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1. Introduction

One of the most critical areas of applied mathematics are iterative techniques to solve nonlinear
equations. Their importance is due to their wide applications in different fields, such as engineering,
computer science, physics, biology, chemistry, banking, business, digital signal processing, control
theory, insurance, social science, and many others. For instance, [1–4] evidence some of these
applications. Computer visual representation, which converts numerical data into 2D or 3D images,
unquestionably offers a modern and unconventional solution to some mathematical topics. It gives a
fresh perspective and provides a deep knowledge of the characteristics and behavior of iterative
processes for finding polynomial roots and allocating them (e.g., [5–11]). The development of digital
computer hardware and software has substantially impacted many scientific disciplines and is
frequently utilized in almost all scientific domains, including mathematics. The usage of advanced
computational tools, such as symbolic computation and computer graphics, is necessary to tackle
many complex problems in applied mathematics and other scientific disciplines. Thanks to the rapid
development of computer graphics over the past 20 years, scientists from various fields can now use
cutting-edge computer techniques to study and visualize phenomena that are not easily observable.
Architecture and engineering, biomedical applications (X-ray computed tomography (CT), magnetic
resonance imaging (MRI), mathematics, physics, business and management graphics, education and
learning, user interface design, image syntheses, mapping and cartography, video and multimedia
technology (animation, move, etc.), and business are just a few examples where high-quality
computer visualization provides new and remarkable insights. Many problems in the areas above
remain unsolvable by humans. Computer graphics allow a quick and practical link between machines
and people. The technology and mathematics that computer graphics provide to a wide range of
applications in theory and practice, and they indeed have great potential in the future (see
e.g., [12–16]). The initial guess value affects the classical Newton-like method’s performance,
particularly for large-scale nonlinear problems. For this reason, many iterations of Newton’s
technique have been devised. For example, Knoll et al. [17] suggested the arc-length approaches, and
Lemieux et al. [18] offered the Jacobian-Free Newton-Krylov method. Wu et al. [19] provided novel
contributions to Newton’s research. Qureshi et al. [20] presents the trapezoidal second-order
Newton’s, He et al. [21] presented the variational Newton-type scheme, Saheya et al. [22] employed
the rational approximation function to suggest a Newton-like method, Abbasbandy [23] proposed an
improved version of Newton’s scheme by using a modified Adomian decomposition technique.
Motivated by the above mentioned work, this study develops a novel family of Newton-type iterative
algorithms using a single parameter for locating the simple root of nonlinear equations. The
parameter value influences the newly developed family. The best parameter value for that family of
methods should be chosen based on the method that has a larger region of convergence at starting
points where the classical methods diverge. To achieve this aim, we deal with the corresponding
complex dynamical system, determining fixed and critical points, analyzing asymptotic convergence,
and identifying values that decompose the corresponding rational function. The main contribution of
this work is reflected as follows:

• Construction of a family of numerical schemes for finding roots of scalar nonlinear equations.
• Using CAS-Maple to verify the convergence order of the proposed method.
• Finding fixed and critical points utilizing complex dynamical analysis.
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• Dynamical and parametric planes are generated using critical points.
• Computational tools are used to analyze the proposed technique’s convergence rate, efficiency,

stability, and applicability.
• Analyzing how the suggested technique can be applied in various research disciplines.

Some engineering applications are considered to show improved efficiency and stability compared
to other classical techniques discussed in the literature. This research aims to construct a novel family
of iterative methods using the computer algebra system CAS-Maple, Mathematica, MATLAB, Scilab,
GNU Octave, Python, and many others (see e.g., [24, 25] ). It uses parameter and dynamical planes
to apply these techniques for picking the best parameter value for the iterative scheme. This paper is
organized as follows: In section 2, the proposed method is introduced. In section 3, the stability of the
proposed method using complex dynamical analysis is discussed. In section 4, the efficiency of this
method is illustrated by applications. The last section is the conclusion of this article.

