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1. Introduction

This paper concerns the existence and uniqueness of a solution for the following impulsive fractional
relaxation and integro-differential equations with delay conditions

D LCDPy(x) + Ay(x) = B(r, ye, [Py()), v € [0, T] = T, r £ 17, 1 € R,
Ay(r) = K(yay), F= 1,2, ..m,

y(1) = p(x), 1 € (—00,0],

LCDy(0) =L D7y(T) = 0, y(0) = £ [ yods + €1, .6, € R,

(1.1)

where ¢ and w are the fractional derivative order of R-L fractional derivative D? and L-C fractional
derivative Z°D7 | 1 < &£ < 2,1 € (0, 1) is order of R-L fractional integral I” and P : IxKRxR — Risa
nonlinear continuous function. I; : R — R, the jump of y at r = 1y is denoted by Ay(ry) = y(x;) — y(x;),
the right limit of y(r) at v = 1; is y(r) and the left limit of y(r) at v = ¢ is y(7), T = 1,2,...,n.
C, := C/((=0, 0], R) is the space of continuous functions.

We describe y, by

ye(s) = y(r + s) wherer € J, and — o0 < 5 < 0.

Here, y.(.) portrays the state’s history variance from time r — co to .

Differential equations with delay involve systems in which the future state not only depends on the
current but also on the past state. Reforestation is a straightforward example found in nature. After
being replanted, a cut forest will take at least 20 years to reach any kind of maturity; this could be much
longer for some species of trees (redwoods, for instance). Therefore, it is obvious that time delays must
be included in any mathematical model (refer [1, 2] for similar applications). In a study by Bouriah
and colleagues [3], they briefly explored the presence and stability of fractional differential equations
that incorporate both delay and impulse conditions. In another work [4], X. Ma et al. delved into the
existence of nearly periodic solutions for fractional impulsive neutral stochastic differential equations
with extended delay. These differential equations are currently a popular area of research and find wide
application as mathematical models in real-world scenarios, as evidenced in the book [5]. Additionally,
Wattanakejorn et al. [6] conducted research into the existence of solutions for relaxation differential
equations that include impulsive delay boundary conditions.

Fractional calculus has been widely used in many fields of applied science and engineering. For
example, it has been used in systems biology, physics, chemistry, and biochemistry. Fractional-order
models can reflect the complex behaviors of various diseases more accurately and deeply than classical
integer-order models. Fractional-order systems are better than integer-order systems because they
contain the genetic characteristics of memory (see reference [7-9]). Substantial growth has been
achieved in the concept of fractional derivatives and its applications in current history, as evidenced
by the references [10-13]. In [14], the authors examined the study of a multi-term time-fractional
delay differential system with monotonic conditions. Aissani and Benchohra [15] discussed fractional
integro-differential equations with state-dependent delay. Kaliraj and colleagues [16] investigated the
existence of results for a nonlocal neutral fractional differential equation using the concept of the
Caputo derivative with impulsive conditions. In [17], the authors analyzed existence and stability
results for impulsive fractional integro-differential equations with integral boundary conditions.
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Nonetheless, differential equations with impulse conditions have attracted a lot of interest.
For instance, impulsive effects are known to occur in many biological phenomena involving
thresholds, bursting rhythm models in biology and medicine, optimal control models in economics,
pharmacokinetics, and frequency-modulated systems. For example, in [18] the authors explored the
efficacy of activated charcoal in detoxifying a body suffering from methanol poisoning by using
impulsive conditions. In [19], Karthikeyan and others investigated the impulsive fractional integro-
differential equations with boundary conditions. Zeng [20] examined the existence results for fractional
impulsive delay feedback control systems with caputo fractional derivatives. The authors in [21]
discussed the existence and uniqueness of a nonlocal fractional differential equation of Sobolev type
with impulses. Liu et al. [22] discussed the existence of positive solutions for the ¢-Hilfer fractional
differential equation with random impulses and boundary value conditions. In [23], Shu et al. studied
the mild solution of impulsive fractional evolution equations.

