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1. Introduction

In 2010, Masjed-Jamei [2] obtained some interesting inequalities for several special functions, one
of which is about the relation of the inverse tangent function arctan x and inverse hyperbolic sine
function sinh™!(x) as follows:

xsinh™ (x)
(arctan x)? < ———=—=, xe(-1,1). (1.1)
VI + X2

The study related to (1.1) attracted much attention in last decade. At first, Zhu and MaleSevi¢ [3]

proved that (1.1) holds for any x € (—o0, +00). They also obtained some refinements of (1.1) as follows:

Proposition 1.1. [3, Theorem 1.3] For any x € (—oo0, +0), we have
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By using flexible analysis tools, Zhu and MaleSevi¢ [4] extended (1.2) and (1.3) to a general form
as follows:

Proposition 1.2. [4, Theorem 1.1] For any x € (—oo0, +0), we have

2m+2

h™
D (1), < (arctan x)? xsinh”x Z( 1)y, (1.5)
= V1+ 22
Proposition 1.3. [5, Theorem 2.1] The double inequality
. h_l . h—l
xsinh ) < (arctan x)* < M (1.6)

v 2
1/1+x2+%x2 1+x

holds for any x € (0, +00) with best constants 0 and 1/45.

Please see [6,7] for more generalizations.
Motivated by (1.1)—(1.6), Zhu and MaleSevié [3] also studied the relation of the inverse hyperbolic
tangent function tanh~'(x) and inverse sine function arcsin x as follows:

Proposition 1.4. [3, Theorem 1.4] The inequality

2 xarcsinx
tanh ' (x)| < —= (1.7)
[ ] VI - x?

holds for any x € (0, 1) with the the best power number 2.
Proposition 1.5. [3, Theorem 1.6] The inequality

X arcsin x

m t nh™ (x) < HZ:vnx (1.8)
holds for any x € (0, 1).
Moreover, by investigating the power series of the following function:
[tanh™! ()| L5 2, 6l

L5 e 10
arcsinx 45x 945 2835 * + 0", (1.9)

VI — X2
Zhu [1] obtained the following interesting double inequality of Masjed-Jamei type.
Theorem 1.1. [I, Theorem 1] The double inequality

< [tanh™ (0] < (= 357 aresin x (1.10)

V1 - x2

(x - x5) arcsin x

1 —x2
holds for any x € (0, 1) with best constants —1 and — =

The goal of this paper is to give a new and elementary proof of Theorem 1.1, which is much
simpler than the proof of Zhu [1]. Zhu’s proof [1] used the power series of the functions 1/ cos” x and
sin x/ cos” x and properties of the Bernoulli numbers and Euler numbers. Our proof only relies on the
power series of hyperbolic sine and cosine functions and some elementary computations.
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2. A new proof of Theorem 1.1

We first establish two lemmas about the monotonicity of two functions.

Lemma 2.1. Let

[tanh™! ()] VT =2

fx) = - — arcsin x,

X—x
then f(x) is strictly increasing on (0, 1).
Proof. Let t = tanh™'(x) € (0, +00), then x = tanh(f). Define

£

cosh(t) .

F(t) := f (tanh(z)) = — arcsin (tanh(?))
/ tanh(¢) — tanh®(¢)
2 cosh*t
= cos — arcsin (tanh(?)) .

(cosh2 f + sinh? t) sinh ¢

In order to prove that f(x) is strictly increasing on (0, 1), we only need to prove F(z) is strictly
increasing on (0, +00). In fact,

2
o(t) @ = [(cosh2 f + sinh? t) cosh 7 sinh? t] F'(1)
=7 (2 cosh*t — 7 cosh’ ¢ + 4) cosh* 1 + 2¢ (cosh2 f + sinh? t) sinh 7 cosh’ ¢ (2.1)

. 2,
— (cosh2 f + sinh? t) sinh? 7.

