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1. Introduction

Nonlinear partial differential equations (NLPDEs) assume a pivotal role in exploring diverse
real-world dynamic phenomena, notably within the realms of chemical reactions, plasma physics,
thermodynamics, optical fibers, chaos theory, fluid dynamics, solitary waves theory, electromagnetism,
quantum mechanics, and various other applications [1–4]. Over the past few decades, researchers
have dedicated considerable efforts to examining nonlinear equations. For instance, Ji et al. [5]
explore rational solutions to the Camassa-Holm-Kadomtsev-Petviashvili equation, which simulates
dispersion in liquid drop patterns. Almatrafi [6] study the space-time fractional symmetric regularized
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long wave equation and presents its solitary wave solutions using improved P-expansion and (F′/F)-
expansion methods. Alharbi and Almatrafi [7,8] use various approaches to investigate the geophysical
Korteweg-de Vries equation and the modified regularized long-wave equation. The adaptive moving
mesh technique is also used to approximate the numerical solution, reducing error. Using the exp-
function method, Abdelrahman et al. [9] established the exact solutions for the nonlinear coupled KdV
equations. Some other related work is listed in [10–16].

The identification of exact and soliton solutions to these equations holds paramount importance in
comprehending a myriad of real-world dynamic processes. Soliton is a unique type of solitary wave
that maintains its shape, speed, and size as it travels. It possesses several intriguing characteristics that
explain various forms of nonlinear phenomena. The extraction of soliton solutions from NLPDEs
has become highly significant in the study of nonlinear phenomena, attracting many scientists
and engineers in the applied sciences field [1–4]. In recent times, solitons have revolutionized
communication systems through the utilization of wave guides. They serve as the fundamental basis for
transmitting and communicating data across vast distances. Consequently, finding soliton solutions for
nonlinear systems has emerged as a popular topic among mathematicians and scholars. One advantage
of soliton solutions is their applicability to both integrable and non-integrable evolution equations,
featuring diverse types of nonlinearities. Consequently, this pursuit constitutes a vibrant and actively
researched domain, yielding promising outcomes. There are various techniques, such as the extended
rational sine-cosine approach [17], the extended F-expansion method [18], the extended sinh and sine-
Gordon equation expansion method [19], the tanh-coth approach [20], the balance method [21], the
exp-function approach [22], and so on, which have been extensively studied in the literature for solving
various types of NLPDEs. These techniques have been successful in providing soliton solutions for a
wide range of NLPDEs, including the famous Korteweg-de Vries equation, the nonlinear Schrödinger
equation, and the Burgers equation. However, it is worth noting that each method has its limitations and
may not apply to all equations. Therefore, researchers continue to explore new methods and improve
existing ones to tackle the challenges posed by different types of dynamical processes.

The standard non-dimensional Korteweg-de Vries (KdV) equation [23] is of the form

vt + 6vvx + vxxx = 0, (1.1)

where x and t stand for non-dimensional space and time, and v(x, t) denotes the water velocity. It was
first presented by Korteweg-de Vries in 1895 as a unidirectional nonlinear wave equation.

The KdV equation’s x-direction was the only restriction on the waves that were strictly one-
dimensional, but Kadomtsev and Petviashvilly [24] relaxed this, and the KdV equation was expanded
to the following (2 + 1)-dimensional Kadomtsev-Petviashvilly (KP) equation

(vt + 6vvx + vxxx)x + vyy = 0. (1.2)

The KP equation is commonly employed to investigate weak nonlinear dispersive waves in plasma and
weakly modulated long water waves [25].

However, Benjamin et al. [26] suggested an alternative to the KdV equation that incorporates
nonlinear dispersion and describes the propagation of long, weakly nonlinear one-dimensional waves
as follows:

vt + vx + a(u2)x + bvxxt = 0. (1.3)
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This equation is called the Benjamin-Bona-Mahony (BBM) equation or the regularized long-wave.
The KdV and BBM equations cover physical models in the various fields: acoustic waves in
anharmonic crystals, acoustic-gravity waves in compressible fluids, solitons in dispersive media, and
hydromagnetic waves in cold plasma. The KdV and BBM equations also encompass the modeling
of long-wavelength surface waves in liquids, providing a comprehensive framework for understanding
various phenomena in different media. These equations have proven to be valuable tools in studying
and analyzing the behavior of these wave types, aiding in advancing our knowledge of fluid dynamics
and plasma physics.