In [24], the authors studied the existence and uniqueness of positive solutions of the given non-linear
fractional relaxation differential equation

LCDY%(t) + An(t) = f(t,%(1)), 0<t<1,
x(0) = %y > 0,

where £€D? is the Liouville-Caputo fractional derivative, € (0, 1]. By using the fixed-point theorems
and the method of the lower and upper solutions, the existence and uniqueness of solutions have been
examined.

A. Lachouri, A. Djoudi, and A. Ardjouni [25] discussed the existence and uniqueness of solutions
for the below fractional relaxation integro-differential equations with boundary conditions

DA LCD(r) + n(t) = f(t,2(0), (1)), A€R, 0<1<T,
LCD(0) =1 Du(T) = 0, #(0)=a [} xds+b, abeR,

where 2¢D? and D? are Liouville-Caputo (L-C) fractional derivative and the Riemann-Liouville (R-L)
fractional derivative of orders a and B, respectively, @ € (0, 1), 8 € (1,2), I" is the Riemann-Liouville
fractional integral of order r € (0, 1), and f : [0,7] X R X R — R is a nonlinear continuous function.

Motivated by the above works, we studied the existence and uniqueness of solutions for Eq 1.1.
In this system, we included the impulse condition and infinite delay for integro-fractional differential
equations with integral boundary conditions. Main results are proved by using Schaefer’s and Banach
fixed- point theorems.

The paper is structured as follows: Some fundamental terms and preliminary facts are given in
Section 2. In Section 3, we discuss the existence and uniqueness of the main problem. An example is
given in Section 4 to highlight the theoretical findings.

2. Preliminaries

This section presents some terminologies and results connected to fractional calculus.

Let (N, ||.|lx) be the seminormed linear space of functions mapping from (—oo, 0] to R, let C(J) =
C.(8, R) denote the Banach space of continuous functions provided with the norm ||y||., := sup{|y(v)| :

r € [0, T]}, where 3 := [0, T] and consider the space PC,([0, T],R) = {y : [0,T] - R : y €
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C/((ty, 11111, R), T = 0,....,n, and there exists y(ry) and y(r)), t = 1,...,n, with y(r;) = y(x;)} equipped
with the norm |[yllg¢, = sup,cjo.1; [Y(¥)|. Consider the space N, = {y : (=00, T] — R\y € PC(T, R)NN}.
AC(I) is the space of absolutely continuous valued functions from J to R, and set AC"(J) ={y: I —
R:y,y,y,....y" ' e€C, and y"'eACI)).

Consider (N, ||.|lx) fulfilling the underlying axioms listed below,
(A1) Ify : (=00, T] — R and yy € N, then K*, H*, M* > 0, are constants such that for any r € J the
subsequent conditions retain:

e y, isin N, and y, is continuous on [0, T)\{r, 12, ..., 1},
o |[yllx < K¥{lyills + M™ supcpoq (9],
o |yl < H*|lyllx-

(A2) y, is a N— valued continuous function on J, for the function y(.) in (A1),
(A3) N’s space is complete.

Definition 2.1. [26] 1, : 3 — ‘R is function with fractional integral order @, @ > 0 is specified by

1 T
I7h,(x) = @ f(; (= )7 'h(s)ds,

given the integral exists.

Definition 2.2. [26] 0, : 3 — R is with L-C fractional derivative order @, @ > 0 is specified by

Z(J)()
f»()—Zb T ]

LCD‘w'b (r) D%

where
m=1+[w] for wé¢Ny,, m=w for weN,, 2.1
and D, is a R-L fractional derivative of order @ specified by
Db = D) = S [ s
I'n —@)dm J,

The L-C fractional derivative LCDO“Z exists for y € WE" (). Here, it is denoted by

DT @) = 17Ty ) = — f (r = """ (s)ds.
I'(n—-@) Jy

Note that we obtain, “* D®h,(x) = H,"™(v) whenever @ = m.

