6)

ustrong uweak ustrong uweak

100 4.948E-1 5.117E-1 5.682E-1 5.859E-1
200 5.282E-1 5.571E-1 6.384E-1 6.464E-1
500 4.998E-1 5.218E-1 5.913E-1 5.977E-1
800 4.600E-1 4.552E-1 5.960E-1 6.023E-1

1000 4.883E-1 4.687E-1 6.157E-1 6.202E-1

0.0 0.2 0.4 0.6 0.8 1.0

t

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
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u₁

Extended CLPF solution
Reference solution

(a)

0.0 0.2 0.4 0.6 0.8 1.0

t

−0.1
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0.1

0.2

0.3

u₂

Extended CLPF solution
Reference solution

(b)

1.0 1.2 1.4 1.6 1.8 2.0

t
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0.36

0.38

0.40

0.42

u₁

Sample mean of the extended CLPF solution
Sample mean of the reference solution

(c)

1.0 1.2 1.4 1.6 1.8 2.0

t

0.02

0.04
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0.08

0.10

0.12

u₂

Sample mean of the extended CLPF solution
Sample mean of the reference solution

(d)

Figure 3. Fitting and generalization demonstration of the the ECLPF method. (a) and (b):
Fitting performance of u1(t) and u2(t). (c) and (d): Generalization performance of sample
mean of u1(t) and u2(t).

Table 4. CPU time under different sample numbers (left) and time steps (right).

Sample number M
ECLPF method CLPF method

CPU time(s) CPU time(s)

100 0.62 16.59
200 0.63 30.97
500 0.64 74.92
800 0.66 120.11

1000 0.69 140.65

Time step ∆t
ECLPF method CLPF method

CPU time(s) CPU time(s)

1/100 0.065 7.17
1/200 0.12 13.65
1/500 0.29 34.53
1/800 0.46 55.28
1/1000 0.61 70.73
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Table 5. Strong and weak error comparison.

Sample number M
ECLPF method Scheme (2.6)

ustrong uweak ustrong uweak

100 3.8262E-1 2.9902E-1 5.8525E-1 4.4244E-1
200 3.5462E-1 2.6334E-1 6.2152E-1 4.7477E-1
500 3.0238E-1 2.3591E-1 5.8920E-1 4.4990E-1
800 3.1958E-1 2.5090E-1 6.1063E-1 4.6905E-1

1000 3.0220E-1 2.2940E-1 6.2339E-1 4.8226E-1

5. Conclusions

This paper studied a data-driven approximation for the SDE driven by multiplicative noise and non-
global Lipschitz drift coefficient. The well-posedness of the underlying equation was elaborated. An
efficient neural network method called the ECLPF approach was proposed. Some typical numerical
experiments are provided, including strong/weak error calculations, fitting performance simulations,
and generalization performance comparisons, to illustrate the effectiveness of this new method.
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