The motive of this study is to analyze a modified form of the BBM equation formulated in the
KP sense by examining the (2+1)-dimensional Kadomtsev-Petviashvii-Benjamin-Bona-Mahony (KP-
BBM) equation [27–34] of the form

vxt + vxx + 2a1v2
x + 2a1vvxx + b1vxxxt + kvyy = 0, (1.4)

where v = v(x, y, t) represents the unknown function, x, y, and t are real independent variables, and
a1, b1, and k are real constants. Combining these equations into the KP-BBM equation allows us
to understand nonlinear wave phenomena in diverse fields such as water waves and plasma physics.
Equation (1.4) was first reported by Wazwaz [27], who used the sine-cosine and extended tanh methods
for finding soliton solutions to this equation. Tanwar et al. [28,29] derived some exact soliton solutions
of Eq (1.4) by Lie symmetries. Using the exp function approach, Yu and Ma [30] derived the solitary
and periodic solutions of the KP-BBM equation (1.4). Using the Hirota bilinear approach, Li et al. [31]
investigated the lump and its interaction with two stripe soliton solutions. Abdou [32] also contributed
to the study of Eq (1.4) by obtaining exact periodic wave solutions using the extended mapping method.

After thoroughly reviewing the literature, we have observed that there is no study on
the (2 + 1)-dimensional KP-BBM equation (1.4) through the new Kudryashov (NK) and the
generalized Arnous (GA) methods. Moreover, we have determined that there is no study on the
stability of the equilibrium points and chaotic behavior corresponding to the dynamical system of
the (2 + 1)-dimensional KP-BBM equation (1.4). To fill this gap, first, we provide its generalized
solutions through the use of the new Kudryashov [35–37] and the generalized Arnous [38,39] methods.
Then, corresponding to the dynamical system of the (2 + 1)-dimensional KP-BBM equation, we
investigate its stability of equilibrium points and chaotic behavior. These findings demonstrate the
diverse approaches used to study Eq (1.4) and highlight the importance of exploring different solution
methods to understand its behavior comprehensively. Furthermore, the obtained soliton and periodic
solutions contribute to the existing literature on this equation, providing valuable insights for further
research in this field.

The outline of this article is as follows: Section 2 provides a concise overview of both the NK
and GA methods. It presents a brief explanation of these methods and their applications in solving
mathematical problems. Moving on to Section 3, the paper shows the mathematical analysis and
solutions of the KP-BBM equation using the NK and GA methods. It elaborates on how these methods
are utilized to obtain solutions for the equation and presents the results. Section 4 discusses the
physical interpretation of graphs. Additionally, in Section 5, the bifurcation analysis is carried out.
In Section 6, on adding the external disturbance term, the chaotic behaviour of the system is seen.
Finally, in Section 7, the conclusion of the paper is given.
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2. Methodology

The new Kudryashov method [35] is an analytical method that is a valuable tool for securing exact
solutions to a wide range of nonlinear PDEs. The generalized Arnous method is a generalization of the
Arnous technique that has been modified by Malik and Kumar [38]. Both methods are valuable tools
for securing the exact solutions to a wide range of NLPDEs and are used by many researchers [35–41].
This section analyzes the NK and GA methods to determine the soliton solutions of NLPDEs.

Consider the NLPDE

Ψ

(
v,
∂v
∂x
,
∂v
∂t
,
∂v
∂y
,
∂2v
∂x2 ,

∂2v
∂t2 ,
∂2v
∂y2 ,

∂2v
∂x∂t
,
∂2v
∂x∂y

,
∂2v
∂y∂t
, ...

)
= 0, (2.1)

whereΨ represents a polynomial of v(x, y, t) and its partial derivatives. We use the wave transformation
v(x, y, t) to V(Ω) as

v(x, y, t) = V(Ω) = V(x − θy − ρt), Ω = x − θy − ρt, (2.2)

where θ and ρ are arbitrary constants. Equation (2.1) is reduced to an ordinary differential
equation (ODE) in the form

P(V,V ′,V ′′,V ′′′, ...) = 0, (2.3)

where (′) denotes the derivative w.r.t. Ω.

