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1. Introduction

A function f : (0,∞)→ [0,∞) is called completely monotone, if it is C∞ and satisfies

(−1)n f (n)(x) ≥ 0, for all x > 0 and n ∈ N.

Completely monotone (CM) functions find many applications in analysis and probability and an
excellent introduction into their properties can be found in the monographs [7, 11]. A function
g : (0,∞)→ [0,∞) is called Bernstein, if it is C∞ and satisfies

(−1)n−1g(n)(x) ≥ 0, for all x > 0 and n ∈ N.
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We see from the definition that if g is a Bernstein function (BF), then g′ is CM. These two classes of
functions have classic integral representations, which are useful for our developments.

Theorem 1 (Bernstein). A function f is CM, if and only if it can be expressed as a Laplace transform

f (x) =

∫
[0,∞)

e−xt µ(dt), (1.1)

where µ is a Radon measure on [0,∞), such that the integral converges for all x > 0.

The measure µ in the Bernstein representation will be called the Bernstein measure of f .

Theorem 2 (de Finetti-Lévy-Khintchine). A function g is BF if and only if it can be represented as

g(x) = a + bx +

∫
(0,∞)

(1 − e−xt) ν(dt) (1.2)

for a Radon measure ν on (0,∞) and some constants a, b ≥ 0. The measure ν satisfies∫
(0,∞)

(1 ∧ t) ν(dt) < ∞. (1.3)

The triplet (a, b, ν) uniquely determines the Bernstein function g, and vice-versa.

The measure ν in this representation is usually called the Lévy measure of the Bernstein function g,
and (a, b, ν) is called the Lévy triplet of g. The constants a and b ≥ 0 are called the killing rate and the
drift term respectively.

Recently, research has focused on different subclasses of CM and BFs. In [8], the authors
investigated CM and BFs with measures that satisfy certain convexity properties. A measure µ

on [0,∞) is called harmonically convex if x 7→ xµ[0, x] is a convex function on (0,∞). A measure
ν on (0,∞) is said to have harmonically concave tail if x 7→ xν(x,∞) is a concave function on (0,∞).
Among the main results in [8] are the following:

Theorem 3. For any CM function f and a number α ∈ (0, 2/3], there exists a unique harmonically
convex measure µα on [0,∞), such that

f (xα) =

∫
[0,∞)

e−xt µα(dt).

Theorem 4. For any Bernstein function g and a number α ∈ (0, 2/3], there exists a unique triplet
(a, b, να), such that

g(xα) = a + bx +

∫
(0,∞)

(1 − e−xt) να(dt),

where a, b ≥ 0 are constants, and να is a measure on (0,∞) with harmonically concave tail. The
measure να satisfies the integrability condition∫

(0,∞)
(1 ∧ t) να(dt) < ∞.

AIMS Mathematics Volume 9, Issue 5, 11372–11395.



11374

One of the open problems formulated in [8] was to find the largest possible value of r for which
Theorems 3 and 4 hold for all values of α in the interval (0, r]. This question was successfully answered
in [2]. It was shown there, see [2, Theorem 6.3], that Theorems 3 and 4 hold for all α ∈ (0, α∗], where

α∗ := inf
x>0

( log(1 + ex − e−x) − log(2 − e−x)
x

)
≈ 0.717461058844...

and α∗ is the largest value for which Theorems 3 and 4 hold. Theorem 3 suggests that it is natural to
consider the set, denotedHCM, of all BFs h, such that the composition f ◦ h is a CM function having a
harmonically convex measure for any CM function f . Analogously, Theorem 4 suggests to consider
the set, denoted HBF , of all BFs h, such that the composition g ◦ h is a BF with measure that has
harmonically concave tail for any BF g. In this way, the results in [2] show that {xα : α ∈ [0, α∗]} ⊂
HCM∩HBF , so the latter two sets are non-empty. These two sets of functions have surprising properties,
see Section 7 in [8]:

(1) We haveHCM = HBF;
(2) A BF g ∈ HBF if and only if x 7→ 1 − e−tg(x)(1 + txg′(x)) is a BF for all t ≥ 0;
(3) For any Bernstein function f and g ∈ HBF , one has f ◦ g ∈ HBF;
(4) The setHBF is closed with respect to point-wise convergence.

Apart from these properties, very little is known about the set HBF . Is it a convex set? What are its
generators? (A function f ∈ HBF is called a generator for the classHBF if it cannot be represented as
a composition g ◦ h for some non-affine BF g and some h ∈ HBF .)

A characterization of the BFs, having Lévy measure with harmonically concave tail was proven
in [8, Lemma 6.1]. It states that a BF g has Lévy measure ν with harmonically concave tail if and only
if g(x)− xg′(x) is a BF. The feat in [2] was accomplished by relaxing this property and considering the
class BF s of all BFs g, such that sg(x) − xg′(x) is Bernstein, for some s > 0. Then, the set HBF was
extended to BF ∗s, the later being the set of all BFs g, such that 1 − e−tg(x) ∈ BF s, for all t > 0. See
Definition 1.4 in [2], where for technical reasons the killing rate and the drift term are removed from
g. In particular, [2, Theorem 6.3], shows that

e−λ
α

(1 + αλα) is completely monotone if and only if α ∈ [0, α∗].

The latter is related to a problem on the unimodality of reciprocal positive stable distributions raised
by Simon in [10].

In the current work, we hope to shed more light into these classes of CM and BFs, by relaxing the
notion of harmonic convexity, see Definition 1. For a value of a parameter β ∈ [0, 1], we say that a
function h : (0,∞) → R is β-convex (β-concave) if xβh(x) is convex (concave) on (0,∞). Thus, we
consider Bernstein measures that are β-convex and Lévy measures with β-concave tail, see Definition 2.
The main results may be succinctly summarized as follows and they parallel those in [8, 9].

Suppose f is CM with measure µ and define

F(x) := β(β − 1)
f (x)

x
− 2(β − 1) f ′(x) + x f ′′(x) − β(β − 1)

µ({0})
x

.

Then, as shown in Table 1, we have the following characterization of β-convexity (β-concavity) of the
measure µ:
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Table 1. Summary of Theorem 6.

Property of µ Characterization Reference
β-convex F is completely monotone Theorem 6 a)

β-concave −F is completely monotone Theorem 6 b)

Similarly, suppose g is Bernstein with Lévy triplet (a, b, ν). Define

G(x) := β(β − 1)
g(x)

x
− 2(β − 1)g′(x) + xg′′(x) − β(β − 1)

a
x
− (β − 1)(β − 2)b.

Then, as shown in Table 2, we have the following characterization of β-convexity (β-concavity) of the
tail of the measure ν:

Table 2. Summary of Theorem 7.

Property of ν Characterization Reference
β-convex tail G is completely monotone Theorem 7 a)

β-concave tail −G is completely monotone Theorem 7 b)

The paper is organized as followed: Section 2 introduces the background concepts, notions, and
some useful preliminary results. In Section 3, we characterize the CM functions having a β-convex
(β-concave) measure and the BFs having a Lévy measure with β-convex (β-concave) tail. Section 4
contains several corollaries from the results in Section 3. Finally, the Appendix collects several
classical properties of the Lebesgue-Stieltjes integral that are difficult to find in the formulation that we
need.

2. Definitions, background results and technical lemmas

2.1. β-convexity and β-concavity

A function h : I → R is convex on the convex interval I if

h(αx + (1 − α)y) ≤ α h(x) + (1 − α) h(y), for x, y ∈ I, and α ∈ [0, 1].