2. Construction of numerical methods and their convergence analysis

This section discusses some well-known methods in the literature. One of the most ancient and
popular numerical methods for approximating single roots of a nonlinear equation

f (x) = 0, (2.1)

is Newton’s method [26] (NM), which has local quadratic convergence.

x(t+1) = x(t) −
f (x(t))
f ′(x(t))

, t = 0, 1, ... (2.2)

Kou et al. [27] presents an optimal 2nd-order iterative method (abbreviated as YO) as follows:

x(t+1) = x(t) −

1 +
(

f (x(t))
f ′(x(t))

)
1 + (α1 + α)

(
f (x(t))
f ′(x(t))

)


(
f (x(t))
f ′(x(t))

)
1 + λn

(
f (x(t))
f ′(x(t))

) , (2.3)

where λn = α = 1 and α1 = 0.
Chicharro et al. [28] give the optimal local second-order iterative method (abbreviated as AC) as

follows:

x(t+1) = x(t) −

(
f (x(t))

f ′(x(t)) + α f (x(t))

)
, t = 0, 1, ... (2.4)

We suggested the following optimal family of numerical iterative schemes abbreviated as BB1:

x(t+1) = x(t) −

(
f (x(t))
f ′(x(t))

) (
1

1 + αϑ(u)

)
, t = 0, 1, ... (2.5)

where u = f (x(t))( f ′(x(t)))β

( f ′(x(t)))2 , β, α ∈ R.

The convergence order of iteration scheme Eq (2.5) is found by using CAS-Maple 18 in the form of
the following theorem:
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Theorem 1. Let I an open interval and ζ ∈ I be a simple root of a sufficiently differential function
f : I ⊆ ℜ −→ ℜ. For a real valued function ϑ(u) and x(0) sufficiently close to ζ with ϑ(0) = 0, and
ϑ′(0) < ∞ then iterative scheme (2.5) has local quadratic convergence, satisfying the error equation:

e(t+1) = (αϑ′(0) + c2)(e(t))2 + O((e(t))3), (2.6)

where cm =
f m(ζ)

m! f ′(ζ) ; m ≥ 2.

Proof. Let f (x) have a simple root ζ and e(t) = x(t) − ζ. By a Taylor series expansion of f (x(t)) around
x(t) = ζ, taking f (ζ) = 0, we get

f (x(t)) = f
′

(ζ)((e(t)) + c2(e(t))2 + c3(e(t))3 + O((e(t))4), (2.7)

and
f ′(x(t)) = f

′

(ζ)(1 + 2c2e(t) + 3c3(e(t))2 + 4c4(e(t))3 + O((e(t))4). (2.8)

Dividing (2.7) by (2.8), we have

f (x(t))
f ′(x(t))

= e(t) + c2(e(t))2 + (2c2
2 − 4c3)(e(t))3 + O((e(t))4), (2.9)

( f ′(x(t)))2 = 1 + 4c2e(t) + (4c2
2 + 6c3)(e(t))2 + ... (2.10)

u =
f (x(t))( f ′(x(t)))β

( f ′(x(t)))2 = e(t)(6c6(e(t))5 + 5c5(e(t))4 + 4c4(e(t))3 + ...

Thus, using the Taylor series, we have

ϑ(u) = ϑ(0) + ϑ′(0)u +
ϑ′′(0)u2

2!
+ ... (2.11)

ϑ(u) = ϑ(0) + (6c6(e(t))5 + 5c5(e(t))4 + 4c4(e(t))3+ (2.12)

1
1 + α ∗ ϑ(u)

=
1

1 + αϑ(0)
−

(
τϑ′(0)

(αϑ(0) + 1)2

)
e(t) + O((e(t))2), (2.13)

e(t+1) = x(t) − ζ −

(
f (x(t))
f ′(x(t))

) (
1

1 − αϑ(u)

)
=

(
1 −

1
1 + αϑ(0)

)
e(t) +(

τϑ′(0)
(1 + αϑ(0))2 +

c2

1 + αϑ(0)

