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1. Introduction

Fixed point (FP) theory has been applied in many domains of science, including approximation
theory, biology, chemistry, dynamic systems, economics, engineering, fractals, game theory, logic
programming, optimization problems, and physics. Undoubtedly, the FP theory is an active area in
mathematics and beautifully combines analysis, topology, and geometry. In the past few decades,
it has been clear that the FP theory is a very effective and significant instrument for investigating
nonlinear processes. Its application relies on the existence of solutions to mathematical problems
that are based on the contraction principle. After Banach [1] presented his principle, the FP theory
approaches became more successful and appealing to scientists, see [2—10].

Now, let’s start with the definition of FP and the Banach contraction principle.
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Let (W, D) be a metric space. A point { € W is called a FP of a mapping S : W — W, if

S@)=1¢.

Theorem 1. (Banach contraction principle) Let S be a self-mapping on a complete metric
space (W, D). If there exists a constant 8 € [0, 1) such that

D(S(£),5(£) < 0D, ) (1.1)

forall £,& € W, then S has a unique FP.

The term “nonexpansive mapping” refers to a mapping S satisfying the condition (1.1) for 8 = 1.
Nonexpansive mappings emerged as a direct extension of the concept of contraction mappings initially
introduced by Banach [1]. In 1965, Browder [11] and Gohde [12] established an FP theorem for
nonexpansive mappings within uniformly convex Banach spaces.

In 1975, Zhang [13] introduced the broader category of mean nonexpansive mappings,
encompassing nonexpansive mappings, and demonstrated the existence and uniqueness of FPs for
this class of mappings within Banach spaces exhibiting normal structural properties.

Definition 1. [13] Let (W, D) be a metric space. A mapping S : W — W is called mean nonexpansive
if there exist a, 8 > 0 with a + 8 < 1 such that

D(S(£),5(&) < aD(Z,&) +BD(E,S(&)), Vi,&eW. (1.2)

In a recent development, Mebawondu et al. [14] introduced the notion of 7-mean nonexpansive
mapping within the framework of metric spaces. Subsequently, they provided rigorous proof
establishing the existence of a unique FP for this particular mapping.

Definition 2. [/4] Let T,S be self-mappings on a metric space (W,D). S is said to be a T-mean
nonexpansive mapping if there exist a,8 > 0 with a + 8 < 1 such that

D(T(S (), T(S(£) < aD(T (), T()) +BD(T (), T(S(E), Vi.&eW (1.3)

Remark 1. If we take T = I, where I is the identity function, in (1.3), then we obtain that S is a mean
nonexpansive mapping defined by (1.2).

Also, Mebawondu et al. [14] presented the following example with 7-mean nonexpansive mapping
but not mean nonexpansive mapping in metric spaces.

Example 1. [714, Examples 2.1 and 2.2] (i) Let W = [1,00) and D({, &) = |{ — €| for all {,& € W. Let
T,S : W — W bedefinedby T({) =1+1In{ and

_ VG e+,
S@)‘{ L ifl=2

(ii) Let W = [0,2] and D be as in (i). Let T,S : W — W be defined by

1-¢, if £€10,1],

T(D:{z—g, if Ce(1.2],
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and
_J L if £e[0,1),
S(g’)—{ 2, if Le€[l,2].

Then, in the above examples, S is T-mean nonexpansive, but not mean nonexpansive.

The oldest known iteration method is the Picard iteration, which is used in the Banach
contraction principle. In 2009, Morales and Rojas [15] offered a novel iteration scheme called the
T-Picard iteration, which is defined as follows.

Definition 3. [15] Let T, S be self-mappings on a metric space (W, D) and {, € W. The sequence
{T'(£,)} Cc W defined by

T (L) = T(S(£) = T(S"({o), ne€Ny=NU{0} (1.4)
is called the T-Picard iteration associated with S .

Remark 2. Ifwe take T = I in (1.4), then we obtain the Picard iteration.

Another domain where FP theory can be extended pertains to spatial considerations. Recently,
significant advancements have been made in this direction, particularly within the realm of metric
spaces. The concept of b-metric space was introduced by Bakhtin [16] and Czerwik [17] in different
periods. In a different line of development, Matthews [18] introduced the notion of partial metric space
and adapted the Banach contraction principle for applications in program verification.