The function h is concave if the opposite inequality holds. If h is twice differentiable in an open
interval I, then h is convex on I if and only if its second order derivative is non-negative on I. Convex
functions are continuous (in fact locally Lipschitz) on the interior of their domain. The directional
derivatives exist (both left and right, in the extended sense) for every x ∈ I. The right directional
derivative, denoted h′+(x), is right-continuous, while the left directional derivative, denoted h′−(x), is
left-continuous. When h is convex, then both h′+(x) and h′−(x) are non-decreasing functions in x, see [6,
Theorem 24.1]. Moreover, for any x, y in the interior of I we have

h(y) − h(x) =

∫
(x,y)

h′+(t) dt =

∫
(x,y)

h′−(t) dt, (2.1)
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see [6, Corollary 24.2.1] for details. In addition, if h is convex and y > x, then

h′+(x) ≤
f (y) − f (x)

y − x
. (2.2)

Definition 1. Let β ∈ [0, 1]. A function h : (0,∞) → R is called β-convex (β-concave) if xβh(x) is
convex (concave) on (0,∞).

We consider β ∈ [0, 1] in the following content without further notice. A function h is 0-convex if
it is convex; and it is 1-convex precisely when h(1/x) is convex. The latter equivalence follows from
Lemma 2.2 in [5], that we state for completeness.

Lemma 1. A function h : (0,∞)→ R is convex (concave) if and only if xh(1/x) is convex (concave).

When h(1/x) is convex, we say that h is harmonically convex, since it satisfies the inequality

h
( 2
1/x + 1/y

)
≤

h(x) + h(y)
2

for every x, y > 0. Such functions are also called reciprocally convex in [5]. Thus, β-convexity
connects the notions of convexity and harmonic/reciprocal convexity.

The following equivalence is an immediate consequence from Lemma 1.

Corollary 1. A function h is β-convex (β-concave) precisely when h(1/x) is (1 − β)-convex ((1 − β)-
concave).

If h : (0,∞) → R is β-convex, then the directional derivatives of h(x) exist for all x > 0. More
precisely, it can be shown that

h′+(x) = −βx−1h(x) + x−β
(
xβh(x)

)′
+ and h′−(x) = −βx−1h(x) + x−β

(
xβh(x)

)′
−
.

The cumulative distribution function for measure µ on [0,∞) is denoted by

Fµ(x) := µ[0, x],

while the tail of measure ν on (0,∞) is denoted by

ν̄(x) := ν(x,∞).

Note that ν̄(x) is non-increasing and a right-continuous function.

Definition 2. Let µ and ν be measures on [0,∞) and (0,∞), respectively.

a) We say that µ is β-convex (β-concave), if Fµ is β-convex (β-concave) on [0,∞).
b) We say that ν has β-convex (β-concave) tail, if ν̄ is β-convex (β-concave) on (0,∞).

The next examples illustrate this concept.
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Example 1. a) Consider the CM function f (x) = x−α for α ∈ (0, 1). Its measure µ has cumulative
distribution function

Fµ(x) =
xα

αΓ(α)
.

Since x 7→ xβFµ(x) = xα+β/(αΓ(α)), µ is a β-convex measure if 1 − α ≤ β ≤ 1, and it is β-concave
if 0 ≤ β ≤ 1 − α.

b) Consider the BF g(x) = xα for α ∈ (0, 1). Its Lévy measure ν has a tail given by

ν̄(x) =
x−α

Γ(1 − α)
.

Since x 7→ xβν̄(x) = xβ−α/Γ(1 − α), ν is a measure with a β-convex tail if 0 ≤ β ≤ α, and it is a measure
with a β-concave tail if α ≤ β ≤ 1.

2.2. Inverse formula for the Laplace transformation

A CM function f uniquely determines its Bernstein measure µ. Indeed, for all k ∈ N and t > 0,
define the operator

Lk( f (x); t) := (−1)kxk+1 f (k)(x)
∣∣∣∣
x=k/t

. (2.3)

The following is an inversion formula for the Laplace-Stieltjes integrals, see [11, Chapter VII,
Theorems 6a and 7a].

Theorem 5 (Inversion formula). Suppose f is a CM function with measure µ.
a) For every t > 0,

lim
k→∞

∫
(0,t]

Lk( f (x); u) du =
µ[0, t] + µ[0, t)

2
− µ({0}). (2.4)

b) If measure µ has density u(t), then for every t > 0 in the Lebesgue set of u(t),

lim
k→∞

Lk( f (x); t) = u(t).

Note that the Lebesgue set of a function contains its points of continuity. If t > 0 is a point of
continuity of Fµ, the right-hand side of (2.4) becomes Fµ(t) − Fµ(0).

In order to deal with the higher order derivatives in the inversion formula we need the following
identity which can be proved by induction (see also [1, Lemma 2.7.12] for a more general case). For
any integer k ≥ 0 and a Ck+1 function r on (0,∞), the following identity holds:(

xk+1
(r(x)

x

)(k))′
= xkr(k+1)(x). (2.5)

2.3. Limiting properties for measures with β-convexity type properties

Suppose f is CM function with measure µ. An integration by parts in (1.1) leads to

f (x) = x
∫

(0,∞)
e−xtFµ(t) dt and lim

t→∞
e−xtFµ(t) = 0, (2.6)
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for any x > 0. A direct consequence of the definition of a Bernstein function is µ({0}) = f (∞). With
the latter, one can also represent f as

f (x) = µ({0}) +

∫
(x,∞)

(− f ′(t)) dt,

where − f ′(t) is CM. As a non-increasing function, that is integrable at infinity, is o(1/t) as t approaches
infinity, we obtain

lim
x→∞

x f ′(x) = 0. (2.7)

Lemma 2. Suppose f is CM with µ({0}) = 0. Then

lim
x→∞

xk+1
( f (x)

x

)(k)
= 0, (2.8)

for any k ≥ 1.

Proof. The proof uses the inequality

e−xxk ≤ (k + 1)ke−x/(k+1) for all k ≥ 1 and x ≥ 0,

which follows from

max
x∈(0,∞)

xk

(k + 1)k e−xk/(k+1) = e−k ≤ 1.

Indeed, by (2.6), we have∣∣∣∣∣xk+1
( f (x)

x

)(k)
∣∣∣∣∣ = x

∫
(0,∞)

e−xt(xt)kFµ(t) dt

≤ (k + 1)kx
∫

(0,∞)
e−xt/(k+1)Fµ(t) dt

= (k + 1)k+1
(
− e−xt/(k+1)Fµ(t)

∣∣∣∣∞
t=0

+

∫
(0,∞)

e−xt/(k+1) dFµ(t)
)

= (k + 1)k+1Fµ(0) + (k + 1)k+1 f
( x
k + 1

)
.

The fact that µ has no mass at zero implies Fµ(0) = limx→∞ f (x)=0, and (2.8) follows. �

Lemma 3. Suppose f is CM. If its measure µ is β-convex (or β-concave), then

lim
t→0

t2−β(tβFµ(t)
)′
+e−xt = lim

t→∞
t2−β(tβFµ(t)

)′
+e−xt = 0, (2.9)

for any x > 0.