)
(e(t))2 + O((e(t))3), (2.14)

and putting ϑ(0) = 0 in (2.14), we have

e(t+1) = (αϑ′(0) + c2)(e(t))2 + O((e(t))3). (2.15)

This proves second-order convergence. □
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Special cases:
Now we construct some special cases of the family of methods described by (2.5). We construct the

following numerical schemes by choosing β = 2 in (2.5).
Method-1 (abbreviated as BB1): Take the function ϑ(u) defined as ϑ(u) = u

1+u which satisfies the
condtion of Theorem 1, i.e., ϑ′(0) < ∞. Then, we have the following optimal family of iterative
methods:

x(t+1) = x(t) −

(
f (x(t))
f ′(x(t))

)  1

1 + α f (x(t))
1+ f (x(t))

 . (2.16)

Method-2 (abbreviated as BB2): Take the function ϑ(u) defined as ϑ(u) = u
1+γu2 which satisfies the

condtion of Theorem 1, i.e., ϑ′(0) < ∞. Then, we have the following optimal family of iterative
methods:

x(t+1) = x(t) −

(
f (x(t))
f ′(x(t))

)  1

1 + α
(

f (x(t))
1+γ( f (x(t))2)

)
 . (2.17)

Method-3 (abbreviated as BB3): Take the function ϑ(u) defined as ϑ(u) = u
1+γu which satisfies the

condtion of Theorem 1, i.e., ϑ′(0) < ∞. Then, we have the following optimal family of iterative
methods:

x(t+1) = x(t) −

(
f (x(t))
f ′(x(t))

)  1

1 + α
(

f (x(t))
1+γ f (x(t))

) , (2.18)

where α, γ ∈ ℜ.

2.1. Complex dynamical analysis of the family of numerical methods

This section discusses the stability of the numerical scheme Eq (2.16) against the backdrop of the
complex dynamics. Iterative method Eq (2.16) leads to the following rational map:

ℜ f = x −
(

f (x)
f ′(x)

)  1

1 + α f (x)
1+ f (x)

 . (2.19)

Recalling some basic concepts of this theory (detailed information can be found in [29–38]). Taking
a rational function ℜ f : C −→ C, C denotes the Riemann sphere. The orbit s0 ∈ C defines a set
orb(x) = {x0,ℜ f (x0),ℜ2

f (x0), ...,ℜm
f (x0), ...}. A point x0 ∈ C is called a fixed point if ℜ f (x0) = x0. A

particular fixed point x0 is called a strange fixed point if f (xr) = 0 when x0 , xr. A T-periodic point is
defined as the point xT ∈ C satisfyingℜT (xT ) = sT withℜ′(xT ) , xT for x < T. If x0 is a fixed point
ofℜ, then it is:

• Super attracting if
∣∣∣∣ℜ′f (x0)

∣∣∣∣ = 0.

• Attracting if
∣∣∣∣ℜ′f (x0)

∣∣∣∣ < 1.

• Repulsive if
∣∣∣∣ℜ′f (x0)

∣∣∣∣ > 1.
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• Neutral if
∣∣∣∣ℜ′f (x0)

∣∣∣∣ = 1.
• A strange fixed point if it not associated to any root of non-linear equation (2.1).

An attracting point x∗ ∈ C defines a basin of attraction ℜ(x∗) as the set of starting points whose
orbit tends to x∗.

The iterative method BB1 holds the scaling theorem which allows a suitable change of co-ordinate
to reduce of dynamics of iteration of general maps to the study of a specific family of iteration of
similar maps. The one point iterative method (2.16) has a universal Julia set if a rational map exist
which conjugates by the Mobius transformation.

Theorem 2. A rational map fg(x) arising from (2.16) applied to f (x) = (x − a)(x − b), where a, b ∈
ℜ, fg(x) is conjugate via the Mobius transformation by M(v) = v−a

v−b to

fg(x, α) =
x2(4α + x + 1)
(4α + 1)x + 1

.