Since
A= (2 cosh*r — 7cosh®r + 4) cosh* 7
:% [cosh(87) — 6 cosh(67) — 24 cosh(4t) — 26 cosh(2¢) — 9]
:l [ © (81)2 6. 2 (61)* Con © (41)* . 2\ (202 B 9]
26 i (2n)! i (2n)! i (2n)! i (2n)! ’
B, =2 (cosh2 f + sinh? t) sinh 7 cosh’ ¢
:% [sinh(8¢) + 4 sinh(6¢) + 6 sinh(4¢) + 4 sinh(27)] ¢
1 [ (8p)2+! © (612t ©(4p)2+] ©  (2f)2n+l
and
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2
C,=- (cosh2 f + sinh? t) sinh? ¢

1
=% [cosh(6f) — 2 cosh(4f) + 3 cosh(2t) — 2]

_ e Z (4t)2 o (20

— (2n)! (2n)' o (2n)!
we have
1 N 2n 2
QD(I) = 11’ + Blt + Cl 26 ; Aopinlt *
where
82n 62n 42n 22n
n P . — 4 . — 26 .
@2 =0 (2n)! (2n)! (2n)!
82n+1 62n+1 42n+1 22n+1
+2 —+8 —+12 — + 8 —
2n+1)! 2n+ 1)! 2n+1)! 2n+ 1)!
62n+2 42n+2 22n+2
-8 —+16 —-24. —
2n +2)! 2n + 2)! 2n +2)!
It is easy to check that
0 2816 4224
as =0, ag = , ag = —.
4 6 9 8 5
When n > 4,

82n
Aon+2 >(2 Y {1 -6- (—

)2"_24.(_

62n+1 3
1—
+(2n+1)!( n+1)+8

82n
>(2n)! {1 -6 (

_§" 625
T (2n)! 21

>0.

o

ot

3

22n+1
. 1 -
Qn+1ﬂ(

) -2(a]

n+1)

Combining (2.2)—(2.4), we obtain that ¢(¢) > O for any ¢ € (0, +00), which implies
F’(t) > 0 for any ¢ € (0, +00).
So, F(¢) is strictly increasing on (0, +o00). The proof of Lemma 2.1 is completed.
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Lemma 2.2. Let

[tanh—l(x)]2 N

— L 45
X 45)6

g(x) = arcsinx —

b

then g(x) is strictly increasing on (0, 1).
Proof. Lett = tanh™'(x) € (0, +0), then x = tanh(s). Define

2
cosh(?)

tanh(f) — & tanh’(¢)
4572 cosh* ¢
(45 cosh* 7 — sinh* t) sinh t.

G(t) := g (tanh(?)) = arcsin (tanh(¢)) —

= arcsin (tanh(?)) —
In order to prove that g(x) is strictly increasing on (0, 1), we only need to prove G(z) is strictly increasing
on (0, +o0). Define
U(t) = [(45 cosh* z — sinh? t)2 cosh 7 sinh® t] G'(1)
=r (1980 cosh®t — 90 cosh* r + 315 cosh® r — 180) cosht (2.5)
- 90¢ (45 cosh? 7 — sinh* t) sinh#cosh’ 7 + (45 cosh* 7 — sinh* t)2 sinh? 7.
Since

Ay = (1980 cosh®z — 90 cosh* 7 + 315 cosh? 1 — 180) cosh* ¢

1
=5 [495 cosh(10¢) + 4860 cosh(8¢) + 22815 cosh(6¢) + 61560 cosh(4¢)
+106290 cosh(2t) + 63180]

1 = (101)*"  (81)" o (61)" o (41)7"
495 - 4860 - 22815 - 61560 -
=57 | Zi"amy! " ZO Q! Z_:; el 21 2n)!