In 2012, Amini-Harandi [19] introduced the concept of metric-like space, wherein a point’s self-
distance need not be equal to zero. Within these novel spaces, Amini-Harandi [19] presented various
FP theorems that extended and enhanced existing results in both partial metric and b-metric spaces.
Subsequently, in the following year, Alghamdi et al. [20] introduced the notion of b-metric-like space,
thereby generalizing the concepts of b-metric and metric-like spaces, and established various associated
FP results. Since then, numerous outcomes related to FPs of mappings under specific contractive
conditions within these spaces have been obtained, as exemplified by works such as [21-24].

Motivated by these seminal results, we investigated the existence and uniqueness of FPs for 7-mean
nonexpansive mappings and provided a stability theorem for 7-Picard iteration within the framework
of b-metric-like spaces. Furthermore, we explored the existence and uniqueness of solutions to the
Fredholm-Hammerstein integral equations on time scales as an application of our primary theorem.
Finally, we presented two illustrative numerical examples from different time scales. It is noteworthy
that our results were significant as they generalized the corresponding findings within b-metric and
metric-like spaces, both of which are special instances of h-metric-like spaces.

2. Preliminaries

2.1. Some basic definitions in b-metric-like spaces

In this subsection, several well-known definitions and two lemmas in b-metric-like spaces are listed.

Definition 4. [20, Definition 2.4] Let W be a nonempty set and k > 1 be a given real number. A
function Dy : W X W — R* is b-metric-like (in brief, bl) if the following conditions are satisfied:
(Dp1) Dpi(L,6) = 0 = ¢ = € (indistancy implies equality);
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(Dpi2) Dpi(L,€) = Dp(€, &) (symmetry);
(Dyi3) Dyi(£, &) < k[Dy(L, 1) + Dypi(n, )] (weakened triangularity)
forall {,&,n € W. The pair (W, Dy) is called a bl space.

In a bl space (W, Dy)), if {,& € W and Dy/(Z,€) = 0, then { = &; but the converse may not be true
since Dy,({, {) may be positive for some ¢ € W.

Remark 3. As it is excepted, each bl space forms a metric-like space by letting k = 1. On the other
hand, every b-metric space is a bl space with the same parameter k. Hence, the class of bl spaces is
bigger than the class of metric-like spaces (see [19]) or b-metric spaces (see [17,25-27]). However,
the inverse implications are not true in general.

Example 2. [20, Examples 2.5 and 2.6] Let W = [0, o). Define a function Dy : W?> — [0, o) by
Dp(L, &) = (C + &) or Dy(L, &) = (max (<, €}). Then (W, Dy) is a bl space with the parameter k = 2.
Clearly, (W, Dy,)) is not a b-metric space or metric-like space.

Definition 5. [20, Definition 2.9] Let (W, Dy;) be a bl space, {(,} be a sequence in W, and { € W. We
say that

(i) {£,} is said to be a convergent sequence if lim,_,., Dy((,,{) = Dp(¢, () and a Cauchy sequence
if imy, 00 Dpi(&n, &) exists and is finite;

(ii) (W, Dy, is called complete if, for every Cauchy sequence {,} in W, there exists { € W such that
limy, 00 Dpi(8ns $n) = Dpi(4, ) = limy,_,co Dyi(3, £).

Remark 4. In a bl space, the limit for a convergent sequence is not unique in general. However, if {{,}
is a Cauchy sequence with 1im,, ;,—,co Dypi({y, &) = 0 in the complete bl space (W, Dy,)), then the limit of
such a sequence is unique. Indeed, in such a case, if {, — { (Dp)(&n, () — Dpi(L,0)) as n — oo we get
that Db[(g, g) =0.

In 2009, Beiranvand et al. [28] defined the concept of sequentially convergent mapping in metric
spaces. Following this, many researchers have worked on this concept (see [14,29-32]). Inspired by
these results, we provide the following definition in bl spaces.

Definition 6. Let (W, Dy)) be a bl space. A mapping T : W — W is said to be sequentially convergent
if we have, for every sequence {&,}, if {T(&,)} is convergent then {£,} is also convergent.