Proof. Let f (x) = (x − a)(x − b), where a, b ∈ ℜ. The Möbius transformation given by:

M(v) =
v − a
v − b

, (2.20)

with inverse
[M(v)]−1 =

vb − a
v − 1

, (2.21)

which we consider as a map from C ∪∞.
Then, we have

fg(x, α) =
x2(4α + x + 1)
(4α + 1)x + 1

. (2.22)

□

Similarly, we can get the following conclusions.

Theorem 3. A map fg(x) (rational) arising from BB2, BB3, AC, NM, and YO applied to f (x) = (x −
a)(x − b), where a, b ∈ ℜ, fg(x) is conjugate via the Mobius transformation by M(v) = v−a

v−b to

fg(x, α) =
x2(4αx3 + s4 − 4αx2 − 4x3 − 4αx − 2x2 + 4α − 4x + 1)
(4α + 1)x4 − 4(α + 1)x3 − 2(2α + 1)x2 + 4x(α − 1) + 1

, (2.23)

fg(x, α) =
x2(s2 + (4α − 6.2)x + 1 + 4α)
(1 + 4α)x2 + (4α − 6.2)x + 1

, (2.24)

fg(x, α) =
x2(2α − x + 1)
(2α − 1)x + 1

, (2.25)

fg(x, α) = x2, (2.26)

fg(x, α) =
x2(4α2x − 4αx2 + x3 + 2αx − x2 + 2α + x − 1)

(4α2 − 2α)x2 − 2αx3 + 3x3 + 4αx − 3x2 − x + 1
. (2.27)
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The fixed points of (2.22) are x = −1, x = 0, x = 1, and x = ∞. We calculate f ′g(x, α) for the stability
of fixed points of BB1 as:

f ′g(x, α) =
2x((4α + 1)x2 + (8α2 + 4α + 2)x + (4α + 1))

((4α + 1)x + 1)2 . (2.28)

From (2.28) it is clear that x = 0 and∞ are always super attractive fixed points but the stability of other
fixed points are depends on α, which we present here. The operator f ′g(x, α) for x = −1 gives∣∣∣ f ′g(−1, α)

∣∣∣ = ∣∣∣∣∣2α − 1
α

∣∣∣∣∣ . (2.29)

Analyzing (2.29), as α −→ ±∞ we obtain horizontal asymptotes for
∣∣∣ f ′g(−1, α)

∣∣∣ = 1 and vertical
asymptotes for α = 0 (Newton method).

Theorem 4. The strange point x = −1 is known as:

(i) Ifℜe(α) < 1
4 , then x = −1 is an attractor and it can be super attractor for α = −1.

(ii) Whenℜe(α) = 1
4 , is a parabolic point for x = −1.

(iii) If α , 0 andℜe(α) > 1
4 , is a repulsive for x = −1.

Proof. As

f ′g(−1, α) =
2α − 1
α
, (2.30)

then, ∣∣∣∣∣2α − 1
α

∣∣∣∣∣ ≤ 1 is equivalent to |2α − 1| ≤ |2α| . (2.31)

Let us consider α = a + ib ∈ C.
Then,

−4a + 1 ≤ 0,

a ≤
1
4
. (2.32)

Thus, ∣∣∣ f ′g(1, α)
∣∣∣ ≤ 1 iff a ≤

1
4
. (2.33)

Finally, if a , 0 andℜe(α) > 1
4 , then

∣∣∣ f ′g(−1, α)
∣∣∣ ⩾ 1. □

The operator f ′g(1, α) gives ∣∣∣ f ′g(1, α)
∣∣∣ = ∣∣∣∣∣2(α + 1)

2α + 1

∣∣∣∣∣ . (2.34)

By analyzing (2.34), as α −→ ±∞ we obtain horizontal asymptotes in
∣∣∣ f ′g(1, α)

∣∣∣ = 1.

Theorem 5. The character of the strange point x = 1 is as follows:

(i) Ifℜe(α) > −3
4 , it is an attractor for x = 1.

(ii) Whenℜe(α) = −3
4 , it is a parabolic point for x = 1.