Proof. As a product of two CM functions, f (x)/x is also CM and so is −( f (x)/x)′. By (2.6), we have

−x
( f (x)

x

)′
= x

∫
(0,∞)

e−xttFµ(t) dt = −

∫
(0,∞)

tFµ(t) d(e−xt)
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= − lim
t→∞

tFµ(t)e−xt + lim
t→0

tFµ(t)e−xt +

∫
(0,∞)

e−xt d
(
tFµ(t)

)
=

∫
(0,∞)

e−xt d
(
tβFµ(t)t1−β)

= (1 − β)
∫

(0,∞)
e−xtFµ(t) dt +

∫
(0,∞)

e−xtt1−β d
(
tβFµ(t)

)
= (1 − β)

( f (x)
x

)
+

∫
(0,∞)

e−xtt1−β d
(
tβFµ(t)

)
,

where in the penultimate equality we used Lemma 5. This shows that the last integral has to be finite.
Since µ is β-convex (or β-concave), using (2.1), we obtain∫

(0,∞)
e−xtt1−β d

(
tβFµ(t)

)
=

∫
(0,∞)

t1−β(tβFµ(t)
)′
+e−xt dt < ∞. (2.10)

Next, note that since tβFµ(t) is non-decreasing, then
(
tβFµ(t)

)′
+ is non-negative. Hence∫

(0,1)
t1−β(tβFµ(t)

)′
+ dt ≤ ex

∫
(0,1)

t1−β(tβFµ(t)
)′
+e−xt dt < ∞,

since e−x ≤ e−xt for all t ∈ (0, 1).
If µ is β-convex, then tβFµ(t) is convex and non-decreasing. Thus,

(
tβFµ(t)

)′
+ is non-decreasing and

non-negative, so is t2−β(tβFµ(t)
)′
+. Suppose

lim
t→0

t2−β(tβFµ(t)
)′
+ = c ≥ 0.

We have ∫
(0,1)

c
t

dt ≤
∫

(0,1)

t2−β(tβFµ(t)
)′
+

t
dt =

∫
(0,1)

t1−β(tβFµ(t)
)′
+ dt < ∞.

Therefore, c has to be zero. The first limit in (2.9) follows.
To see the second limit, for a fixed ε > 0, use (2.2) to bound

0 ≤ t2−β(tβFµ(t)
)′
+e−xt ≤

1
ε

t2−βe−xt((t + ε)βFµ(t + ε) − tβFµ(t))

=
1
ε

t2−βe−xt/2(exε/2e−x(t+ε)/2(t + ε)βFµ(t + ε) − e−xt/2tβFµ(t)). (2.11)

Then, using (2.6) one can see that the last expression converges to zero as t approaches infinity.
If µ is β-concave, then tβFµ(t) is concave and non-decreasing. Thus,

(
tβFµ(t)

)′
+ is non-increasing

and non-negative. Notice∫
(0,1)

(
tβFµ(t)

)′
+ d

(
t2−β) = (2 − β)

∫
(0,1)

t1−β(tβFµ(t)
)′
+ dt < ∞,

we conclude
(
tβFµ(t)

)′
+ is o(1/t2−β) as t approaches zero by Lemma 8. The first limit in (2.9) follows

from here.
For the second limit, note that t1−βe−xt is a decreasing function for large enough t. Thus,

t1−β(tβFµ(t)
)′
+e−xt is decreasing and we can apply Lemma 7 to the second integral in (2.10). �
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Condition (1.3) on the measure ν implies

lim
t→∞

ν̄(t) = 0.

Fubini’s theorem applied to the Lévy-Khintchine representation (1.2) gives

g(x) = a + bx + x
∫

(0,∞)
e−xtν̄(t) dt, implying that

∫
(0,1)

ν̄(t) dt < ∞. (2.12)

A non-increasing function that is integrable at zero is o(1/t) as t approaches zero, thus

lim
t→0

tν̄(t) = 0 and lim
t→∞

e−xtν̄(t) = 0 for any x > 0. (2.13)

(For more details about (2.12) and (2.13), refer to (3.3) and (3.6) in [7].) Integration by parts, using the
facts that

∫ ∞
0

te−xt dt = x−2 and
∫ ∞

0
e−xt dt = x−1, shows that

g(x) = x2
∫

(0,∞)
e−xtκ(t) dt, (2.14)

where κ(t) := at + b +
∫ t

0
ν̄(s) ds is positive, non-decreasing and concave, see [7, p.23, (3.4)].

Lemma 4. If the Lévy measure ν, of a BF g, has β-convex (or β-concave) tail, then

lim
t→0

tβ−1(t1−βν̄(1/t)
)′
+e−x/t = lim

t→∞
tβ−1(t1−βν̄(1/t)

)′
+e−x/t = 0, for any x > 0. (2.15)

Proof. Without loss of generality, we can assume a = b = 0. As g is a Bernstein function, g(x)/x is
CM, and so is −(g(x)/x)′. By (2.12) and (2.13), we obtain

−x
(g(x)

x

)′
= x

∫
(0,∞)

e−xttν̄(t) dt = −

∫
(0,∞)

tν̄(t) d(e−xt)

= − lim
t→∞

tν̄(t)e−xt + lim
t→0

tν̄(t)e−xt +

∫
(0,∞)

e−xt d(tν̄(t))

= −

∫
(0,∞)

e−x/t d(t1−βν̄(1/t)tβ−2)

= (2 − β)
∫

(0,∞)
e−x/tt−2ν̄(1/t) dt −

∫
(0,∞)

e−x/ttβ−2 d(t1−βν̄(1/t)),

where we used Lemma 6 in the penultimate equality and Lemma 5 in the last equality. Now, applying
Lemma 6 again, we conclude that

−x
(g(x)

x

)′
= (2 − β)

(g(x)
x

)
−

∫
(0,∞)

e−x/ttβ−2 d(t1−βν̄(1/t)).

This shows that the last integral has to be finite for all x > 0. Since ν has β-convex (or β-concave) tail,
using Corollary 1 and (2.1), we obtain∫

(0,∞)
e−x/ttβ−2 d(t1−βν̄(1/t)) =

∫
(0,∞)

tβ−2(t1−βν̄(1/t))′+e−x/t dt < ∞.
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Denote h(t) := (t1−βν̄(1/t))′+. Applying Lemma 6 again, we have∫
(0,∞)

t−βh(1/t)e−xt dt =

∫
(0,∞)

tβ−2h(t)e−x/t dt < ∞. (2.16)

Next, observe that for all x > 0, we have∫
(0,1)

t−βh(1/t) dt ≤ ex
∫

(0,1)
t−βh(1/t)e−xt dt ≤ ex

∫
(0,∞)

t−βh(1/t)e−xt dt < ∞. (2.17)

If ν has β-convex tail, then t1−βν̄(1/t) is convex and non-decreasing, hence h is non-decreasing and
non-negative. By (2.2), for an ε > 0, we obtain

0 ≤ tβ−1(t1−βν̄(1/t)
)′
+e−x/t ≤

1
ε

tβ−1e−x/t((t + ε)1−βν̄(1/(t + ε)) − t1−βν̄(1/t)
)
.

Analogously to (2.11), one can see that the right-hand side converges to 0 as t approaches zero, showing
the first limit in (2.15).

Now, h(1/t) is non-increasing and non-negative, and so is t−βh(1/t). As a non-increasing function
which is integrable near zero, see (2.17), is o(1/u) as u approaches zero, we have

lim
u→0

u1−βh(1/u) = 0.

The second limit in (2.15) follows.
If ν has β-concave tail, then t1−βν̄(1/t) is concave and non-decreasing, hence h is non-increasing

and non-negative. The function tβ−2e−x/t is also non-increasing for t close to zero. Hence, from (2.16)
and Lemma 7, we conclude that tβ−2h(t)e−x/t is o(1/t) as t approaches zero. This shows the first limit
in (2.15).

Next, h(1/u) is non-decreasing and non-negative, and so is u1−βh(1/u). Supposing

lim
u→0

u1−βh(1/u) = c ≥ 0,

we would have ∫
(0,1)

c
u

du ≤
∫

(0,1)

u1−βh(1/u)
u

du =

∫
(0,1)

u−βh(1/u) du < ∞.

Therefore, c has to be zero and the second limit in (2.15) follows. �

By replacing t with 1/t, the previous lemma can be reformulated as follows.