Lemma 2.1. [26] Assume w > 0 and m be the provided by (2.1). If §, € AC" (T, R), then

be(’)(O)

(I D7h)(x) = b(x) - Z

where B, is the normal derivative of b, of order j.
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Lemma 2.2. [26] For @ > 0 and m be provided by (2.1), then the general solution of the L-C fractional
differential equation ““ D®h,(x) = 0 is

D,(x) = b + byt + boyt? + ... + byt

where by € R, k =0,1,2,...,m— 1. Additionally, the general solution of the R-L fractional differential
equation
D7h,(r) = 0,

is
b)) =br® b+ bt P+ L+ b, breR, k=1,2,..,m.
Lemma 2.3. [26] For any 0 < @, & < oo and, then

L ' _ -1l m-1 — & w+e—1
F(w)j(:(r $)°s ds—r(w+8)r .

Lemma 2.4. [3] (Banach contraction mapping theorem) Let ® be a non-empty subset of a Banach
space (E*, || - ||), which is convex and closed, and ¢* : ® — O be an any contraction mapping, then has
a unique fixed point.

Lemma 2.5. [3] (Schaefer’s fixed-point theorem) Let E* be a Banach space and ¢* : E* — E* be a
completely continuous operator. If the set A = {y € E* : y = A¢"y, for some A € (0, 1)} is bounded.
Then, the operator has a fixed point.

Lemma 2.6. [3] (Arzela-Ascoli theorem) Let A ¢ PC(J,R). A is relatively compact if: (i) A is
uniformly bounded, i.e., there exists M > 0 such that

|f(x)| < Mfor everyf € Aandx € (ty, tir1), k=1, ...,m.

(ii) A is equicontinuous on (ty, ty,1) i.e., for every € > 0, there exists 6 > 0 such that for each, x,x €
(tx, ter), |x — X| < 6 implies | f(x) — f(X)| < €, for every [ € A.

Lemma 2.7. (Lebesgue Dominated Convergence Theorem) Suppose g is Lebesgue integrable on E.
The sequence f, of measurable functions satisfies: (i). |f,| < g a.e. on E for n € N (ii). f, — [ a.e. on
E. Then, f € L(E) and lim, ., [, fudx = [_fdx.

Lemma 2.8. [25] For any by, € C/9), then the problem
D DPy(x) + Ay(x) = (1), t 21, t € [0, T], 1€ R,

-
¥D7y(0) = D7y(T) = 0, (0) = ff yds+ 1, 6,0 € R,
0

is identical to the integral equation

_ 1 ' _ o \wte—1 _ ' _ o \Tte-1
y(¥) Tote (f(; (=) h(v)dy /1](;(1 v) yudv)

r8+w—1 T T T
e — T - ) 'h()dv - A T-v) 'y, du|+¢ Wdv + €.
Ts_]r(ﬁw)(fO( )", (v)dv f0< v)"y v) foy v+
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Proof. Taking the integrator operator I to the above first equation and from Lemma 2.2, we get
LED7y() = I, (v) — AFY((r) + a1 + a2 (2.2)
According to conditions *° D®y(0) =£€ D®y(T) = 0, it yields

1
== (UIY(T) = I')(T)), a2 = 0.