(iii) If α , 0 andℜ(α) < −3
4 , then x = 1 a repulsive.
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Proof. As

f ′g(1, α) =
2(α + 1)
2α + 1

, (2.35)

then, ∣∣∣∣∣2(α + 1)
2α + 1

∣∣∣∣∣ ≤ 1 is equivalent to |2(α + 1)| ≤ |2α + 1| . (2.36)

Consider α = a + ib ∈ C.
Then,

4α + 3 ≤ 0. (2.37)

Thus, ∣∣∣ f ′g(1, α)
∣∣∣ ≤ 1 iff a ≤ −

3
4
. (2.38)

Finally, if a , 1andℜe(α) > −3
4 , then

∣∣∣ f ′g(1, α)
∣∣∣ < 1 □

The stability functions of the iterative schemes BB1 are as follows:{
f ′g(−1, α) = min{ f ′g(−1, α),−1}, f ′g(1, α) = min{ f ′g(1, α), 1}. (2.39)

Figure 1 represents the region of stability of strange fixed points. Left: Figure f ′g(1, α). Right:
Figure f ′g(−1, α).

Figure 1. Zone of stability of strange fixed points of numerical scheme BB1. Left-zone of
stability of strange fixed point x = −1; Right-zone of stability of strange fixed point x = 1.

Analysis of Critical Points:
The critical points of BB1 satisfy f ′g(−1, α) = 0 i.e., x = 0, x = ∞ and ccr1 = −4α2+2

√
4α4+4a3−a2−a−2a−1

4α+1 ,

ccr2 = −4α2+2
√

4α4+4a3−a2−a+2a+1
4α+1 .

(2.40)

If α , 1, 1/4, then observe that cr1 = 1
cr2 and cr1 = cr2 = 1 only when α = −1, while cr1 =

cr2 = −1 only when α = 0. Figure 2 presents the behavior of the fixed and critical points for real of α.
Fixed points −1, 0, and 1 are represented by orange, black, and green dotted lines, while critical points
(cr1, cr2) are represented by red and blue lines, respectively.
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Figure 2. Dynamical behavior of all strange fixed and critical point of numerical scheme
BB1. Dynamical behavior of strange fixed points and critical points for 0 ≤ α ≤ 20
(li f t),−20 ≤ α ≤ 0 (middle),−10 ≤ α ≤ 10 (right).

Figure 3: The union of respective stability function of the all strange fixed points of BB1-BB3, AC,
and YO, respectively, from left to right.

Figure 3. The union of the respective stability function of the all strange fixed points of
BB1–BB3, AC, and, YO respectively.

Theorem 6. The only member of BB1 whose operator is always conjugated to the rational map x2 is
the element corresponding to α = 0.

Proof. From (2.22), we represent nn(x) = x2((4α + x + 1) in the numerator and dd(x) = (4α + 1)x + 1
denominator of (2.22). Then, for α = 0, we get nn(x) = dd(x). □

Parametric planes:
We generate a parametric plane by taking α over a mesh of 250, 000 points in a complex plane.

Critical points are chosen as initial guessed values and then iterate until it converges to any fixed
points. Taking 10−3 as a tolerance. We paint the complex parameter value in red if it converges , and
black in other cases. The parametric planes for the critical points are shown in Figure 4.

Dynamical planes:
Dynamical planes are generated as parametric planes. To generate them, the real and imaginary

parts of the starting estimations are represented as two axes over a mesh of 250 × 250, and the same
stopping criteria as in the parametric plane. The study assigns different colors to indicate which root
the method converges to, and black in other cases. The dynamical planes of the iterative scheme BB1,
YO, NM, and AC for different parametric values are shown in Figures 5–7.
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(a) Details of the parametric plane for the critical points cr1.

(b) Details of the parametric plane for the critical points cr2.
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(c) Parametric planes
correspond to the
critical point cr1.
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(d) Parametric planes
correspond to the
critical point cr2.

Figure 4. (a–d): The parametric planes of the numerical scheme BB1 correspond to the
critical points cr1 and cr2.

