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Abstract: In order to examine the potential and synergetic aspects of intelligent reflecting surface
(IRS) techniques for Internet-of-Things (IoT), we study an IRS-aided Long Range (LoRa) system in
this paper. Specifically, to facilitate the acquisition of accurate channel state information (CSI) for
effective reflection of LoRa signals, we first propose an optimal training design for the least squares
channel estimation with LoRa modulation, and then, by utilizing the acquired CSI, we develop a
high-performing passive beamforming scheme based on a signal-to-ratio (SNR) criterion. Numerical
results show that the proposed training design considerably outperforms the baseline schemes, and the
proposed passive beamforming design results in a significant improvement in performance over that
of the conventional LoRa system, thereby demonstrating the feasibility of extending coverage areas of
LoRa systems with the aid of IRS.
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1. Introduction

Long Range (LoRa) is one of the most widely deployed low-power wide-area network (LPWAN)
techniques for Internet-of-Things (IoT) in the world, whose signal modulation is based on a patented
chirp spread spectrum [1–13]. Though LoRa is known to strike a good balance between coverage and
throughput with low energy consumption, its performance may still be limited in real-world fading
environments due to severe path loss [14]. To address this issue and to improve the performance
of LoRa over fading channels, a single-input multiple-output (SIMO) LoRa system has been studied
in [1]. However, deploying multiple antennas is often costly and practically challenging due to limited
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hardware cost, size, and complexity.
Recently, an intelligent reflecting surface (IRS), composed of a number of passive and

reconfigurable reflective units, has emerged as a cost-, energy-, complexity-efficient alternative to
antenna arrays, which effectively reflects incident signals such that a propagation environment
becomes better suited for signal reception [15–26]. It also has significant potentials for LoRa in
performance improvement; e.g., in [14], the IRS has been used as a means to carry additional
information via the differential phase shift keying (DPSK) modulation such that a higher data rate
than the conventional LoRa system can be achieved.

The novelty of our work lies that different from [14], in this paper, we consider deploying the IRS
to improve the link reliability of the LoRa system. On top of this, the novel contributions of our paper
are highlighted as follows:

• For the considered IRS-aided LoRa system, it is imperative to acquire and utilize channel state
information (CSI), which is rather a challenging task. Accordingly, we propose the optimal
training design for accurate CSI acquisition with LoRa modulation, which has never been
reported in the literature.
• Also, considering the errors in the acquired CSI, we derive a closed-form expression of effective

signal-to-noise ratio (SNR), based on which we optimize the passive beamforming (i.e., reflection
pattern) for the IRS.
• Furthermore, various simulation results in realistic propagation environments are presented to

validate the superiority and effectiveness of the proposed IRS-aided LoRa system. From the
simulation results, useful engineering insights are drawn, which have never been provided in the
literature.

2. Signal model

As shown in Figure 1, we consider an IRS-aided LoRa system where an IRS with L reflecting
elements is deployed to assist the transmission of LoRa signals from a transmitter (e.g., IoT device
or sensor) to a receiver (e.g., gateway or base station), each with a single antenna. ∗ In LoRa, the
transmitted signal takes the form of an up chirp [1, 28]:

xm(n) =

√
P
M

exp
{

j
π(n + m)2

M

}
, n = 0, 1, · · · ,M − 1 (1)

where P > 0 is the transmission power and m ∈ {0, 1, · · · ,M−1} denotes a modulation symbol. Let h0,
fi, and gi denote complex-valued channel coefficients of the links from the transmitter to the receiver,
from the transmitter to the IRS, and from the IRS to the receiver, respectively. The received signal at
the receiver is given by

y(n) =

h0 +

L∑
i=1

gi fie jθi(n)

 xm(n) + w(n), ∀n (2)

∗Our work for a single antenna can be readily extended to the case with multiple antennas, such that the proposed scheme is applied
to each pair of a transmit antenna and a receive antenna.
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where 0 ≤ θi < 2π is the phase shift of the ith IRS element, and w(n) is the received noise with zero
mean and variance σ2. Also, M , 2SF, where SF ∈ {7, · · · , 12} denotes the spreading factor. Note that
to properly adjust {θi(n)} for better signal reflection, one first need to acquire the CSI, i.e., h0 and { figi},
which will be elaborated in the next section.

IRS

TransmitterTransmitter

Receiver
0h

1{ }Li ig
1{ }Li if

Figure 1. An IRS-aided LoRa system.