Replacing a, and a, by their values in (3), we get

a) =

e—1

LD7y(x) = IFh,(x) — AFy(x) +

—og AFY(T) = IPD(T))- (2.3)

Taking the integrator operator I® again to the above equation and using Lemmas 2.2 and 2.3, we
obtain
I“(g)rsﬂv—l

T 1T (e + @)

-
as sz veds + €.
0

Substituting the value of a3, we obtain the integral equation.
Lemma 2.9. [25] For any V), € C/9), then the problem

y() = 177D, (1) = A" y(v) + (I°H(T) — ALy(T)) + a3, 2.4)

using the integral condition, we find

D?LCDZy(x) + Ay(x) = h(x), v # 1, t € [0, T], 1 € R,
Ay(ry) = L(y(p)), T=1,2,..,m,

y(r) = p(x), —00 <1 <0,

LCp7y(0) =€ DZy(T) =0, y(0) = ¢ fOT yids + €1, €, €, € R,

is identical to the integral equation

(2.5)

p(1); 1 € (=00,0]

1 v .
m (L (r - U)w"'g_]bz(v)dv — /l‘](: (Ij — U)w'+8—1yvdv)
s+w—1 T -
T (f (T - v)a—lbz(u)dv - /lf (T _ v)s—lyudv)
0 0

T (e + @)
T

+€f yudl}-l-f] ifre[O,rl]
0

1 ! i .
m Z (f (ri - U)w"'s_lbz(v)dv - /lf (ri — U)W+a—1yvdv)
i=1 | e

1 ' _ ,\wte—1 _ ' _ N \Tte—1
+F(w s, ( L (r—v) h(v)dv - A »[f (r—v) yvdv)
ce+w—1 T T
’ (T — v "h)dv — 4 f (T - v)e_lyydv)
0

T + @)\ Jy

T m
+ f yodv+ 6 + 3" RO if €t tea .
0 t=1
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3. Main results

We require the following hypothesis:
(H1) Take the constants k; > 0, k, € (0, 1) such that

B, y,y1) = B,y yDI < killy = ¥'lls + kalyr — yil,

foranyre€ J ,foreachy,y* €N i=1,2,and y;,y] € R.
(H2) Consider the constants K; > 0 and 0 < K, < 1 such that

[B(r, y,y)I < Killylls + Kaly'l,

foreachr € J, forany y € N and y* € R.
(H3) There exists ¢ > 0 such that

L) = LM < olly = ¥lx, Yy, 9" € Rwithk=1,2,...n

Theorem 3.1. Assume (HI) and (H3) holds. If V < 1, then Eq (1.1) has a solution that is unique on
(_009 T]
Where

1 1 T
v - (D T kg + ko H + 1]+ np
[(m+e+1) el(w+e¢) Ire+1)

Proof. Indicate the operator I1 : X, — N, as

p); v € (—00,0]

1 ! i .
m Z (f (r; — U)W+£—1SB(U, Yus I9y(v))dv — /lf (x; - U)w'+s—1yvdv)

(Iy)() = m( f (r = )7 1B (v, yy, y@))dv — A f (t — v)™*" 1yudv)

ce+w—1
‘m( f (T = )" ' B, y, IyW))dv ~ 4 f (T -v)” 1yudv)

+ f v+ £+ 3 OGO it € ()

=1

Let 7(.) : (=00, T] — R be a function indicated by

Z(v) = T 3.1
e é’f yodv+£y; red. -1
0

ThenZy = p, ¥ u € C(J), with u(0) = 0, define the function i as

(3.2)

. 0; —o<1r<0,
u=
u(r); reJ.
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If y(.) fulfills the integral equation
1 f " - " wt+e—
y(v) Zm Z (f ;= )" B, o, y(v)dv — /lf - 1yvdv)

l—‘(w + 8) (f ( w+s—liB(U, Yus Iey(v))dv - /lf (r — U)‘w’+8—1yvdv)

8+w 1
m (f (T =)' B, yU,IOy(v))dv ﬁf (T —-v)*” 1)’udv)
+C f yodvu + ) + Z LyQa)). (3.3)
0 =1

We can decompose y(.) as y(v) = i(x) + Z(x); for v € 3, which shows that y, = i, + Z, forall v € J,
and u(.) fulfills

t v T
(o) :ﬁ )y ( f (5= )7 W)dv - A f e v)ma‘lyudv)

m’+8—l _ ' _ o \Tte-1
F(w+8) ( f (r— h(v)dv -4 jr: (t-v) yudv)

s+w 1 T
- e-1 _ e—1
- e o) ( f (T — v 'D(v)dv - 2 fo (T -v) yydv)

+ ) LG, (34)
=1

where
b(v) = B(r, iy + Z, IO + 20), ye = b + % and L(y(y)) = La(y) + 2(7)).