Figure 5. Iterative algorithms BB1 with dynamical planes are demonstrated from top left to
bottom right for various values of the parameter α = −2i, 2i, 3i,−1, 0.1 − 0.1i, 1.
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Figure 6. Iterative algorithms BB1 with dynamical planes are demonstrated from top left to
bottom right for various values of the parameter α = −2,−3 − 3i,−3, 1, 2, 3.

Figure 7. Iterative algorithms (BB1–BB3, AC, YO, NM) with dynamical planes are
demonstrated from top left to bottom right end for various values of the parameter.

In Table 1, Els-Time denotes the amount of time in seconds that has passed, Start-Points denotes the
number of starting points (62500.00 in a square), Average-It denotes the average number of iterations,
C-Points denotes the number of converging points, and D-Points denotes the number of diverging
points utilized to form dynamical planes (the basins of attractions [39, 40]). Table 1 clearly shows
that our recently developed methods BB1–BB3 outperform the existing iterative methods in terms of
CPU-Time, Average-It, T-Points, C-Points, and D-Points.

In Table 2, Els-Time denotes the amount of time in seconds that has passed, Start-Points denotes the
number of starting points (62500.00 in a square), Average-It denotes the average number of iterations,
C-Points denotes the number of converging points, and D-Points denotes the number of diverging
points utilized to form dynamical planes (the basins of attractions). Table 2 clearly shows that our
recently developed methods BB1–BB3 outperform existing iterative methods in terms of CPU-Time,
Average-It, T-Points, C-Points, and D-Points.

In Table 3, Els-Time denotes the amount of time in seconds that has passed, Start-Points denotes the
number of starting points (62500.00 in a square), Average-It denotes the average number of iterations,
C-Points denotes the number of converging points, and D-Points denotes the number of diverging
points utilized to form dynamical planes (the basins of attractions). Table 3 clearly shows that our
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recently developed methods BB1-BB3 outperform the existing iterative methods in terms of CPU-
Time, Average-It, T-Points, C-Points, and D-Points.

Table 1. Convergence divergence analysis of numerical schemes for f1(x).
Method BB1 BB2 BB3 AC YO NM
Els-Time 0.0124000 0.02415 0.01584 0.214501 0.021450 0.0456211
Average-It 3.4500000 3.50000 3.00000 5.100000 5.200000 7.4000000
T-Points 62500.000 62500.00 62500.00 62500.00 62500.00 62500.000
D-Points 340.00000 105.3500 458.3500 214.4500 1541.450 765.45100
C-Points 62160.000 62394.65 62041.65 62285.55 60958.54 61734.549

Table 2. Convergence divergence analysis of numerical schemes for f2(x).
Method BB1 BB2 BB3 AC YO NM
Els-Time 0.002100 0.004350 0.012140 0.0112501 0.011471 0.012671
Average-It 4.450124 5.504120 6.704512 8.102510 9.201200 10.40010
T-Points 62500.00 62500.00 62500.00 62500.00 62500.00 62500.00
D-Points 210.0000 10.35000 115.3500 414.4500 80.45000 105.4510
C-Points 62290.00 62489.65 62384.65 6205.550 62419.55 62394.549

Table 3. Convergence divergence analysis of numerical schemes for f3(x).
Method BB1 BB2 BB3 AC YO NM
Els-Time 0.0324 0.03412 0.03481 0.060121 0.071010 0.0557001
Average-It 5.0500 4.5000 4.0000 5.6000 4.2000 8.1000
T-Points 62500.00 62500.00 62500.00 62500.00 62500.00 62500.00
D-Points 1940.000 345.3010 298.6700 451.8700 984.5700 765.4510
C-Points 60560.00 62154.699 62201.33 62048.13 61515.43 61734.549

Figure 8. The basin of attraction for the numerical schemes BB1–BB3, AC, YO, and
NM technique, respectively, is shown from left to right (for polynomial equation used in
example 1).
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Figure 9. The basin of attraction for the numerical schemes BB1–BB3, AC, YO, and
NM technique, respectively, is shown from left to right (for polynomial equation used in
example 2).