Corollary 2. If the Lévy measure ν of a BF g has β-convex (or β-concave) tail, then

lim
t→0

t1−β(tβ−1ν̄(t)
)′
+e−xt = lim

t→∞
t1−β(tβ−1ν̄(t)

)′
+e−xt = 0, for any x > 0.
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3. Implications of the β-convexity properties of the measures µ and ν

In this section, we characterize CM and BFs with β-convexity properties on their measures. In
Theorem 6, we consider CM functions with β-convex and β-concave measures. In Theorem 7, BFs
whose measures have β-concave tail and β-convex tail are considered. These results extend the
characterizations in [8,9]. The boundary cases of both Theorems 6 and 7, when β ∈ {0, 1}, are explored
in Corollaries 7 to 14.

Theorem 6. Suppose f is a CM function with measure µ. Consider the function

F(x) = β(β − 1)
f (x)

x
− 2(β − 1) f ′(x) + x f ′′(x) − β(β − 1)

µ({0})
x

. (3.1)

a) The measure µ is β-convex, if and only if F is CM.
b) The measure µ is β-concave, if and only if −F is CM.

Proof. Notice F can be rewritten as

F(x) = β(β − 1)
f (x) − µ({0})

x
− 2(β − 1) f ′(x) + x f ′′(x).

Thus, without loss of generality, we can assume µ({0}) = 0.
a) For sufficiency, suppose F is CM. Anticipating the use of the inversion formula in Theorem 5,

define
Gk(t) :=

∫
(0,t]

Lk( f (x); u) du, (3.2)

where Lk is the operator defined in (2.3). We claim that for every k ≥ 2, the function t 7→ tβGk(t) is
convex on the positive reals. Indeed,

G′k(t) = Lk( f (x); t) = (−1)kxk+1 f (k)(x)
∣∣∣∣
x=k/t

,

and using (2.5), we have

G′′k (t) = (−1)k d
dx

(
xk+1 f (k)(x)

)∣∣∣∣
x=k/t

(
−

k
t2

)
= (−1)k+1xk(x f (x))(k+1)

∣∣∣∣
x=k/t

(k2

t2

)1
k

= (−1)k+1 1
k

xk+2(x f (x))(k+1)
∣∣∣∣
x=k/t

.

Also notice that

d
dt

(
xk

( f (x)
x

)(k−1)∣∣∣∣
x=k/t

)
=

d
dx

(
xk

( f (x)
x

)(k−1))∣∣∣∣
x=k/t

(
−

k
t2

)
= −

1
k

xk+1 f (k)(x)
∣∣∣∣
x=k/t

,

therefore, by Lemma 2, we obtain∫
(0,t]
−

1
k

xk+1 f (k)(x)
∣∣∣∣
x=k/u

du = xk
( f (x)

x

)(k−1)∣∣∣∣
x=k/t
− lim

u→0
xk

( f (x)
x

)(k−1)∣∣∣∣
x=k/u

= xk
( f (x)

x

)(k−1)∣∣∣∣
x=k/t

.

So, we have

Gk(t) =

∫
(0,t]

(−1)kxk+1 f (k)(x)
∣∣∣∣
x=k/u

du = (−1)k−1k
∫

(0,t]
−

1
k

xk+1 f (k)(x)
∣∣∣∣
x=k/u

du
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= (−1)k−1kxk
( f (x)

x

)(k−1)∣∣∣∣
x=k/t

.

Putting everything together and after a trivial calculation, using that (x f (x))(k+1) = 2 f (k)(x) +

(x f ′′(x))(k−1), we obtain

(tβGk(t))′′ = tβ−2(β(β − 1)Gk(t) + 2βtG′k(t) + t2G′′k (t)
)

= tβ−2xkk(−1)k−1F(k−1)(x)
∣∣∣∣
x=k/t

. (3.3)

As F is CM, we know that (−1)k−1F(k−1)(x) ≥ 0, for all x > 0 and k ≥ 2, which implies (tβGk(t))′′ ≥ 0.
This concludes the claim.

Let Fµ be continuous at x, y > 0 and at the convex combination (1 − α)x + αy, where α ∈ [0, 1].
Then, (2.4) shows that

lim
k→∞

Gk(t) = Fµ(t) − Fµ(0) = Fµ(t)

for t ∈ {x, y, (1 − α)x + αy}. As tβGk(t) is convex for all k ≥ 2, we obtain

((1 − α)x + αy)βFµ((1 − α)x + αy) ≤ (1 − α)xβFµ(x) + αyβFµ(y).

We will show that Fµ is continuous on (0,∞), thus completing the proof.
Recall that Fµ is a right-continuous, non-decreasing function. Let u > 0 be a jump point for Fµ,

that is, Fµ(u−) < Fµ(u). Let {yn} be a sequence where Fµ is continuous, that decreases and converges
to u. (Recall that the points of discontinuity of Fµ is countable.) Choose a sequence {xn} of points
of continuity of Fµ, that converges to u from the left. Synchronized with {xn}, choose a sequence
{αn} ⊂ [1/4, 3/4], such that the convex combination (1 − αn)xn + αnyn is to the right of u and is a point
of continuity of Fµ. By compactness, we may assume that {αn} converges to an α ∈ [1/4, 3/4]. So we
have limk→∞Gk(t) = Fµ(t) for every t ∈ {xn, yn, (1−αn)xn +αnyn, n ∈ N}. The convexity of the functions
tβGk(t), in the limit gives

((1 − αn)xn + αnyn)βFµ((1 − αn)xn + αnyn) ≤ (1 − αn)xβnFµ(xn) + αnyβnFµ(yn),

for each n ∈ N. Letting n approach infinity, the right-continuity of Fµ, shows that

uβFµ(u) ≤ (1 − α)uβFµ(u−) + αuβFµ(u).

Using that α , 1, and u > 0, gives Fµ(u−) ≥ Fµ(u), which is a contradiction. Therefore, Fµ is
continuous on (0,∞).

Now we show necessity. Suppose µ is a β-convex measure, we prove that F is CM. First, by (2.6)
and [4, Theorem A.5.2], we have

f ′(x) =

∫
(0,∞)

e−xtFµ(t) dt − x
∫

(0,∞)
e−xttFµ(t) dt

and

f ′′(x) = −2
∫

(0,∞)
e−xttFµ(t) dt + x

∫
(0,∞)

e−xtt2Fµ(t) dt.
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To simplify the notation, denote

An(x) :=
∫

(0,∞)
e−xttnFµ(t) dt and Bm(x) :=

∫
(0,∞)

e−xttm d
(
tβFµ(t)

)
.

It is not difficult to see that both are well defined. With that notation, we can rewrite

f (x)
x

= A0(x), f ′(x) = A0(x) − xA1(x), x f ′′(x) = −2xA1(x) + x2A2(x).

By (2.6) and Lemma 3, using Fubini’s theorem, we have

xA1(x) = x
∫

(0,∞)
e−xttFµ(t) dt = −

∫
(0,∞)

tFµ(t) d(e−xt) = −tFµ(t)e−xt
∣∣∣∣∞
t=0

+

∫
(0,∞)

e−xt d
(
tβFµ(t)t1−β)

=

∫
(0,∞)

e−xtt1−β d
(
tβFµ(t)

)
+ (1 − β)

∫
(0,∞)

e−xtFµ(t) dt

= B1−β(x) + (1 − β)A0(x)

and

x2A2(x) = x2
∫

(0,∞)
e−xtt2Fµ(t) dt = −xt2Fµ(t)e−xt

∣∣∣∣∞
t=0

+ x
∫

(0,∞)
e−xt d

(
tβFµ(t)t2−β)

= (2 − β)x
∫

(0,∞)
e−xttFµ(t) dt + x

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)
= (2 − β)xA1(x) + x

∫
(0,∞)

e−xtt2−β(tβFµ(t)
)′
+ dt

= (2 − β)xA1(x) − t2−β(tβFµ(t)
)′
+e−xt

∣∣∣∣∞
t=0

+

∫
(0,∞)

e−xt d
(
t2−β(tβFµ(t)

)′
+

)
= (2 − β)xA1(x) +

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)′
+ + (2 − β)

∫
(0,∞)

e−xtt1−β(tβFµ(t)
)′
+ dt

= (2 − β)xA1(x) +

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)′
+ + (2 − β)B1−β(x).