Let Ay be the Banach space
Ao ={u e C(D); uy =0J.

The norm ||.||+ in Ay is denoted by

llullz = lluolls + sup [u(v)] = sup [u(v)l; u € Ao.
ey red

Denote the operator X" : Ay — Ay by
1 f T; T
(Tu)(x) = m Z f ;= )7 ()dv - 2 j; ) (r; — v)m‘e_lyudv)

w+8—1 ' w+e—1
r(m 5 f (r - b(w)dv — A f (t - v) yudu)

8+1D' 1

_r f (T = 0 "B (w)dv — A f (T - “yvdv) (3.5)

CTe T(e + @)

+ > LOG).
=1
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As a result, the operators 11 and T* have a fixed point, that are equivalent. Now, we shall show that
T* : Ao — Ay is a contraction map.
Take u,u’ € Ao, thenV¥r e J,

t
7" @) (@) = @) _‘ )Z f (i = )™ (w)dv - A f (5= 0™ ydv)

=

- m Z] ( f (1~ )" g(u)dv - A f (5= )7 Fudv)
+ ]F(W%H) f - 0" @y - 4 f @y

f (=)™ gw)dv - A f (= 0)7" 5, dv)
*lrer e fo (T - v)* 'h(W)dv - A fo (T - v)g_lyvdv)
_ %( fOT(T — v lg()dv - A fOT(T - v)g_l)'ivdv)

i ToG) - i FGG)| =

F(w+ )

I.z-:+w 1

G1+G2+G3+G4,

where b, g € C/(9) like that
b(x) = P, iy + Zo, () + 2(x))) and g(x) = B, o', + Z, I (¥) + Z(1))).
From (H)), we get

[b,(x) — g(¥)] = IBQ, iy + Z, I((x) + Z(x))) — B, oy + Z, I (x) + Z(1)))]

0

”ﬁr - u,r”N

< |k + sz*
r@+1)
e = Fell = Ity + Ze — 'y = Zll = |l — ot ||
and
() = KGO = [L@ay) + 2N - L () + 2@
< mg’”’j‘r - u/rH-
Here,

t
< 'F(w+g)z f (ti = )T ()dv ~ 4 f (x; — V)™ lyudv)

=

_ m ; ( ‘fr:ll (r; - U)W+s—1g(v)dv -4 fr:ll (r; — U)w+s—1 _Udv)
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St O f (1= 07 I (@) = 8w + fs il ) f (s =07 Iy, = Fuldv

O<re<t O<re<v
-I-w+£m -I-G - |/l|m 5
< Nk +loH' ——— | lite — i1 lls + ——————|Jfi, — o]l
T@+e+ )| T+ 1)} it = 1l [(w+ e+ 1)””r il

w+e—1 w+e—1
G —‘F(mg) f (t = ) I @)dv - A f (=) Ly,

f (=) g(v)dv - 2 f (r—v)7* 1yvdv)

F(w+ €)
1
<4 _ o \@+e-1 _ dv+ —— _ L, \wte-1 Y — _vd
T To+o rm(r v) b.(v) — g(v)|dv F(w+s)| Ifrm(r v) vy = Vuldv
TwT+e . 4% _ ~, Ml _ ~,
+————— |k +kH it — v’ llx + == lite — 'l
[(@+e+1) T@+1) [(@+e+1)

ra+m—l T | T 1
o P f0< vy~ )dv f()( o)y,
r8+w—1 T ) T 1
et o f( v gw)dv f( v Sudv
£+w1 . e+w—1 T |
T (e + @) . dv+ ——=—— [l [ (T =v)""ly, =5l
Ta 11“(8+w)f (T-v)" ' |h(v) - (U)l (Y T€‘1F(8+w)| |fo‘ ( V) |y y| v
TEt@ 0 B TEt@ -
Tt o tkd e =t dls + ————— |l — i .
“Tero ATk F(6’+1)]“u u'e|lx 8F(s+w)| it — u'clls