Lemma 1. [33, Lemma 1.10] Let T be a self-mapping on a bl space (W, Dy)). If T is continuous at
u € W then, for every sequence {,} in W such that {, — u, we have T({,) — T(u), that is,

lim Dy(T(Z0), T(w)) = Dpi(T (), T (W)

In 2023, Calderdn et al. [34] studied the concept of (7', S )-stability in metric spaces. Now, we define
this concept in the setting of bl spaces as follows.

Definition 7. Let T, S be self-mappings on a bl space (W, D)) and {* be the FP of S. Let {T({,)} be a
sequence generated by an iteration scheme, that is,

T($nr1) = (T, S,80), n €Ny, 2.1)
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where {y € W is the initial point and h is a function. Assume that {T((,)} converges to T({*). Let
{T(&,)} € W be an arbitrary sequence, and set p, = Dyp(T(&p1), (T, S,&,)), n € No. Then, the
iteration scheme (2.1) is said to be (T, S )-stable if and only if

limp, =0 & lim T(&,) = T(").

n—oo

If we take 7 = I in Definition 7, it is reduced to the concept of the stability of an iteration scheme,
which was defined by Harder and Hicks [35].

Lemma 2. [36, p. 14] Let {¢,,}, {0,.} be sequences of non-negative numbers and 0 < 6 < 1, so that

§n+l < an +pna

foralln e N. Iflim,_, p, =0, then lim,_,., &, = 0.

2.2. Basic information on time scales

In 1988, Hilger [37] introduced the theory of time scales, which has recently garnered a lot of
attention, in his Ph. D. thesis to unify continuous and discrete analysis. In this subsection, we will go
over several fundamental concepts related to time scales.

Definition 8. [38] A time scale Ts is an arbitrary, nonempty, and closed subset of the real numbers R.

The forward and backward jump operators are defined by w(f) = inf{s € Ts : s > ¢}, and 7(¢) =
sup{s € Ts : s < t}, respectively, where inf ) = sup Ts and inf Tg = sup(. The graininess function
u: Ts — [0, +00) is defined by u(?) = w(t) —¢.

The classification of points on the time scale T is possible with the jump operators.

Definition 9. [38, Definition 1.1] A point t € Ts is said to be right-dense if w(t) = t, right-scattered
if w(t) > t, left-dense if T(t) = t, left-scattered if 1(t) < t, isolated if T(t) < t < w(t), and dense if
7(t) = t = w().

In the following definition, the set Tf that will be needed in the delta derivative is given.

Definition 10. /38] The set T is defined as follows:
TK _ TS\(T(Sup TS)’ Sup TS]a lf‘ Sup TS < 00,
s Ts, if sup Tg = oo.

Definition 11. /38, Definition 1.10] Assume f : Ts — R is a function and fix t € Tg. The delta
derivative (also Hilger derivative) f(t) exists if, for every € > 0, there exists a neighbourhood U =
(t —0,t+ 0) NTs for some 6 > 0 such that

|[f(w(t)) — ()] - Ol — s]| <€lw(t)—s|  forallse U.

Proposition 1. [38] Let [ : Ts — R be a function and t € Tg. If f is continuous at t and 1 is
right-scattered, then f is differentiable at t with

fle) - £

A —
fro= ()
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Remark 5. [38] (i) If Ts =R, then f2(t) = f(¢) is the derivative used in the standard calculus.
(ii) If Ts = Z, then f2(t) = f(t+ 1) — f(t) = Af(t) is the forward difference operator used in
difference equations.

Definition 12. /38, Definition 1.1] A function f : Ts — R is called rd-continuous if it is continuous at
all right-dense points in Ts and its left-sided limits exist (finite) at all left-dense points in Ts.