3. Optimal training design for LoRa channel estimation

In LoRa, every transmitted frame (or packet) is initiated with a priori known preamble (or training)
signal [28], based on which the CSI can be estimated. Typically, the base up chirp (i.e., {x0(n)}M−1

n=0 ) is
chosen as the preamble signal. The received preamble signal, denoted by y ,

[
y(0), · · · , y(M − 1)

]T,
can be written as

y = Xθh + w, (3)

where

h , [h0, h1, · · · , hL]T , hi , gi fi, i = 1, · · · , L,

Xθ , [x0,Θ1x0, · · · ,ΘLx0] , Θi , diag
{
e jθi(n)}M−1

n=0 , ∀i, (4)
x0 , [x0(0), · · · , x0(M − 1)]T , w , [w(0), · · · ,w(M − 1)]T .

Assuming that M ≥ L + 1 and Xθ is of full-rank, the least squares channel estimate can be obtained
as

ĥ =
(
XH
θ Xθ

)−1
XH
θ y, (5)

for which the estimation mean square error (MSE) is given as E
[∥∥∥h − ĥ

∥∥∥2]
= σ2tr

[ (
XH
θ Xθ

)−1 ]
[29].

The goal of the training design is to minimize the channel estimation MSE by optimizing the
reflection pattern of the IRS as

(P1) : minimize
0≤θi(n)<2π,∀i,n

tr
[ (

XH
θ Xθ

)−1 ]
.

It is known that an optimal solution to the above problem satisfies XH
θ Xθ = P

M I [29]. From (4), this
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condition is equivalent to†xH
0Θix0 =

∑M−1
n=0 e j 2πin

M = 0, i = 1, · · · , L
xH

0Θ
H
i Θ`x0 =

∑M−1
n=0 e j 2π(`−i)n

M = 0, 1 ≤ i , ` ≤ L
, (6)

implying that the optimality is achieved when the channel estimation errors become uncorrelated with
each other. In general, there exist infinitely many solutions to problem (P1) fulfilling (6). One of the
simplest choices is given by the primitive Mth roots of unity as

θi(n) =
2πin
M

, i = 1, · · · , L, n = 0, 1, · · · ,M − 1. (7)

4. Passive beamforming design for LoRa signal reflection

Subsequent to the channel estimation, we now consider the design of the IRS’s passive
beamforming utilizing the acquired CSI to effectively reflect the incident LoRa signals. Considering
the imperfectness of the estimated CSI, the received signal in (2) can be represented as

y(n) =

ĥ0 +

L∑
i=1

ĥie jθi(n)

 xm(n) +

h̃0 +

L∑
i=1

h̃ie jθi(n)

 xm(n) + w(n), ∀n (8)

where h̃i , hi − ĥi, i = 0, 1, · · · , L. Note that the first term is the desired signal component, whereas the
second term is an additional noise induced by the channel estimation errors. Therefore, from (8), we
define the effective SNR as

SNReff ,
E

[∣∣∣∣(ĥ0 +
∑L

i=1 ĥie jθi(n)
)

xm(n)
∣∣∣∣2]

E
[∣∣∣∣(h̃0 +

∑L
i=1 h̃ie jθi(n)

)
xm(n) + w(n)

∣∣∣∣2]
=

P
∣∣∣ĥ0 +

∑L
i=1 ĥie jθi(n)

∣∣∣2
σ2M(L + 2)

. (9)

To enhance the signal detection performance, we aim at maximizing the effective SNR in (9) for
each n by optimizing the reflection coefficients of the IRS as follows:

(P2) : maximize
0≤θi<2π,∀i

∣∣∣∣∣∣∣ĥ0 +

L∑
i=1

ĥie jθi

∣∣∣∣∣∣∣
2

, (10)

where we drop the index n for simplicity. From the well-known triangle inequality
∣∣∣ĥ0 +

∑L
i=1 ĥie jθi

∣∣∣ ≤∑L
i=0

∣∣∣ĥi

∣∣∣, the solution to problem (P2) can be obtained by achieving the equality as

θi =
(
∠ĥ0 − ∠ĥi

)
mod 2π

, i = 1, · · · , L. (11)

It is rather intriguing to note from (11) that the IRS’s reflection pattern is fixed when reflecting the
LoRa signals, whereas it varies over time when estimating the channels.

†To fulfill this optimality condition (i.e., for a proper training), it is required that M ≥ L + 1 (i.e., the number of data measurements
for training needs to be larger than that of channel coefficients to be estimated). In LoRa, this requirement is usually met even for a large
number of IRS elements (i.e., large value of L) due to a long symbol duration (i.e., large value of M) supported by LoRa. Specifically,
LoRa supports six different SF values (from 7 to 12) [5, 28, 33], and thus, the value of M in LoRa ranges from 27 = 128 to 212 = 4096.
In practice, therefore, the value of M (in the order of hundreds or thousands) is usually much larger than that of L (in the order of tens or
hundreds).
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5. Simulation results