Gy

- S o ))—Zk(y(rf )

=1

3

< Z |If(y(r:[ )) If()_}(r’f_))l

=1

= nf@””t - M r”N-

Thus, ¥ v € 3, by using G1,G,, Gz, G4 we get

1" () () — T @)H)

T7"m ko + I H T i ~ s + |[Ajm i ~, i
T +ex 1) U —u =i —u
Tw+e+ D 2 ro+D|" "™ T@re+r) TN

Tw+€ T(} B |/l| .
t— |kt o H ———— |ty — o |lg + =————||it, — U,
TwrerD |ty 1)] It — ' llx T(w+et 1)||u u'yllx
-I-e+w ) ~ e+w B
+——— |k + ko H e — 17 s + ———— Al — i
e+ | TO+ 1)]””r WS e vy e~ s

+nglli: — u'dlls
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- . ) o 1 ~

g (l+m Tk, + ko + (Al + np | i, — ' s
\[(@+e+1) el(w+e) re+1) ]

< VHﬁt_IZr“N
\ s | 0 1 ~

g (1 +n) 174 (k) + ko H' + Al + np |l — o'l
\[(@+e+1) el(w+e) r@o+1) ]

< Vil = |l+.

Thus
10" ()(¥) = 0 (@) < V[i — ||+

From (3.1), Il is a contraction. The unique solution for the problem (1.1) is the fixed point of the
operator 11, according to the Banach contraction theorem. The proof is now complete.

Theorem 3.2. Consider the hypotheses (HI1) and (H2) are hold. If
{( -l-w+,9(n + 1) T@te )

Tg
Kl + KZH* + |/l|

+ + M*P + K* <1,
Twtetl)  el(@+e) ro+1) “50}( lell)
then (1.1) has at least one solution on (—oco, T].
Proof. Consider Y* : Ag — Ay.
Consider P > 0 and
_ I61T + 16| + np
i 13 (n 1) 1 T+e 6
- [(F(w:£+1) sf(w+s)) T (Kl + KZHF(ZH) + Ml)]

Denote the ball
Bp ={y € C(T,R), yll+ <P}

Here, the operator Y™ : Bp — Bp fulfills all conditions of Lemma 2.3. The proof would be presented
in few steps.
Step 1 : T is continuous.

Take the sequence u,, such that u,, — uin Bp. ¥ r € J, we have

1 "
I (@) (¥) = L)@ < Fote) Z fr l(rf—v)w*s“lbz,,,(v)—I)z(v)ldu

O<rg<r ¥ M=

1 )y
+m 5 @ = V)" b)) = h(V)ldv
1 Tt
1 o \T+e-1 _ d
ool 2 f =) b =

O<rg<v

1 T
+—/l _ w+e—1 o — ud
F(?D'+8)| Ifr“(r v) Yo = yoldv

et+w—1 T
: fo (T = 0 () — b()ldv

+—
T 1T (e + @)
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ts+w—1 T |
+—-|1 T =) Yo — Vold
-re—lr(g+w)| Ifo (T =) |ymu = yoldv

+ ) Hom) = TOGO),
=1

where by,,,, b, € C(J,R) like that
Dun(t) = B, fe + Zy I (x) + 2(1))) and b,(v) = B, i, + Z, H(u(x) + Z()),

Ymr = Wy + Zme and Ve = iy + 7.