If f is rd-continuous, then there exists a function F such that FA(¢) = f(¢) (see [38, Theorem 1.74]).
In this case, the (Cauchy) delta integral of f is defined by

f f(®) At = F(e) — F(d) foralld,e € Ts.
d
Remark 6. [38] (i) If Ts =R, then

fef(t)At = fef(t)dt
d d

is the Riemann integral used in the standard calculus.
(ii) If Ts = Z, then

e e—1
f FO A=) f(t) foralld,eeZwithd<e.
d t=d

Lemma 3. [39] (Cauchy-Schwarz inequality) Let f, g : Ts — R be two rd-continuous mappings. For
all d,e € Ts with d < e, we have

e 4 ) e )
fdlf(t)g(t)l At < \/{fd lf@I Al}-{fd g At}-

Proposition 2. [40] Let d and e be arbitrary points in Ts.
(i) Every constant function f(t) = c (t € Ts) is A-integrable from d to e and fde c At = c(e —d).
(ii) If f and g are A-integrable on [d, e) and f(t) < g(t) for all t € [d, e), then

fe f(t) At < fe g() Atr.
d d

(iii) If f is A-integrable on [d, e), then |f| is A-integrable on [d, e) and

ff(t)At Sf lf (@I At.
d d

(iv) If f and g are A-integrable on |d, e), then their product f.g is A-integrable on [d, e).

We recommend the reader to [38,41-43] for more information on time scales and their applications.
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3. Some FP and stability results for 7-mean nonexpansive mappings

Let’s start this section with an example of 7-mean nonexpansive mapping, which doesn’t mean
nonexpansive in a bl space with the same constants.

Example 3. Let W = [0, 1] and Dy/(¢,€) = (max {(,&))? for all ,& € W. Then (W, Dy,)) is a bl space
with the parameter k = 2. Let T,S : W — W be defined by

3_{ .
T@):{ ooy

and
L iffel0,1),
S({)_{O, lfévzl

Let « =0 and B = 1. Then, we get

Dy (T(S (D)), T(S(£)) = 0 < aDy(T(£), T(£)) +BDup(T (&), T(S (£)))

forall (& € W. As a result, S is T-mean nonexpansive. To demonstrate that S does not mean
nonexpansive, we assume that { = 0 and & = 1. In this case, we have

Dy(S(£),5(6) =1>0=0.1+1.0=aDy({,&) + BDp(L, S (£)).

Hence, S does not mean nonexpansive.
Now, let’s give the FP result of the paper.

Theorem 2. Let (W, Dy,;) be a complete bl space and T : W — W be a continuous, one-to-one,
and sequentially convergent mapping. If S : W — W is a T-mean nonexpansive mapping such that
k(a+2Bk) < 1, then S has a unique FP. Morever, the sequence {T((,)} defined by (1.4) converges
strongly to T({*), where " is the FP of S.

Proof. Using (1.3), (1.4), and (D;;3), we get

Dyp(T(£n+1), T(£n)) = DpT(S()), T(S (Ln-1)))

aDp(T (L), T(Ln-1)) + BDp(T(80), T(S (£n-1)))

aDp(T($n), T({n-1)) + BDp(T(n), T(4n))

aDp(T (L), T(Ln-1)) + BRIDpi(T (), T(Ln-1)) + Dipi(T(8n-1), T (E))]

(@ + 2BK) Dy (T (8n), T(L-1))- (3.1

IAN 1A

Also, we obtain

Dy(T (&), T(Lp-1))

Dp(T (S (£n-1)), T(S (£n-2)))

@Dp(T (£n-1), T(8n-2)) + BDupi(T ({n-1), T(S (£n-2)))

aDp((T(£n-1), T(£n-2)) + BDpi(T (§n-1), T (1))

aDp((T (Ln-1), T(Ln-2)) + BKIDpi(T ($n-1), T (n-2)) + Dpi(T ($n-2), T(Ln-1))]
(@ + 2Bk)Dypi(T (§1-1), T (£n-2))- (3.2)

IA

IA
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Substituting (3.2) into (3.1), we have

Dy(T(Lus1)s T(G)) < (@ + 28K Dyi(T (4n-1)s T(-2)),

and inductively, we get

Dy(T(L1), T(L)) < (@ + 28K)" ' Dp(T (), T (). (3.3)

Furthermore, for n > m, we have

k [Dp(T (L), T (&ns1)) + Dpi(T (&nr1), T(E))]

Dy(T(n), T(Ln) <
< kDp(T(G)s T(Lns1)) + K [Dpi(T (nit)s T(ns2)) + Dpi(T (Gns2), T(E))]

kDp(T () T(Gns1)) + 2 Dp(TGnst)s T(Gnr2))
o+ K DT (Gy2), T (L)) + K" Di(T (Gy1), T(L)).- (3.4)

Now, (3.3) and (3.4) imply that

IA

[k (@ +2B8k)" " + K (@ + 2Bk)™ + k> (a + 2B8k)™"!
oo+ K (@ + 280" IDp(T (L), T(L))

k(a +2B8k)" ' [1 + k(@ + 2Bk) + (k (@ + 28k))*
...+ (k (@ + 28K))" ™" 1Du(T (&), T({1))

k(a +2B8k)"™!
S T X@x 2l8k)Dbl(T(§2), T(1)).