In simulations, we consider an IRS-aided LoRa system with SF = 12. The bandwidth and noise
power spectral density are set to 500 kHz‡ and −174 dBm/Hz,§ respectively, and thus, the noise
variance is σ2 = −137.01 dBm. Also, h0, { fi}, and {gi} are modeled as the Rician fading channels with
the Rician factor set to 2 and the average path losses given by d−β0 , d−βf , and d−βg , respectively, where
d0, d f , and dg denote the distances between the transmitter and the receiver, between the transmitter
and the IRS, and between the IRS and the receiver, respectively, and β is the path loss exponent.
Unless stated otherwise, we use β = 3.2, d f = 2 m, dg = 3 km,¶ and d0 =

√
d2

f + d2
g throughout the

simulations.
In Figure 2, the channel estimation MSE of the proposed training design is shown versus the

transmission power P when L = 16 (left sub-figure) and versus the number L of reflecting elements at
the IRS when P = −75 dBm (right sub-figure). In Figure 2, for comparison, we also present the
performance of the following baseline schemes:

• Baseline Scheme I: A training scheme based on a directional reflection pattern with phase shifts
randomly chosen such that θi(n) ∈ [−δ, δ], ∀i, n. We set δ = 0.035 rad.
• Baseline Scheme II: A training scheme based on an on-off reflection pattern (i.e., θi(n) ∈ {0, 1},
∀i, n) such that reflecting elements are sequentially turned on one by one.
• Baseline Scheme III: A training scheme based on an alternating optimization of the reflection

coefficients θi(n), ∀i, n.
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(a) Channel estimation MSE versus P with L = 16.
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(b) Channel estimation MSE versus L with P = −75 dBm.

Figure 2. Channel estimation performance of the proposed and baseline schemes.

From Figure 2, it can be seen that the proposed scheme considerably outperforms the baseline
schemes. The channel estimation performance of all the schemes improves as P increases (resp. L

‡As specified in the standards [5, 28, 33], LoRa supports three BW settings (125, 250 or 500 kHz) and six different SF values (from
7 to 12).

§This corresponds to the thermal noise floor for 1 Hz bandwidth at room temperature (20◦C) [34].
¶It has been studied in [8] and [30–32] that the coverage of LoRa ranges from 100m to 30km in different scenarios. Therefore, it

appears feasible for the LoRa modulation to cover a communication range of 3 km even with the passive IRS.
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decreases), because the impact of noise decreases (resp. the number of channel coefficients to be
estimated decreases).

In Figure 3, the bit error rate (BER) performance of the following IRS-aided LoRa systems is
compared:

• IRS-aided LoRa I: The proposed passive beamforming design with CSI estimated by the proposed
training design.
• IRS-aided LoRa II: The IRS-aided LoRa system with the proposed passive beamforming using

perfect CSI.
• IRS-aided LoRa III: The IRS-aided LoRa system with an omnidirectional passive beamforming

(i.e., θi = 2πi
L , ∀i) using no CSI.

• Conventional LoRa: The conventional LoRa system without the IRS.

-60 -50 -40 -30 -20 -10 0 10

Transmission power P [dBm]

10
-3

10
-2

10
-1

B
E

R

IRS-aided LoRa I (Proposed)

IRS-aided LoRa II (Perfect CSI)

IRS-aided LoRa III (No CSI)

Conventional LoRa (w/o IRS)

L=256

L=64

L=16
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Figure 3. BER performance of the various IRS-aided LoRa systems for different L. The CSI
is estimated at P = 0 dBm.

In the IRS-aided LoRa systems I and II, coherent detection is employed to evaluate the BER
performance with estimated CSI and perfect CSI, respectively; whereas, in the IRS-aided LoRa
system III and the conventional LoRa system, non-coherent detection is adopted.

In Figure 3, the BERs of the various LoRa systems are shown versus P (left sub-figure) and versus
dg when P = 0 dBm (right sub-figure) for different values of L, where for the IRS-aided system I, the
CSI is estimated with P = 0 dBm. From Figure 3, it can be observed that the IRS-aided LoRa system
I yields almost the same performance as the IRS-aided LoRa system II and performs much better than
the other systems, thereby validating the effectiveness of the proposed passive beamforming design as
well as demonstrating the feasibility of coverage extension of the LoRa system with the aid of IRS. The
reason for such superiority is that in the proposed scheme, the channel training and IRS beamforming
are jointly optimized such that the IRS beamforming compensates for the CSI errors in the channel
training, whereas the other schemes suffer from their suboptimalities. Particularly, the performance
improvement of the IRS-aided LoRa system I or II becomes more pronounced as L increases, but that
of the IRS-aided LoRa system III is marginal due to the lack of CSI.
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6. Conclusions

The optimal training scheme minimizing the channel estimation MSE and the optimal passive
beamforming maximizing the effective SNR were derived for the IRS-aided LoRa system, which
significantly enhanced the BER performance over the conventional LoRa system.
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