2.1. The NK method

An overview of the basic steps in the new Kudryashov method is given in this subsection.
Step 1: The NK method gives the solution of Eq (2.3) as

V(Ω) =
N∑

j=0

A jG j(Ω), (2.4)

where the coefficients A j ( j = 0, 1, 2, ...,N) are constants to be determined such that AN , 0, and
G(Ω) = 1

aAαΩ+bA−αΩ is the solution of the following non-linear ODE:

G′(Ω)2 = (α ln(A)G(Ω))2(1 − 4abG2(Ω)),
G′′(Ω) = α2 ln(A)2G(Ω)(1 − 8abG2(Ω)),

(2.5)

where the constants a, b, α and A are non-zero with A > 0 and A , 1.
Step 2: By balancing the highest-order derivative and nonlinear terms that appear in ODE (2.3),

the positive integer N can be obtained by applying the homogeneous balance principle. Particularly,
we define the degree of V(Ω) as D[V(Ω)] = N, and it yields the degree of the other expressions in the
following way:

D
[
dpV(Ω)
dV(Ω)p

]
= N + p, D

[
Vq

(
dpV(Ω)
dV(Ω)p

)s]
= qN + s(N + p). (2.6)

As a result, we are able to determine N.
Step 3: After putting Eq (2.4) into Eq (2.3), and since G(Ω) , 0, we equate all the coefficients of

G j(Ω) to zero. Then, after solving the non-linear algebraic system we derive the particular values for a,
b and the A j’s. By substituting these values in Eq (2.4), and then with the help of transformation (2.2),
we can obtain a solution for Eq (2.1).
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2.2. The generalized Arnous method

The central proceedings of the generalized Arnous method are as follows:
Step 1: The generalized Arnous method gives the solution of Eq (2.3) as

V(Ω) = α0 +

N∑
i=1

αi + βiG′(Ω)i

G(Ω)i , (2.7)

where α0, αi, βi (i = 1, 2, ...,N) are constants and the function G(Ω) satisfy the relation

[G′(Ω)]2 = [G(Ω)2 − σ] ln(A)2, (2.8)

with

G(n)(Ω) =

G(Ω) ln(A)n, n is even,
G′(Ω) ln(A)n−1, n is odd,

(2.9)

where n ≥ 2, 0 < A , 1.
Equation (2.8) has solutions of the form

G(Ω) = κ ln(A)AΩ +
σ

4κ ln(A)AΩ
, (2.10)

where κ and σ are arbitrary parameters.
Step 2: By balancing the non-linear term and highest order derivative term in Eq (2.3), the positive

integer N is determined of for (2.7).
Step 3: After putting Eqs (2.7)–(2.9) in Eq (2.3) and since G(Ω) , 0, as a result of this substitution

we receive a polynomial of 1
G(Ω)

(
G′(Ω)
G(Ω)

)
. Now, gather all terms of the same power and equate them to

zero. Then, after solving the non-linear algebraic system for θ, ρ, κ, σ, α0, αi and βi (i = 1, 2, ...,N),
and with the help of (2.8) and (2.2), the solutions of (2.1) can be derived.

3. Mathematical analysis

In this section, the NK method and the GA method are applied for securing the soliton solutions of
the KP-BBM equation (1.4).

Assume that Eq (1.4) has a traveling wave solution of the form

v(x, y, t) = V(Ω), Ω = x − θy − ρt. (3.1)

Inserting Eq (3.1) in Eq (1.4), we get the non-linear ODE

(1 − ρ + kθ2)V ′′ + 2a1(VV ′)′ − b1ρV ′′′′ = 0. (3.2)

Integrating Eq (3.2) twice w.r.t. Ω gives

(1 − ρ + kθ2)V + a1V2 − b1ρV ′′ = 0, (3.3)

with the integral constant being treated as zero. Now, balancing the largest degree of the nonlinear
term V2 with highest order derivative term V ′′, we get N = 2.
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3.1. Analysis of solutions via the NK method

In this section, the KP-BBM equation is solved using the NK method. The NK method suggests the
solution of Eq (3.3) is of the form

V(Ω) =
2∑

j=0

A jG j(Ω) = A0 + A1G(Ω) + A2G2(Ω), (3.4)

where A0, A1 and A2 are arbitrary constants with A2 , 0. Substituting Eq (3.4) into Eq (3.3) and
equating the coefficients of G j(Ω) to zero, give

0 = (1 − ρ + kθ2)A0 + A2
0a1,

0 = (1 − ρ + kθ2)A1 + 2A0A1a1 − b1 ln(A)2α2ρA1,

0 = (1 − ρ + kθ2)A2 + (2A0A2 + A2
1)a1 − 4b1 ln(A)2α2ρA2,

0 = 8b1 ln(A)2α2ρabA1 + 2A1A2a1,

0 = 24b1 ln(A)2α2ρabA2 + A2
2a1.