(Note that the above equations also hold if µ is β-concave.) To summarize, we have

xA1(x) = B1−β(x) + (1 − β)A0(x),

x2A2(x) = 2(2 − β)B1−β(x) + (2 − β)(1 − β)A0(x) +

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)′
+.

Therefore, it can be shown that

F(x) = β(β − 1)
f (x)

x
− 2(β − 1) f ′(x) + x f ′′(x)

= β(β − 1)A0(x) − 2(β − 1)(A0(x) − xA1(x)) − 2xA1(x) + x2A2(x)

=

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)′
+.
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The convexity of tβFµ(t) implies that (tβFµ(t))′+ is right-continuous and non-decreasing. Thus, the last
integral is the Laplace transform of t2−β d

(
tβFµ(t)

)′
+ on (0,∞). By the Bernstein representation theorem,

F(x) is CM.
b) The proof is very much analogous to the proof for part a), so we will only address the differences.
For sufficiency, suppose −F is CM. Define Gk(t) as (3.2). Without any further assumptions,

analogously to (3.3), we have

(tβGk(t))′′ = tβ−2kxk(−1)k−1F(k−1)(x)
∣∣∣∣
x=k/t

.

As −F is CM, we know that tβGk(t) is concave. Analogous proof by contradiction applies to verify the
continuity of Fµ. Therefore, the measure µ is β-concave, as Gk(t) converges to Fµ(t) for all t > 0 and
Gk is concave for all k ≥ 2.

For necessity, suppose µ is β-concave, we prove −F is CM. Using the notation An and Bm from part
a), we have

f (x)
x

= A0(x), f ′(x) = A0(x) − xA1(x), x f ′′(x) = −2xA1(x) + x2A2(x),

x A1(x) = B1−β(x) + (1 − β)A0(x),

x2 A2(x) = 2(2 − β)B1−β(x) + (2 − β)(1 − β)A0(x) +

∫
(0,∞)

e−xtt2−β d
(
tβFµ(t)

)′
+.

Thus, we obtain

−F(x) =

∫
(0,∞)

e−xtt2−β d
(
−

(
tβFµ(t)

)′
+

)
.

The concavity of tβFµ(t) implies that −(tβFµ(t))′+ is right-continuous and non-decreasing. The last
integral is the Laplace transform of t2−β d

(
−

(
tβFµ(t)

)′
+

)
on (0,∞). Hence, −F is a CM function. �

Theorem 7. Suppose g is BF with Lévy triplet (a, b, ν). Consider the function

G(x) := β(β − 1)
g(x)

x
− 2(β − 1)g′(x) + xg′′(x) − β(β − 1)

a
x
− (β − 1)(β − 2)b. (3.4)

a) The measure ν has β-convex tail, if and only if G is CM.
b) The measure ν has β-concave tail, if and only if −G is CM.

Proof. Without loss of generality, we can assume a = b = 0. By (2.12) we have

g(x) = x
∫

(0,∞)
e−xtν̄(t) dt. (3.5)

a) We show sufficiency first. Suppose G is CM. Anticipating the use of the inversion formula in
Theorem 5, define

Gk(t) := Lk

(g(x)
x

; t
)

= (−1)kxk+1
(g(x)

x

)(k)∣∣∣∣
x=k/t

, (3.6)
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where the operator Lk is defined in (2.3). We claim that tβGk(t) is convex on (0,∞) for every k ≥ 1.
Notice that by (2.5),

G′k(t) = (−1)k d
dx

(
xk+1

(g(x)
x

)(k))∣∣∣∣
x=k/t

(
−

k
t2

)
= (−1)k+1 1

k
xk+2g(x)(k+1)

∣∣∣∣
x=k/t

,

and

G′′k (t) = (−1)k+1 1
k

d
dx

(
xk+2g(x)(k+1)

)∣∣∣∣
x=k/t

(
−

k
t2

)
= (−1)k+2 1

k2 xk+3(xg(x)
)(k+2)

∣∣∣∣
x=k/t

.

So we have

(tβGk(t))′′ = tβ−2(β(β − 1)Gk(t) + 2βtGk(t)′ + t2Gk(t)′′
)

= tβ−2xk+1(−1)kG(k)(x)
∣∣∣∣
x=k/t

.

As G is CM, we know (−1)kG(k)(x) ≥ 0 for all x > 0 and k ≥ 1, which implies tβGk(t) is convex. This
closes the claim.

Let x and y belong to the interval (0,∞) and let the function ν̄ be continuous at these points as well
as at the convex combination (1−α)x+αy, where α is in [0, 1]. By Theorem 5, as k approaches infinity,
the limit of Gk equals ν̄(t) for any t taken from the set {x, y, (1 − α)x + αy}. Furthermore, since tβGk(t)
is convex for all k ≥ 1, we have the inequality:

((1 − α)x + αy)β ν̄
(
(1 − α)x + αy

)
≤ (1 − α)xβ ν̄(x) + αyβ ν̄(y).

To conclude the proof, we need to establish the continuity of ν̄ on (0,∞).
Recall that ν̄ is non-increasing and right-continuous. Suppose there exists a point u > 0, where

the function exhibits a jump, that is ν̄(u−) > ν̄(u). Let {yn} be a sequence where ν̄ is continuous, that
decreases and converges to u. Choose a sequence {xn} of points of continuity of ν̄ that converges to u
from the left. Together with it, choose a sequence {αn} in the interval [1/4, 3/4], such that the convex
combination (1 − αn)xn + αnyn is to the left of u and is a point of continuity of ν̄. By compactness,
we may assume that {αn} converges to an α in [1/4, 3/4]. Thus, we can conclude that the limit of
limk→∞Gk(t) equals ν̄ for every t in the set {xn, yn, (1− αn)xn + αnyn, n ∈ N}. Given the convexity of the
functions tβGk(t) for every k ≥ 1 and each n ∈ N, we obtain:

((1 − αn)xn + αnyn)βν̄
(
(1 − αn) xn + αn yn

)
≤ (1 − αn) xβn ν̄(xn) + αn yβn ν̄(yn).

Letting n approach infinity, the right-continuity of ν̄ implies that

uβν̄(u−) ≤ (1 − α)uβν̄(u−) + αuβν̄(u).

Using that α , 0 and u > 0, we arrive at ν̄(u−) ≤ ν̄(u), which is a contradiction. Therefore, ν̄ is
continuous on (0,∞).

Now we show necessity. Suppose measure ν has β-convex tail. As a result, function tβν̄(t) is convex
and s1−βν̄(1/s) is also convex by Corollary 1. We prove that G is CM. By (3.5) and change of variable
s = 1/t,

g(x)
x

=

∫
(0,∞)

e−xtν̄(t) dt =

∫
(0,∞)

e−x/ss−2ν̄(1/s) ds.
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Therefore, by [4, Theorem A.5.2], we have

g′(x) =

∫
(0,∞)

e−x/ss−2ν̄(1/s) ds − x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds,

g′(x) = −2
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds + x

∫
(0,∞)

e−x/ss−4ν̄(1/s) ds,

To simplify the notation, denote

Cn(x) =

∫
(0,∞)

e−x/ss−2−nν̄(1/s) ds, Dm(x) =

∫
(0,∞)

e−x/ss−2+m d
(
s1−βν̄(1/s)

)
.