Here, ||y, — yllr = 0 as m — oo and B,b, and Y, are continuous then by the Lebesgue dominated
convergence theorem
17" () = Y @)ll+ — 0 as m — oo.

Hence, (™ is continuous.
Step 2 : Y*(Bp) C Bp.
Considery € Bp, ¥ t € 3 and from (H,), we get

16.(v)|

IA

B (x, ity + Zo, °((x) + Z())|
Killii, + Zlls + KalI?(ii(x) + 2(v))|
0

re+1
0

IA

IA

Killills + KillZ:lls + KoH” llia(x) + Z()|

[M*P + K’ [|plx]

IA

K\M*P + K K*||pllx + K, H*
0

re+1

re+1

] (MP + Kllplls)

IA

K + +K2H*

then
)

K, + Ko H
L@+ 1)

LA (M*P + K*lplls)

and

vl = It + 2l < (M*P + Kllpll) -

Thus,

* 1 K wte—
O ) f =0T dy

O<re<r -

1 T
1 _ w+e—1 d
+—F( +8)| | E fl(rf v) |y ldv

O<rp<r VY Ti-

1 ' w+e—1
+m£(f—v) b.(v)|dv
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1 ' w+e—1
+m|ﬂ|f(f—v) lyuldv
8+1D' 1
f (T - v ' h@)ldv

T‘9 1I“(s + @)
|l f (T = v)* 'y, ldv
0

r8+1ﬂ' 1

" T (e + @)

+ Y IROG)
t=1

{( -I-w+a(TI + 1) TOte )

[(m+e+1) " el'(w + ¢€)
(M*P + K- llpllx)
P.

IA

K,H*

+|4]

+ 1180}

re+1

IA

Hence,

1T (w)llx < P

Consequently, I1(Bp) C Bp.
Step 3 : Y*(Bp) is equicontinuous.
For0 <) <1 < Tandy e Bp, we have

I(T*u)(rf 1) = (Cu)(xo)|
mm) Zf (1 = )7 = (= 0) 7 I @)l

o
r(mg) OZ f (v = )7 @)ldv

+m fo (Gt =) = = )Y @)l

+ﬁ (x = )" b w)ldv
F(w+8)| |0;<1 ( f (t = )7 = (= )7yl + f (v~ v)“+8‘1|yu|dv)

1 Tt
+m|ﬂ| (f (@ — )™ — (1 = ) Yy, ldu + f (v — U)w+8_1|)’u|dU)
r8+'w—1 a+w 1
b2 0 ( f (T — v I )ldv + 1) f (T -0 1|yv|czv)

T (e + @)
+ Z B = ROG )
=1

0

re+1

e+w—1 _ jetw—1
(rm'+8 _ 1D'+8) (TI + 1) (r’f r’f—l )

MNw+e+1) el'(e + @)

<

(K1 + KoH” ) +1pl|(y(r) — (E-D)II-
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|(C*u)(ri-y) — (Cu)(x)] — 0 as vy — 11, this gives [I(Bp) is equicontinuous. 11 is completely
continuous by steps 1 to 3 along with Arzela-Ascoli theorem.
Step 4 : The priori bounds.

We have to prove that the set

e={y € No:y=¢T"(y); for some s € (0, 1)}

is bounded. Let u € Ag. Let y € Ay, such that u = ¢*(u); for some ¢ € (0, 1). Then, forall x € J, we
get

1 Lo
ur) =s(Tu)(x) = ¢ {m Z f - v)"* h(W)dv
i=1 Y-l

¢ _
1 K

- 1 - w+e—1 vd

F(w+6); f(r T yudy

Ti-1

1 ' w+e—1
+m£(r— U) bl(v)dv

1 ' w+e—1
_l—‘(w—-i-g)ﬂf (r— U) yUdU
N 1
f (T — v 'h(v)dv

T T(e + @)

£+w 1

e [0 o+ Z FOG))
1B, ity + 2, I((r) + 2(0)))

9 -
Ty | (M P+ Klells) = v.