(3.5)

Solving system (3.5), yields the following sets of solutions:

Set 1:

A0 = −
4b1 ln(A)2α2(1 + kθ2)
a1(4b1 ln(A)2α2 − 1)

, A1 = 0, A2 =
24abb1 ln(A)2α2(1 + kθ2)

a1(4b1 ln(A)2α2 − 1)
, ρ = −

1 + kθ2

4b1 ln(A)2α2 − 1
. (3.6)

By substituting Eq (3.6) into Eq (3.4), we get the solution of Eq (3.3) as

V1(Ω) = −
4b1 ln(A)2α2(1 + kθ2)
a1(4b1 ln(A)2α2 − 1)

1 − 6ab
(

1
aAαΩ + bA−αΩ

)2 . (3.7)

From Eq (3.1) and Eq (3.7), the combo bright-singular soliton solution of Eq (1.4) can be written as

v1(x, y, t) = −
4b1 ln(A)2α2(1 + kθ2)
a1(4b1 ln(A)2α2 − 1)

1 − 6ab
(

1
(a + b) cosh (ln (A)αΩ) + (a − b) sinh (ln (A)αΩ)

)2 ,
(3.8)

where Ω is given by Ω = x − θy + 1+kθ2
4b1(ln(A))2α2−1 t. In particular, upon choosing a = ±b and A = e, one

arrives at bright and singular soliton solutions respectively, as

v(1)
1 (x, y, t) = −

4b1α
2(1 + kθ2)

a1(4b1α2 − 1)

1 − 3
2

(
sech

(
α

(
x − θy +

1 + kθ2

4b1α2 − 1
t
)))2 , (3.9)

and

v(2)
1 (x, y, t) = −

4b1α
2(1 + kθ2)

a1(4b1α2 − 1)

1 + 3
2

(
csch

(
α

(
x − θy +

1 + kθ2

4b1α2 − 1
t
)))2 . (3.10)
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(a) 3D Plot (when k = 0.5) (b) 2D Plot (when k = 0.5)

(c) 3D Plot (when k = 1) (d) 2D Plot (when k = 1)

(e) 3D Plot (when k = 1.5) (f) 2D Plot (when k = 1.5)

Figure 1. 3D and 2D graphical structure of bright soliton solution v1(x, y, t) (3.13) of the
KP-BBM equation (1.4) with −10 ≤ x ≤ 10, −5 ≤ t ≤ 5 for a = 2, b = 2, a1 = 0.15,
b1 = −0.2, θ = 1, α = 0.5, y = 0 and A = 2.7.

AIMS Mathematics Volume 9, Issue 4, 8749–8767.



8756

(a) 3D Plot (b) 2D Plot

Figure 2. 3D and 2D graphical structure of dark soliton solution v1(x, y, t) (3.13) of the KP-
BBM equation (1.4) with −10 ≤ x ≤ 10, −5 ≤ t ≤ 5 for a = 2, b = 2, a1 = −0.15, b1 = −0.2,
k = 1.5, θ = 1, α = 0.5, y = 0 and A = 2.7.

Set 2:

A0 = A1 = 0, A2 = −
24abb1 ln(A)2α2(1 + kθ2)

a1(4b1 ln(A)2α2 + 1)
, ρ =

1 + kθ2

4b1 ln(A)2α2 + 1
. (3.11)

By substituting Eq (3.11) into Eq (3.4), we get the solution of Eq (3.3) as

V2(Ω) = −
24abb1 ln(A)2α2(1 + kθ2)

a1(4b1 ln(A)2α2 + 1)

(
1

aAαΩ + bA−αΩ

)2

. (3.12)

From Eq (3.1) and Eq (3.12), the bright-singular soliton solution of Eq (1.4) can be written as

v2(x, y, t) = −
24abb1 ln(A)2α2(1 + kθ2)

a1(4b1 ln(A)2α2 + 1)

(
1

(a + b) cosh (ln (A)αΩ) + (a − b) sinh (ln (A)αΩ)