With these notations, we can rewrite

g(x)
x

= C0(x), g′(x) = C0(x) − xC1(x), xg′′(x) = −2xC1(x) + x2C2(x).

By (2.13) and Lemma 4, we have

xC1(x) = x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds =

∫
(0,∞)

s−1ν̄(1/s) d
(
e−x/s)

= s−1ν̄(1/s)e−x/s
∣∣∣∣∞
s=0
−

∫
(0,∞)

e−x/s d
(
s1−βν̄(1/s)sβ−2)

= −

∫
(0,∞)

e−x/ssβ−2 d
(
s1−βν̄(1/s)

)
+ (2 − β)

∫
(0,∞)

e−x/ss−2ν̄(1/s) ds

= −Dβ(x) + (2 − β)C0(x),

and

x2C2(x) = x2
∫

(0,∞)
e−x/ss−4ν̄(1/s) ds

= xs−2ν̄(1/s)e−x/s
∣∣∣∣∞
s=0
− x

∫
(0,∞)

e−x/s d
(
s1−βν̄(1/s)sβ−3)

= (3 − β)x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds − x

∫
(0,∞)

e−x/ssβ−3 d
(
s1−βν̄(1/s)

)
= (3 − β)xC1(x) − x

∫
(0,∞)

e−x/ssβ−3(s1−βν̄(1/s)
)′
+ ds

= (3 − β)xC1(x) − sβ−1(s1−βν̄(1/s)
)′e−x/s

∣∣∣∣∞
s=0

+

∫
(0,∞)

e−x/s d
(
sβ−1(s1−βν̄(1/s)

)′
+

)
= (3 − β)xC1(x) +

∫
(0,∞)

e−x/ssβ−1 d
(
s1−βν̄(1/s)

)′
+ + (β − 1)

∫
(0,∞)

e−x/ssβ−2 d
(
s1−βν̄(1/s)

)
= (3 − β)xC1(x) +

∫
(0,∞)

e−x/ssβ−1 d
(
s1−βν̄(1/s)

)′
+ + (β − 1)Dβ.

(Note that the above equations also hold if ν has β-concave tail.) To summarize,

xC1(x) = −Dβ(x) + (2 − β)C0(x),
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x2C2(x) = 2(β − 2)Dβ + (3 − β)(2 − β)C0(x) +

∫
(0,∞)

e−x/ssβ−1 d
(
s1−βν̄(1/s)

)′
+.

Therefore, it can be shown that

G(x) = β(β − 1)
g(x)

x
− 2(β − 1)g′(x) + xg′′(x)

= β(β − 1)C0(x) − 2(β − 1)(C0(x) − xC1(x)) − 2xC1(x) + x2C2(x)

=

∫
(0,∞)

e−x/ssβ−1 d
(
s1−βν̄(1/s)

)′
+.

As s1−βν̄(1/s) is convex,
(
s1−βν̄(1/s)

)′
+ is non-decreasing. It defines a Radon measure. One can see G

is CM by definition.
b) The proof is very much analogous to the proof for part a), so we will only address the difference.
For sufficiency, suppose −G is CM. Define Gk as (3.6). Without any further assumption,

(tβGk(t))′′ = tβ−2xk+1(−1)kG(k)(x)
∣∣∣∣
x=k/t

.

As −G is CM, we know that tβGk(t) is concave. Analogous proof by contradiction applies to verify the
continuity of ν̄(t). As Gk(t) converges to ν̄(t) for all t > 0, and as Gk has β-concave tail for all k ≥ 1,
the tail of ν is β-concave.

To show the necessity, suppose that the tail of ν is β-concave, we prove −G is CM. Following the
notation Cn and Dm in part a), we also have

g(x)
x

= C0(x), g′(x) = C0(x) − xC1(x), xg′′(x) = −2xC1(x) + x2C2(x),

xC1(x) = −Dβ(x) + (2 − β)C0(x),

x2C2(x) = (3 − β)xC1(x) +

∫
(0,∞)

e−x/ssβ−1 d
(
s1−βν̄(1/s)

)′
+ + (β − 1)Dβ.

Thus, we obtain

−G(x) =

∫
(0,∞)

e−x/ssβ−1 d
(
−

(
s1−βν̄(1/s)

)′)
.

As sβν̄(s) is concave, s1−βν̄(1/s) is concave by Corollary 1, implying −
(
s1−βν̄(1/s)

)′
+ is non-decreasing.

It defines a Radon measure and −G is CM by definition. �

4. Corollaries

This section contains several corollaries of the main results.

Corollary 3. The CM function F in Theorem 6 has the representation

F(x) =

∫ ∞

0
e−xsr′β(s)ds, (4.1)

where r′β(s) = s2−β(sβFµ(s))′′ for almost all s > 0.
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Proof. We omit the proof since it is almost identical to the one for the next corollary. One just needs
to replace ν̄(s) with Fµ(s) and ν(ds) with µ(ds). �

Corollary 4. The CM function G in Theorem 7 has the representation

G(x) =

∫ ∞

0
e−xsr′β(s)ds, (4.2)

where r′β(s) = s2−β(sβν̄(s))′′ for almost all s > 0.

Proof. Using Fubini’s theorem, several times, function G can be rewritten as

G(x) = β(β − 1)
g(x) − a − bx

x
− 2(β − 1)(g′(x) − b) + xg′′(x)

= β(β − 1)
∫ ∞

0
e−xtν̄(t) dt − 2(β − 1)

∫
(0,∞)

e−xt t ν(dt) − x
∫

(0,∞)
e−xt t2 ν(dt)

= β(β − 1)x
∫ ∞

0
ν̄(t)

( ∫ ∞

t
e−xs ds

)
dt − 2(β − 1)x

∫
(0,∞)

( ∫ ∞

t
e−xs ds

)
t ν(dt)

−x
∫

(0,∞)
e−xt t2 ν(dt)

= β(β − 1)x
∫ ∞

0
e−xs

( ∫ s

0
ν̄(t) dt

)
ds − 2(β − 1)x

∫
(0,∞)

e−xs
( ∫ s

0
tν(dt)

)
ds

−x
∫

(0,∞)
e−xs s2 ν(ds)

= x
∫ ∞

0
e−xsρβ(ds), (4.3)

where

ρβ(ds) :=
[
β(β − 1)

∫ s

0
ν̄(t) dt − 2(β − 1)

∫ s

0
t ν(dt)

]
ds − s2 ν(ds)

=

[
β(β − 1)

∫ s

0
ν̄(t) dt − 2(β − 1)

( ∫ s

0
ν̄(t) dt − sν̄(s)

)]
ds − s2 ν(ds)

= (1 − β)
[
(2 − β)

∫ s

0
ν̄(t) dt − 2sν̄(s)

]
ds − s2 ν(ds). (4.4)

Comparing (4.3) with (2.6) we make the following observation: G (resp. −G) is CM precisely when
ρβ (resp. −ρβ) has a non-negative, non-decreasing density function rβ. In that case, solving for ν(ds)
in (4.4) shows that necessarily ν has a density functionand and without loss of generality we may
assume that it is of the form m(s)/sβ+1, s > 0. Substituting it in (4.4), we obtain

rβ(s) = (1 − β)
[
(2 − β)

∫ s

0
ν̄(t) dt − 2sν̄(s)

]
− s1−β m(s)

= (1 − β)(2 − β)
∫ s

0
ν̄(t) dt − (2 − β)sν̄(s) + s2−β (sβν̄(s))′+ (4.5)
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= (1 − β)(2 − β)
∫ s

0
ν̄(t) dt − (1 − β)sν̄(s) + s3−β (sβ−1ν̄(s))′+. (4.6)

Using that sβν̄(s) is convex (resp. concave), the derivative of rβ exists almost everywhere and
differentiating (4.5) gives

r′β(s) = s2−β (sβν̄(s))′′. (4.7)

Using L’Hopital’s rule, (2.13), Corollary 2, and (4.6), one sees that

lim
s→0+

rβ(s) = 0 = lim
s→∞

e−xs rβ(s), x > 0.