+106290 - Z

B, :=-90 (45 cosh* t — sinh* t) sinh 7 cosh’ ¢
1
=57 [—990 sinh(10¢) — 8100 sinh(87) — 27450 sinh(67) — 48600 sinh(4f) — 42300 sinh(21)]

1 (10l)2n+1
0- —— — 8100 -
o L4 (2n+1)! Z (2n +

)2n+l

(6t)2n+1
 — 27450 Z T

( t)2n+l (2t)2n+1
—48600 - Z(  — 42300 Z(2n+1)‘
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and
2
C, = (45 cosh* 7 — sinh* t) sinh® ¢
1
=57 [484 cosh(107) + 3080 cosh(8¢) + 6660 cosh(6¢) + 3840 cosh(4t) — 7080 cosh(2¢) — 6984]
LS PIYS i A00™ 3080 Z BD™ | 6660 Z O™ | 3840. i o™
27 i (2n)! (2n)! (2n)' - (2n)!
x© (2t)2n
-7080 - - 6984],
Zg (2n)!
we have
U(f) = Aot + Bat + Cy = 5 Zl Bopsat?™*2, (2.6)
where
2n 2n 2n 2n 2n
bayin =495 - + 4860 - + 22815 - + 61560 - + 106290 -
2 (2n)! (2n)! (2n)! (2n)! (2n)!
102n+1 2n+1 2n+1 42n+1
-990 — — — —27450 - —— — 48600 - ——
2n+1)! 2n + 1)! 2n + 1)! 2n+1)!
2n+1 02n+2 2n+2 62n+2
-42300 - ———— +484 - —— + 3080 - ———— + 6660 - ———
2n+1)! 2n +2)! 2n +2)! 2n +2)!
42n+2 22n+2
3840 - —— — —
" 2n+2)! 2n+2)!
It is easy to check that
by >0, 1<n<O. 2.7)
When n > 10,
107 990 x 10 g2 8100 x 8
b, —— 1495 - (4860 — ——
42 o ( I+l )+(2n)! ( 7t )
2n 274 42 4 4
+ 8 (o815 - 2H0X6) | 47 (6560 28000 x4
(21’1)' 2n+1 (2}’1)' 2n+1 (2.8)
m 42300 x 2 242
-{106290 — - (3840 - 2%*2 — 7840
T 2! ( nt 1 )+(2n+2)! ( )
>0.
Combining (2.6)—(2.8), we obtain that () > 0O for any ¢ € (0, +c0), which implies
G'(t) > 0 forany t € (0, +o0).
So, G(¢) is strictly increasing on (0, +00). The proof of Lemma 2.2 is completed. O
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Proof of Theorem 1.1. By Lemma 2.1 and
lim f(x) =0,
we get f(x) > 0 for any x € (0, 1), which implies

(x - x5) arcsin x

2
tanh™'(x)|” > , xe(0,1). 2.9)
0] > =
By Lemma 2.2 and
1ir(1)1+ g(x) =0,
we get g(x) > 0 for any x € (0, 1), which implies
x — L x°) arcsin x
[tanh™' ()] < (v-5v) . xe(0,1). (2.10)
1 —x2
Since
[tanh_l(x)]2 - V1 — x2 — xarcsin x
lim < - =-1, (2.11)
x—0* x> arcsin x
[tanh_1 (x)]2 - V1 — x2 — xarcsin x 1
li =——, 2.12
e x> arcsin x 45 ( )
Theorem 1.1 follows from (2.9)—(2.12). ]

3. Conclusions

In this paper, we give a new simple proof of a double inequality of Masjed-Jamei type proved by
Zhu [1]. We believe that the technique used in this paper can be used to obtain other interesting analytic
inequalities.

Based on numerical experiments and (1.9), we propose the following conjectures:

Conjecture 1.

V1 — x2 [tanh_] (x)]2 — xarcsin x

9(x) = —
x> arcsin x
is strictly increasing on (0, 1).
Conjecture 2.
2
VI -2 [tanh™ ()]
h(x) =x-—

arcsin x
is absolutely monotonic on (0, 1).
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