Dy(T (), T (1))

IA

It follows that {T'(¢,,)} is a Cauchy sequence with lim,, ;o Dpi(T(£,), T({n)) = 0 and since (W, D) is a
complete bl space, there exists & € W such that

’}1_)11010 Dy(T(&n),&0) = Dpi(éo,&0) = 0. (3.5)

Since the mapping 7 is sequentially convergent and the sequence {7({,)} is convergent, then the
sequence {(,} is convergent. So, there exists {* € W such that

lim Dy(¢,,¢") = Du¢ ). (3.6)
Because 7 is continuous, by Lemma 1 and (3.6), we have
’}i_{{)lo Dy(T(80), T(Z)) = Dp(T (&), T()). (3.7)
From (3.5) and (3.7), we obtain & = T({*). So

< k[Du(T(S ), TS &) + Dp(T(S (6)), T(¢)]
< klaDp(T (), T(Gn)) + BDp(T (&), T(S (GIN] + kDp(T (S (50), T()
= kaDy(T("), T(n)) + k(B + DDp(T (&), T(Gur1))

0 asn — oo.

Dy(T(S(£), T()

l
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Therefore, Dy, (T (S "), T({*)) = 0, which implies that T(S({*)) = T({*). Since T is one-to-one, we
have that

S =17
Hence, ¢* is an FP of S. To show that {* is a unique FP of S, we suppose on the contrary that there
exists another FP, say &%, such that {* # £*. Thatis, S({*) = {* and S (£*) = €". Thus, we get

Dy(T((),T(E) = DTSN, TSE)
< aDy(T({), T(E) +BDu(T (), T(S(E))
(@ +B)Du(T(), T,

A

which implies that
(1= (@ +B)Du(T (), T(E)) < 0.
Since k(@ + 2Bk) < 1 and k > 1, we have a + 8 < 1. That is, we obtain
Dy(T({), T(€7)) =0,
which implies that 7({*) = T(¢7). Since T is one-to-one, we get {* = &*. |

Remark 7. Theorem 2 can be regarded as an extension of Theorem 2.3 in [14] from a metric space to
a bl space.

If we choose T' = I in Theorem 2, we obtain the below result, which is new in the literature.

Corollary 8. Let (W, Dy;) be a complete bl space and S : W — W be a mean nonexpansive mapping
with k(a + 2pk) < 1. Then S has a unique FP.

We obtain the following stability result using Definition 7.
Theorem 3. Under the hypotheses of Theorem 2, the sequence {T(,} defined by (1.4) is (T, S )-stable.

Proof. Suppose that {T'(¢,)} is an arbitrary sequence in W and p, = Dp(T(&,41), T(S(,))). Let
lim,_, p, = 0. Then, by (1.3) and (D,3), we obtain

Dyp(T (&), T(&)) K[Dyp(T (n1), T(S (£4))) + Dp(T(S (£4)), T(L))]
K[Dp(T (§ne1), T(S (£))) + Dip(T(S (£)), T(S (£)))]
kpn + k(a + B)Dp(T (£, T().

I IA

IA

By the assumption lim,,_,, p,, = 0, it follows from Lemma 2 that lim,_,, T(¢,) = T({).
Conversely, lim,,_,o, Dy (T (£,41), T(£*)) = 0. Then, using Lemma 2, we have

Pn = Dp(T(&ns1), T(S(€0)))

K[Dyp(T (§n41), T(E)) + Dp(T(5), T(S (§0)))]
K[Dp(T (£n+1), T(Z7)) + Dpi(T(S (£)), T(S(£)))]
kDyp(T (&n41), T(E) + k(e + B)Dyp(T(£0), T(L7))

— 0 asn — oo.