An application of Fubini’s theorem finally gives

G(x) = x
∫ ∞

0
e−xsρβ(ds) =

∫ ∞

0
e−xsr′β(s)ds, (4.8)

which completing the proof. �

Corollary 5. The function G, defined in (3.4), can never be a Bernstein function.

Proof. We use the notation and representations from the proof of Corollary 4. Comparing (4.3)
with (2.12) we observe that: G is a BF precisely when ρβ has a non-negative, non-increasing density
function rβ. Assuming the latter, then (4.7) shows that ν has β-concave tail. Then, Theorem 7, part b)
shows that −G is CM, which is a contradiction. �

A similar proof shows the next analogous corollary.

Corollary 6. The function F, defined in (3.1), can never be a BF.

Standard facts about BFs imply that if xG(x) is a BF, then G is completely monotone.
The next corollaries deal with special cases of the main results. Some of them re-derive several of

the results in [9].

Corollary 7. Suppose f is CM with measure µ. Then, µ is harmonically convex precisely when f (x) −
x f ′(x) is CM.

Proof. By Theorem 6 part a), with β = 1, µ is harmonically convex precisely when x f ′′(x) is CM. We
show this condition is equivalent to f (x) − x f ′(x) being CM. If f (x) − x f ′(x) is CM, then

x f ′′(x) = −( f (x) − x f ′(x))′

is CM. Conversely, if x f ′′(x) is CM, then, to see f (x) − x f ′(x) is CM, it suffices to show its non-
negativity. This is trivial, because f (x) ≥ 0 and f ′(x) ≤ 0 for all x > 0. �

Corollary 8. Suppose f is CM with measure µ. Then, µ is convex precisely when x( f (x) − µ({0})) is
CM.
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Proof. By Theorem 6 part a), applied to the shifted function f (x) − µ({0}) with β = 0, the measure µ is
convex precisely when 2 f ′(x) + x f ′′(x) is CM. We show this condition is equivalent to x( f (x)− µ({0}))
being CM. If x( f (x) − µ({0})) is CM, then

2 f ′(x) + x f ′′(x) = (x( f (x) − µ({0})))′′

is completely monotone.
Conversely, suppose 2 f ′(x) + x f ′′(x) is CM. To see x( f (x) − µ({0})) is CM, we only have to show

x( f (x) − µ({0})) ≥ 0 and x f ′(x) + f (x) − µ({0}) ≤ 0.

The first inequality holds because f (x)− µ({0}) ≥ 0. For the second inequality, as 2 f ′(x) + x f ′′(x) ≥ 0,
we know x f ′(x) + f (x) − µ({0}) is non-decreasing. By (2.7), we obtain

lim
x→∞

x f ′(x) + f (x) − µ({0}) = 0.

The second inequality follows from here. �

Corollary 9. Suppose f is CM with measure µ. Then, µ is harmonically concave precisely when
f (x) = µ({0}).

Proof. Consider the shifted function f (x) − µ({0}). By Theorem 6 part b), with β = 1, the measure
µ is harmonically concave precisely when −x f ′′(x) is CM. We show this condition is equivalent to
f (x) = µ({0}). If f (x) = µ({0}), then −x f ′′(x) = 0, which is CM. Conversely, if −x f ′′(x) is CM, then
so is −x f ′′(x)(1/x) = − f ′′(x). Thus, we obtain f ′′(x) ≤ 0. Notice that f ′′(x) ≥ 0, because f is CM.
Therefore, we have f ′′(x) = 0, and f (x) = µ({0}). �

Corollary 10. Suppose f is CM with measure µ. Then, µ is concave precisely when f (x) + x f ′(x) is
CM.

Proof. Without loss of generality, we can assume µ has no mass at zero. By Theorem 6 part b), with
β = 0, the measure µ is concave, if and only if −2x f ′(x) − x f ′′(x) is CM. We show this condition is
equivalent to f (x) + x f ′(x) being CM. If f (x) + x f ′(x) is CM, then

−2x f ′(x) − x f ′′(x) = −( f (x) + x f ′(x))′

is CM. Conversely, if −2x f ′(x) − x f ′′(x) is CM, to see f (x) + x f ′(x) is CM, it suffices to show it is
non-negative. As its derivative is non-positive, f (x) + x f ′(x) is non-increasing. By (2.7), we obtain

lim
x→∞

f (x) + x f ′(x) = 0.

So f (x) + x f ′(x) ≥ 0. This completes the proof. �

Corollary 11. Suppose g is a Bernstein function with Lévy triplet (a, b, ν). Then, ν has harmonically
convex tail precisely when g(x) = a + bx.

Proof. By Theorem 7 part a), applied to the shifted function g(x) − a − bx with β = 1, the measure ν
has harmonically convex tail, if and only if xg′′(x) is completely monotone. We show this condition is
equivalent to g(x) = a + bx. If g(x) = a + bx, then xg′′(x) = 0, which is CM. Conversely, if xg′′(x) is
CM, then so is x f ′′(x)(1/x) = f ′′(x), that is g′′(x) ≥ 0. Because g is a Bernstein function, g′′(x) ≤ 0.
Thus, we obtain g′′(x) = 0, which implies g(x) = a + bx. �
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Corollary 12. Suppose g is a Bernstein function with Lévy triplet (a, b, ν). Then, ν has convex tail
precisely when g(x) + xg′(x) is a Bernstein function.

Proof. By Theorem 7 part a), applied to the shifted BF g(x) − a − bx with β = 0, the measure ν has
convex tail precisely when 2g′(x) + xg′′(x) is CM. We show this condition is equivalent to g(x) + xg′(x)
being a Bernstein function. If g(x) + xg′(x) is a Bernstein function, then

2g′(x) + xg′′(x) = (g(x) + xg′(x))′,

is CM. (Note that 2g′(x) + xg′′(x) ≥ 0.) Conversely, if 2g′(x) + xg′′(x) is CM, then it suffices to show
g(x) + xg′(x) ≥ 0 to see that g(x) + xg′(x) is a Bernstein function. This is trivial, because g(x) ≥ 0 and
g′(x) ≥ 0. �

Corollary 13. Suppose g is a Bernstein function with Lévy triplet (a, b, ν). Then, ν has harmonically
concave tail precisely when g(x) − xg′(x) is a Bernstein function.

Proof. By Theorem 7 part b), applied to the shifted BF g(x) − a − bx with β = 1, the measure ν
has harmonically concave tail, if and only if −xg′′(x) is CM. We show this condition is equivalent to
g(x) − xg′(x) being a Bernstein function. If g(x) − xg′(x) is a Bernstein function, then

−xg′′(x) = (g(x) − xg′(x))′,

is CM. Conversely, if −xg′′(x) is CM, then, to show g(x) − xg′(x) is a Bernstein function, it suffices
to show it is non-negative. As its derivative is non-negative, g(x) − xg′(x) is non-decreasing. Noticing
that limx→0 xg′(x) = 0, see [8, (2.11)], we obtain

lim
x→0

g(x) − xg′(x) = a ≥ 0.

So g(x) − xg′(x) ≥ 0, and this completes the proof. �

Corollary 14. Suppose g is a Bernstein function with Lévy triplet (a, b, ν). Then, ν has concave tail
precisely when g(x) = a + bx.