)2

, (3.13)

where Ω is given by Ω = x − θy − 1+kθ2
4b1(ln(A))2α2+1 t. Graphically the representation of solution (3.20) has

been given in Figures 1 and 2. In particular, upon choosing a = ±b and A = e, one arrives at bright and
singular soliton solutions, respectively, as

v(1)
2 (x, y, t) = −

6b1α
2(1 + kθ2)

a1(4b1α2 + 1)

(
sech

(
α

(
x − θy −

1 + kθ2

4b1α2 + 1
t
)))2

, (3.14)

and

v(2)
2 (x, y, t) =

6b1α
2(1 + kθ2)

a1(4b1α2 + 1)

(
csch

(
α

(
x − θy −

1 + kθ2

4b1α2 + 1
t
)))2

. (3.15)

3.2. Analysis of solutions via the GA method

The GA method is used in this section to establish the solitary wave solutions to the KP-BBM
equation (1.4). In the GA method, the assumed solution can be written as

V(Ω) = α0 +

N∑
i=1

αi + βiG′(Ω)i

G(Ω)i .
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We have N = 2, and, therefore, GA method suggest solution of Eq (3.3) in the form

V(Ω) = α0 +
α1 + β1G′(Ω)

G(Ω)
+
α2 + β2G′(Ω)2

G(Ω)2 . (3.16)

By substituting Eq (3.16) into Eq (3.3) along with Eqs (2.8) and (2.9), we receive a polynomial in term
of 1

G(Ω)

(
G′(Ω)
G(Ω)

)
. Now, we get a system of algebraic equations, collecting all terms of the same power and

equating them to zero, as shown below:

0 = β1

(
2β2 ln(A)2a1 + kθ2 + 2a1α0 − ρ + 1

)
,

0 = 2β1α1a1,

0 = − 2β1(σ(a1β2 − b1ρ) ln(A)2 + α2a1),
0 = (ln(A)4a1β

2
2 + ((β2

1 + 2β2α0)a1 + (kθ2 − ρ + 1) ln(A)2 + α0(kθ2 + a1α0 − ρ + 1),

0 =
(
(2a1β2 − b1ρ) ln(A)2 + kθ2 + 2a1α0 − ρ + 1

)
α1,

0 = − 2α1(σ(a1β2 − b1ρ) ln(A)2 − α2a1),
0 = (β2 ln(A)2σ − α2)(σ(a1β2 − 6b1ρ) ln(A)2 − α2a1),
0 = (−2β2σ(a1β2 − 2b1ρ) ln(A)4 + (((−2σα0 + 2α2)β2 − σβ

2
1)a1 − σ(kθ2 − ρ + 1)β2

− 4α2ρb1) ln(A)2 + (2α0α2 + α
2
1)a1 + α2(kθ2 − ρ + 1)).

(3.17)

Solving system (3.17) with the help of the Maple software, we obtain the sets of solution as follows:
Set 1:

α0 = − ln(A)2β2, α1 = 0, β1 = 0,

α2 =
σ ln(A)2(4a1b1β2 ln(A)2 − 6b1kθ2 + a1β2 − 6b1)

(4b1 ln(A)2 + 1)a1
,

ρ =
1 + kθ2

4b1 ln(A)2 + 1
.

(3.18)

By substituting Eq (3.18) into Eq (3.16) and simplifying, we get the solution of Eq (3.3) as

V1(Ω) = −
96 ln(A)4 κ2A2Ωb1σ

(
kθ2 + 1

)
(
4κ2 ln(A)2 A2Ω + σ

)2 (
4b1 ln(A)2 + 1

)
a1

. (3.19)

Therefore, from Eqs (3.1) and (3.19), the soliton solution of Eq (1.4) can be written as

v1(x, y, t) = −
96 ln(A)4 κ2A2Ωb1σ

(
kθ2 + 1

)
(
4κ2 ln(A)2 A2Ω + σ

)2 (
4b1 ln(A)2 + 1

)
a1

, (3.20)

where Ω is given by Ω = x − θy − 1+kθ2
4b1 ln(A)2+1 t. Solution (3.20) is graphically represented in Figures 3

and 4.
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(a) 3D Plot (when k = 0.5) (b) 2D Plot (when k = 0.5)

(c) 3D Plot (when k = 1) (d) 2D Plot (when k = 1)