Figure 10. The basin of attraction for the numerical schemes BB1–BB3, AC, YO, and
NM technique, respectively, is shown from left to right (for polynomial equation used in
example 3).

2.2. Engineering applications

This section discusses an engineering application to check the efficiency and performance of the
newly developed methods compared to existing methods, i.e., the AC, YO, and NM methods.

Example 1. Current-Voltage Diode [41]
A manufacturing company provided a tunnel diode with voltage-current output:

I = I(x) = x3 − 1.5x2 + 0.6x.

The tunnel diode is connected with resistor R and voltage source E. By applying Kirchhoff’s voltage
law, we find a relation for the steady current as follows:

I(x) =
E − x

R
.

For a given E=1.4 and R =19, we find x by setting f(x)=0,
14 − x

19
= x3 − 1.5x2 + 0.6x,
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f1(x) = 19x3 − 28.5x2 + 12.4x − 1.4. (2.41)

The exact roots of (2.41) are

ζ1 = 0.175236, ζ2 = 0.527234, ζ3 = 0.797529.

The initial estimates of f1(x) have been taken as

(0)
x1 = 0.1,

(0)
x2 = 0.5,

(0)
x 3 = 0.7.

Table 4 clearly shows the dominance behavior of BB1–BB3 over the AC, YO, and NM iterative
methods in approximated absolute error on various number of iterations n for the non-linear function
f1(x). Various initial guess values are used in order to approximate all roots of f1(x).

Table 4. Simple roots for polynomial equations f1(x) used in engineering application 1.

Method n f
(
x(t)

)
x(t) − x(t−1) cpu LCOC Ex-R

Numerical results of the iterative methods by taking x(0) = 0.2 to approximate of the first root
NM 06 7.4e-20 1.0e-37 0.0331454 1.91479 0.125236273796841722315
YO 06 9.4e-20 1.6e-37 0.0241564 1.98748 0.125236273796841722315
AC 06 3.8e-21 2.7e-38 0.0145187 2.01455 0.125236273796841722315
BB1-BB3 06 4.2e-26 3.3e-41 0.0112475 2.11748 0.125236273796841722315
Numerical results of the iterative methods by taking x(0) = 0.4 to approximate of the first root
NM 06 1.1e-60 2.0e-120 0.0456154 2.000000 0.527234489565474586149
YO 06 3.3e-65 4.3e-119 0.0345136 2.000001 0.527234489565474586149
AC 06 1.7e-64 4.0e-128 0.0215465 2.000005 0.527234489565474586149
BB1-BB3 06 4.1e-67 2.6e-135 0.0125487 2.000000 0.527234489565474586149
Numerical results of the iterative methods by taking x(0) = 0.8 to approximate of the first root
NM 08 3.0e-05 1.6e-07 0.0641568 1.765489 0.797529236845714584845
YO 07 5.0e-07 4.3e-12 0.0545147 1.894651 0.797529236845714584845
AC 06 5.2e-04 4.6e-06 0.2451349 1.874563 0.797529236845714584845
BB1-BB3 06 3.1e-11 2.7e-31 0.1413254 1.998745 0.797529236845714584845

Example 2. Mass-Spring system [42]
A spring develops a non-linear restoring force given by

F = r1x + r3x3 + r5x5, (2.42)

where F represents force in kg force and x is displacement in cm. Using value of constants r1 =

5.25kg/cm, r3 = 0.60kg/cm, r5 = 0.0118kg/cm in (2.42), we get a non-linear equation in terms of the
displacement x

f2(x) = 0.0118x5 + 0.6x3 + 5.25x. (2.43)

The exact roots of (2.43) are

ζ1 = 0, ζ2 = −3.35118i, ζ3 = 3.35118i, ζ4 = −6.29421i, ζ5 = 6.29421i.