IA

IA

Therefore, {T({,)} defined by (1.4) is (T, S )-stable. O
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4. An application to the Fredholm-Hammerstein integral equations on time scales

The study of the existence and uniqueness of differential and integral equation solutions is essential
in exploring various types of nonlinear analysis and engineering mathematics. One of the most
important tools developed in this field is the FP method. Using the FP result in the previous part,
we investigated the existence and uniqueness of solutions for the Fredholm-Hammerstein integral
equations on time scales in this section.

First, let’s give the definition of the Fredholm-Hammerstein integral equation.

Definition 13. [44] A Fredholm-Hammerstein integral equation of the second kind is defined as

20 =i+ 2 f e K(t, )u (s, (s)) ds, d<t,s<e, decR, (4.1)
d

where the kernel function K(t, s) and the function f(t) are given, the unknown function {(t) must be
determined, A € R is a non-zero constant, and the known function u is continuous and nonlinear respect
to the variable (. It is called homogeneous if f(t) = 0 for allt € [d, e] in the Eq (4.1).

Now, we provide the homogeneous Fredholm-Hammerstein integral equation of the second kind on
the time scale as follows.

Definition 14. Let Ts be a time scale with the delta derivative operator A, and let d,e € Ts. A
homogeneous Fredholm-Hammerstein integral equation of the second kind on the time scale Ts is

defined as
L = ﬂf K(t, s)u(s,i(s)) As,  t,s€[d,elr, = [d,e] N Ty, (4.2)
d

where u : [d,elr, XR — Rand K : [d, e]r, X [d, e]lr. — R are given functions, { : [d,e]r, — Ris an
unknown function, and A € R — {0} is a parameter.

Let W = C ([d, elt.) be the set of all real continuous functions defined on [d, e]r,. We endowed W
with the Dhl

Dy(¢, &) = sup (DI +IEDD*, VL EeW.

te[d,e]TS

It was shown in [20, p. 21] that (W, D) is a complete bl space with the parameter k = 2.
In the following theorem, we proved the existence and uniqueness of the integral Eq (4.2) on the
complete bl space C ([d, e]r.).

Theorem 4. Consider the Fredholm-Hammerstein integral Eq (4.2) such that the functions K and u
are A-integrable on [d, e]r,. Assume that

(e, D]+ ut, EO < (L@ + [ED] (4.3)
forall ,¢ € C([d, elr,) and
sup ( f ) K*(t, ) As) <L, (4.4)
teld,elrs \Jd
where L € (0, 5z—) is a constant. Then the Eq (4.2) has a unique solution in C ([d, elz,).
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11345

Proof. We define the mappings T and S as follows:

2
T®) = 340

and

S@) = /lfe K(t, s)u(s,{(s)) As, teld,elr,.
d

Since the functions K and u are A-integrable, then, clearly S is a self-mapping on C ([d, e]r,), that
is, S : C([d,elr,) — C([d,elr,). By the Cauchy-Schwarz inequality in Lemma 3, Proposition 2,
and (4.3), for all £,¢ € C([d, elr,), we obtain

)2

(TS €O+ IT(S EDNN’

+

23_/1 fe K(t, s)u (s, &(s)) As

d

(‘2—/1 fe K(t, s)u(s,L(s)) As
3 Ja

420 ( (e e ’
< o5 LIK(t,s)l.lu(s,g“(s))l As+fd|K(t’s)|'|u(s’§(s))| As)
422 ¢ 2
- 9 fd‘|K(f,5)|-(|u(s,§(s))|+|u(s,§(s))|)As)
4/12 e ) e i
< o de(t,s)As)(j; (lu (s, £())| + |u (s, E(9))) As)
4/12 e ) e ,
< 5 f K<t,s>As)( f ()] + IS As)
d d

IA

42 <, )
o Sup (fd K=(t, S)AS)(e—d) sup (I + €07,

9 retdelr, reld.elr,

which implies that

42* ¢
sup (IT(S ) +ITSEDNN* < — sup (fd K*(1, S)AS)(e—d) sup (|| + 1€

tE[d,e]TS 9 lE[d,e]TS lE[d,e]TS
Taking the advantage of (4.4), we have

4

/12
sup (T(SEONI+ TS E@N* < 9 L(e — d)Dy({, §).

reld,elr
Thus, if we say A°L(e — d) = «, we obtain

Dy(T(S(0)), T(S(€)) < aDy(T (), T(é)) < aDp(T (L), T(é)) + BDp(T (L), T(S (£))).