[B.(v)|

IA

IA

K ++LH"

Thus, ¥ v € 3, we attain
1w (0
< o \wre-1 d
) < s Z] f =0Ty

t .

1 i
— g A i — )y, ld
@ + &) f (=) el

Ui-1

1 ' w+e—1
+1“(w—+s)f(r_v) b,(v)|dv

f (x = )7 [y, |dv

F(w +&) Jy
e 1
e—1
e T o) f (T~ )" h(@)dv
ret@= 1 ol
Sy P (T 0) Iy, ldv + Z RG]
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n+1 1 e
+ yT +ngp
I[(m+e+1) el(e+w)
< . (3.6)
Hence,
llull+ < ¢ .

The set € is bounded. As a result of Lemma 2.6, the operator (™ has at least one fixed point 'y € Bp,
which is a solution of the problem (1.1) on (—co, T].

Remark 3.1. The study of the fractional relaxation differential equation with initial and boundary
conditions has been developed by the authors (see reeferences [24, 25]). They have proved the
existence by using Krasnoselskii’s fixed-point theorem and Schauder fixed-point theorem. In our paper,
we developed the new system of fractional integro-relaxation differential equations, which include
the impulse and delay term with integral boundary conditions, and also proved the existence and
uniqueness of the same by using the Schaefer’s and Banach fixed-point theorems.

4. Example

Consider the fractional relaxation impulsive integro-differential equation

D3 LD7y(r) + 1y(r) = B (1,3(0), [y()), v # v € [0, 1],
Ay(xy) = I}(y(rf‘)), t=1,2,..,m,

y(x)=1: 1€ (—00,0],

LCD3y(0) =1 Diy(1) = 0, y(0) = 5 [} y(s)ds + 2.

(4.1)

Let § > 0 be a real constant and
Bs = {y € C/((—=00,01,R,) : lim €°7y(n) exists in R}.
n—0o0

The norm B; is provided by

Ivlls = sup €”y().
n€(—o0,0]

,ﬂzi,sz%,fz%,and&:l

PB (1,3, T9y(0)) =

sin(v) ( 1 L sy ]
exp(r?) + 7{90(ly)l + 1) |1 + I%y(x)|)

Fory; € R,i=1,2, we have

I'B(r, y1,y2) — B(r, y1, y2)l

sin(x) (( 1 ~ 1 )+( [y, B 1% y,] ))‘
exp(r?) + 7{\90(yil + 1) 90yl + 1)) |1 + Iy, |1 + Iy,

1 1 1
g(%”)’l = yillg, + %b’z = yl).

IA
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Hence, the hypothesis (H1) is fulfilled with [ = 55, k = =&s, T =1, 6 = 55, n =1 & p = 1. Here
K*=M"=H"=1, indeed
+1 T
vV = (n+ 1) T (K, + K, H* 1]+ np
[(m+e+1) 8F(7D'+8) Ire+1)

[( e )( 1 1) ll
= ju— + —
rG+2+1) 3r(2 720 © 240 [(% +1) 372
0.9249 < 1.

1

The conditions of Theorem 3.1 are satisfied. It gives that the problem 4.1 has a solution, which is
unique on (—oo, 1].

5. Conclusions

In this paper, we focused on investigating the existence and uniqueness of results for fractional
relaxation differential equations with boundary conditions. Here, we defined the integral operator
and proved the continuous and completely continuous functions using Arezela-Ascoli’s theorem and
the Lebesgue dominated convergence theorem. Under some hypothesis and Schaefer’s fixed-point
theorem, we proved the existence results for the system. Banach fixed-point theorem was used to prove
the uniqueness of the solution of the system. The derived results have been justified by providing a
suitable example. In the future, the aforesaid analysis can be extended to state-dependent delay or
include the stochastic process.
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