The initial estimates for simultaneous determination of all roots of non-linear function f2(x) has been
taken as:

(0)
x1 = 0.1,

(0)
x2 = −3.3i,

(0)
x 3 = 3.3i,

(0)
x 4 = −6.2i,

(0)
x 5 = 6.2i.
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Table 5 clearly shows the dominance behavior of BB1–BB3 over the AC, YO, and NM iterative
methods in approximated absolute error on various number of iterations n for the non-linear function
f2(x). Various initial guess values are used in order to approximate all roots of f2(x).

Table 5. Simple roots for polynomial equations f2(x) used in engineering application 2.

Method n f
(
x(t)

)
x(t) − x(t−1) CPU-time LCOC Ex-R

Numerical results of the iterative methods by taking x(0) = 0.3 to approximate of the first root
NM 06 0.4e-27 1.0e-47 0.0331454 1.714794 0.000000000000000000001
YO 06 4.5e-25 0.6e-59 0.0241564 2.087485 0.000000000000000000001
AC 06 3.0e-35 2.7e-68 0.0145187 1.914551 0.000000000000000000001
BB1-BB3 06 4.1e-38 0.3e-75 0.0112475 2.317485 0.000000000000000000001

Example 3. Fractional conversion of magnesium hydroxide in hydrochloric acid: [43–46].
The acidity of a saturated solution of magnesium hydroxide MgOH in hydrochloric acid HCl is

given by
3.64 × 10−11

[H3O+]
=

[
H3O+

]
+ 3.6 × 10−4, (2.44)

for the hydronium ion concentration [H3O+] . If we set x = 104 [H3O+] , we obtain the following non-
linear equation

f3(x) = x3 + 3.6x2 − 36.4, (2.45)

with exact roots 2.4,−3.0 ± 2.3i up-to one decimal place. The initial estimates of (2.45) have been
taken as:

(0)
x1 = 2.45,

(0)
x2 = −3.0261 + 2.3834i,

(0)
x 3 = −3.0261 − 2.3834i.

Table 6 clearly shows the dominance behavior of BB1–BB3 over the AC, YO, and NM iterative
methods in approximated absolute error on various number of iterations n for the non-linear function
f3(x). Various initial guess values are used in order to approximate all roots of f3(x).

Table 6. Simple roots for polynomial equations f3(x) used in engineering application 3.

Method n f
(
x(t)

)
x(t) − x(t−1) cpu LCOC Ex-R

Numerical results of the iterative methods by taking x(0) = 0.2 to approximate of the first root
NM 07 0.9e-25 1.7e-47 0.0331454 1.91479 2.95361891939385560115508
YO 06 7.7e-27 1.6e-47 0.0241564 1.98748 2.95361891939385560115508
AC 06 5.1e-33 8.1e-57 0.0145187 2.01455 2.95361891939385560115508
BB1-BB3 06 9.2e-37 9.3e-64 0.0112475 2.11748 2.95361891939385560115508

3. Conclusions

We developed a family of iterative techniques with two parameters for locating the roots of
nonlinear equations. Due to the lengthy and complicated mathematical formulas used in the
convergence study, we used symbolic computation utilizing several programs created in the
Mathematica computer system. We implemented a different method to evaluate the root solver
efficiency utilizing parametric planes (Figures 1–4) and dynamical planes (Figures 5–7) to select the

AIMS Mathematics Volume 9, Issue 4, 8885–8903.



8900

best parameter value. The stability region and dynamical behavior of the strange fixed points were
discussed. Root-finding methods can be analyzed graphically using this approach concerning various
starting points. Well-built software will offer a visual knowledge of the convergence behavior of
iterative methods for establishing comparison standards to show the basins of attraction
(Figures 8–10). However, it will also consider various qualitative factors, such as CPU time and the
convergence region. The numerical results show that the newly developed technique outperforms the
current method regarding the residual error, CPU-time, and iterations. In the future, we will construct
higher-order efficient, optimal, and stable iterative methods for finding simple as well as all distinct
and multiple roots of Eq (2.1). We may explore the applications of these results in other areas. For
example, the dynamics nonlinear inventory management system, numerical solution of fractional SIR
epidemiological model, stability and optimal control strategies for a novel epidemic model of
COVID-19.
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