Since L < then we have @ < 1. Then S is a T-mean nonexpansive mapping on C ([d, elr,) with

1
22%(e—d)’
a < % and 8 = 0 implying that 2(« + 48) < 1. Then it is clear that 7 is a continuous, one-to-one, and
sequentially convergent mapping. Therefore, all conditions of Theorem 2 are satisfied, and so S has a
unique FP that is a unique solution of the integral Eq (4.2) for || < ——

. . V2L(e-d)’
The following examples illustrate the result of Theorem 4.
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Example 4. Let Ts = 2" = {1,2,4,...}. Forallt € 2', w(t) = 2t. Consider the following integral
equation

[)=A4 % As, Vre[l, 4]y, .
1

Here, K(t,5) = s and u (t,{(1)) = {(?) for all { € C([1,4]y,). Thus, by Proposition 1, we obtain

f K2(t,s) As
1

Il Il Il
—_—— —_
TR
| o0 NS
> ~
V)I S DM
w
> U
>
@

Therefore, the condition (4.4) holds with L = %. Clearly, we get

(ju(t, ZON + lu(t, EEND* = @]+ EDD.

Thus, the condition (4.3) is provided. By Theorem 4, the given integral equation has a unique solution
for L < #, that is, |1 < ﬁg Consequently, we conclude that this integral equation has a unique
solution, which is the trivial solution {(t) = 0.

In fact, it can be shown that the equation has only the solution {(t) = 0 for |4| < ﬁg by using direct

computation. Let

Then we have {(t) = cA, and so,

1
= cd — As
1§
3
= —cAi
>
This equation can be written as
3
1-=-1]=0,

that is, for A # % there is only one solution, which is ¢ = 0. Hence, we obtain that this integral equation
has a unique solution when A # %
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Example S. Let Ts = Z. Consider the following integral equation

L) = f(s + w(s)) 4((4() NE As, Vte[0,4]g,. 4.5)

Here, K(t,s) = s + w(s), u(t,{(t)) = 1+22))2 forall € C([0,4]1,) and w(t) = t + 1 for all t € Z. By
Remark 6 (ii), we obtain

fKZ(t,s)As = f(2s+1)2 As

0 0
f(4s2+4s+1)As
0

3

Z(4s2+4s+1)

5s=0
= 84.
Therefore, the condition (4.4) holds with L = 84. Also, we get
2
(ut, LI+ lu(s, @) = (‘1 +§((42t))2 + '1 _|_§((£Zl))2 ) < (IO + EDD?,

that is, the condition (4.3) is satisfied. By Theorem 4, the integral Eq (4.5) has a unique solution for
L < # Therefore, we have || < #ﬁ' We deduce that the given integral equation has a unique
solution, which is the trivial solution {(t) =

In fact, by using direct computation, it can be shown that the equation has a unique solution {(t) = 0

Let

{(s)
c= j:(s + a)(s)) TGP As. 4.6)

Thus, we can write
{(t) = cA. 4.7

By substituting the value of {(t) given by (4.7) into (4.6), we obtain

cA
= HD—A
c f(s+s+ )1+(C/l)2

cA
_ 2s + DA
1+<cﬂ)2f(s JAs
cA

16—,
1+ (cA)?

and from here, we get
S +c(1-16A) =

For 1 < 1—16, there is only one solution, which is ¢ = 0. Hence, the integral Eq (4.5) has a unique
solution when A < %6.

In the above examples, Theorem 4 provides a small interval for 4. However, on this interval, we
can guarantee the existence and uniqueness of the solution without computing it.
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5. Conclusions

We have demonstrated the existence and uniqueness of the FPs of 7-mean nonexpansive mappings
and provided the stability result for the 7T-Picard iteration in b/ spaces. Additionally, we presented
an application of the Fredholm-Hammerstein integral equations and two numerical examples on time
scales. Using similar approaches in our results, the integral type of T-mean nonexpansive mappings
described in [14] can be studied in bl spaces. Also, the types of T-mean nonexpansive mappings can
be studied in different spaces, such as hyperbolic metric spaces defined by Kohlenbach [45].
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