Proof. Consider the shifted BF g(x) − a − bx. By Theorem 7 part b), with β = 0, the measure ν has
concave tail precisely when −2g′(x) − xg′′(x) is CM. We show this condition is equivalent to g(x) = 0.
If g(x) = 0, then −2g′(x) − xg′′(x) = 0, which is CM. Conversely, if −2g′(x) − xg′′(x) is CM, then,
g(x) + xg′(x) is non-increasing, as

(g(x) + xg′(x))′ = 2g′(x) + xg′′(x) ≤ 0.

Since
lim
x→0

g(x) + xg′(x) = 0,

we obtain that g(x) + xg′(x) ≤ 0, and thus its anti-derivative xg(x) is non-increasing. Because g(x)
approaches zero as x approaches zero, we know xg(x) ≤ 0. However, g is a Bernstein function,
indicating g(x)= 0. This concludes the proof. �
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problems, Basel: Birkhäuser, 2011. http://dx.doi.org/10.1007/978-3-0348-0087-7

2. S. Bridaa, W. Jedidi, H. Sendov, Generalized unimodality and subordinators, with applications
to stable laws and to the Mittag-Leffler function, J. Theor. Probab., 37 (2024), 1–42.
http://dx.doi.org/10.1007/s10959-023-01242-z

3. M. Carter, B. Brunt, The Lebesgue-Stieltjes integral: a practical introduction, New York: Springer-
Verlag, 2000. http://dx.doi.org/10.1007/978-1-4612-1174-7

4. R. Durrett, Probability: theory and examples, 4 Eds., Cambridge: Cambridge University Press,
2010.

5. M. Merkle, Reciprocally convex functions, J. Math. Anal. Appl., 293 (2004), 210–218.
http://dx.doi.org/10.1016/j.jmaa.2003.12.021

6. R. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970.

7. R. Schilling, R. Song, Z. Vondracek, Bernstein functions theory and applications, 2 Eds., Berlin:
De Gruyter, 2012.

8. H. Sendov, S. Shan, New representation theorems for completely monotone and Bernstein
functions with convexity properties on their measures, J. Theor. Probab., 28 (2015), 1689–1725.
http://dx.doi.org/10.1007/s10959-014-0557-9

9. H. Sendov, S. Shan, Properties of completely monotone and Bernstein functions related to the
shape of their measures, J. Convex Anal., 23 (2016), 981–1015.

10. T. Simon, On the unimodality of power transformations of positive stable densities, Math. Nachr.,
285 (2012), 497–506. http://dx.doi.org/10.1002/mana.201000062

11. D. Widder, The Laplace transform, Princeton: Princeton University Press, 1941.

AIMS Mathematics Volume 9, Issue 5, 11372–11395.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-0348-0087-7
http://dx.doi.org/http://dx.doi.org/10.1007/s10959-023-01242-z
http://dx.doi.org/http://dx.doi.org/10.1007/978-1-4612-1174-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2003.12.021
http://dx.doi.org/http://dx.doi.org/10.1007/s10959-014-0557-9
http://dx.doi.org/http://dx.doi.org/10.1002/mana.201000062


11394

Appendix

Lemma 5. Suppose f is continuous with bounded variation on (0,∞) and g is right-continuous with
bounded variation on (0,∞). Then,∫

(0,∞)
m(x) d

(
f (x)g(x)

)
=

∫
(0,∞)

m(x) f (x) dg(x) +

∫
(0,∞)

m(x)g(x) d f (x), (A.1)

where m is right-continuous and non-negative on (0,∞).

Proof. The sketch of proof is provided below.
Step 1: Show that (A.1) holds for increasing g on the closed interval [a, b] ⊂ (0,∞). For partition
a = x0 < x1 < · · · < xn = b, we have∫

[a,b]
m(x) d( f (x)g(x)) = lim

mesh→0

n−1∑
i=0

m(xi)[ f (xi+1)g(xi+1) − f (xi)g(xi)]

= lim
mesh→0

n−1∑
i=0

m(xi) f (xi)[g(xi+1) − g(xi)] + lim
mesh→0

n−1∑
i=0

m(xi)g(xi)[ f (xi+1) − f (xi)]

+ lim
mesh→0

n−1∑
i=0

m(xi)[ f (xi+1) − f (xi)][g(xi+1) − g(xi)]

=

∫
[a,b]

m(x) f (x) dg(x) +

∫
[a,b]

m(x)g(x) d f (x)

+ lim
mesh→0

n−1∑
i=0

m(xi)[ f (xi+1) − f (xi)][g(xi+1) − g(xi)].

Notice that f is continuous, thus uniformly continuous, on [a, b]. For any ε > 0, there exists δ > 0,
such that for any |t− s| < δ, we have | f (t)− f (s)| < ε. For any partition whose mesh is small, we obtain

lim
mesh→0

∣∣∣∣ n−1∑
i=0

m(xi)[ f (xi+1) − f (xi)][g(xi+1) − g(xi)]
∣∣∣∣ ≤ ε lim

mesh→0

n−1∑
i=0

∣∣∣∣m(xi)[g(xi+1) − g(xi)]
∣∣∣∣

= ε

∫
[a,b]

m(x) dg(x).

So this limit can be arbitrarily small, which indicates∫
[a,b]

m(x) d
(
f (x)g(x)

)
=

∫
[a,b]

m(x) f (x) dg(x) +

∫
[a,b]

m(x)g(x) d f (x).

Step 2: (A.1) holds for g with bounded variation on [a, b], as such g can be represented as the difference
of two increasing functions.
Step 3: (A.1) holds on (0,∞), as the equation holds when taking the limit of a→ 0 and b→ ∞. �

The following result is Theorem 6.2.2 in [3] or Theorem A.1 in [8]. It gives integration by parts
for Lebesgue-Stieltjes integrals on finite intervals. It can be extended to the interval (0,∞) by taking
limits.
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Theorem 8. Let f , g : [a, b] → R be continuous and right-continuous functions, respectively, with
bounded variation. Then ∫

[a,b]
f dg +

∫
[a,b]

g d f = f (b)g(b) − f (a−)g(a−),∫
(a,b]

f dg +

∫
(a,b]

g d f = f (b)g(b) − f (a)g(a),∫
(a,b)

f dg +

∫
(a,b)

g d f = f (b−)g(b−) − f (a)g(a).

The following lemma is a particular case of the change of variable formula for Lebesgue-Stieltjes
integrals, see [11, Theorem 11a].

Lemma 6. Suppose f is continuous on (0,∞), and g has bounded variation on (0,∞). Then∫
(0,∞)

f (x) dg(x) = −

∫
(0,∞)

f (1/t) dg(1/t).

Lemma 7. Suppose f (t) ≥ 0 is non-increasing. If
∫

(0,∞)
f (t) dt < ∞, then f (t) is o(1/t) as t approaches

zero or infinity.

Lemma 8. Suppose f (t) ≥ 0 is non-increasing. If
∫

(0,1)
f (t) d(tp) < ∞ for some p > 0. Then f (t) is

o(1/tp) as t → 0.

Proof. After a change of variable by s = tp, we obtain
∫

(0,1)
f (s1/p) d(s) < ∞. Because f (s1/p) is non-

increasing for any p > 0, we conclude that f (s1/p) is o(1/s) as s → 0. This implies f (t) is o(1/tp) as
t → 0. �

Lemma 9. Suppose f (t) ≥ 0 is non-increasing and g is strictly increasing with g(0) = 0. If∫
(0,1)

f (t) d(g(t)) < ∞, then f (t) is o(1/g(t)) as t → 0.

Proof. As g is strictly increasing with g(0) = 0, its inverse function g−1(t) is also strictly increasing
with g−1(0) = 0. Change of variable by setting t = g−1(s), we have f (g−1(s)) is non-increasing∫

(0,g(1))
f (g−1(s)) ds < ∞. So f (g−1(s)) is o(1/s) as s→ 0, which implies limt→0 f (t)g(t) = 0. �
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