(e) 3D Plot (when k = 1.5) (f) 2D Plot (when k = 1.5)

Figure 3. 3D and 2D graphical structure of bright soliton solution v1(x, y, t) (3.20) of the
KP-BBM equation (1.4) with −5 ≤ x, t ≤ 5 for a1 = 0.15, b1 = 2, θ = 2, σ = 0.5, κ = 0.35,
y = 0 and A = 2.7.
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(a) 3D Plot (b) 2D Plot

Figure 4. 3D and 2D graphical structure of dark soliton solution v1(x, y, t) (3.20) of the KP-
BBM equation (1.4) with −5 ≤ x, t ≤ 5 for a1 = −0.15, b1 = 2, θ = 2, σ = 0.5, κ = 0.35,
k = 1.5, y = 0 and A = 2.7.

Set 2:
α0 = −

ln(A)2(4a1b1β2 ln(A)2 + 4b1kθ2 − a1β2 + 4b1)
(4b1 ln(A)2 − 1)a1

,

α1 = 0, β1 = 0,

α2 =
σ ln(A)2(4a1b1β2 ln(A)2 + 6b1kθ2 − a1β2 + 6b1)

(4b1 ln(A)2 − 1)a1
,

ρ = −
1 + kθ2

4b1 ln(A)2 − 1
.

(3.21)

By substituting Eq (3.21) into Eq (3.16), we get the solution of Eq (3.3) as

V2(Ω) =
4
(
kθ2 + 1

) (
−16A4Ω ln(A)4 κ4 + 16A2Ω ln(A)2 κ2σ − σ2

)
ln(A)2 b1(

4κ2 ln(A)2 A2Ω + σ
)2 (

4b1 ln(A)2
− 1

)
a1

. (3.22)

Therefore, from Eqs (3.1) and (3.22), the soliton solution of Eq (1.4) can be written as

v2(x, y, t) =
4
(
kθ2 + 1

) (
−16A4Ω ln(A)4 κ4 + 16A2Ω ln(A)2 κ2σ − σ2

)
ln(A)2 b1(

4κ2 ln(A)2 A2Ω + σ
)2 (

4b1 ln(A)2
− 1

)
a1

, (3.23)

where Ω is given by Ω = x − θy − 1+kθ2
4b1 ln(A)2−1 t.

4. Physical interpretation

Graphical interpretation of some of the obtained solutions of the KP-BBM equation (1.4) will be
discussed in this section. Through the use of the new Kudryashov and generalized Arnous methods, we
mainly derived the generalized soliton solutions in the form of combo bright-singular soliton solutions
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of KP-BBM equation (1.4). By giving particular values to the parameters, bright, dark, and singular
solutions can be achieved from these solutions. It is crucial to note that the outcomes from this article
or extracted solutions are new and have not been reported before.

Figures 1 and 2 depict the dynamic behavior of the solution given by (3.13), where the parameters
are specified as a = 2, b = 2, a1 = {0.15,−0.15}, k = {0.5, 1, 1.5}, b1 = −0.2, θ = 1, α = 0.5, y = 0,
and A = 2.7. In Figure 1, it is noticeable that, as the parameter k increases, the soliton’s amplitude
increases, resulting in a sharper profile. This suggests that we can regulate the soliton’s speed by
adjusting the value of k, offering control over its characteristics. The combined insights from Figures 1
and 2 shed light on the influence of a1 on solution (3.13). As a1 transitions from a positive to a negative
value, the solution’s profile transforms from a bright soliton to a dark soliton.

Figures 3 and 4 portray the dynamic evolution of the solution governed by (3.20), with specified
parameters: a1 = {0.15,−0.15}, k = {0.5, 1, 1.5}, b1 = 2, θ = 2, σ = 0.5, κ = 0.35, y = 0, and
A = 2.7. In Figure 1, a discernible trend emerges as the parameter k increases: the soliton’s amplitude
also increases, leading to a sharper profile. This observation implies that the soliton’s speed can
be finely controlled by adjusting the value of k, providing a means to tailor its characteristics. The
combined insights gleaned from Figures 1 and 2 illuminate the impact of a1 on the solution described
by (3.20). As a1 transitions from a positive to a negative value, the profile of the solution undergoes a
transformation, shifting from a bright soliton to a dark soliton.

5. Stability of the equilibrium points

Bifurcation analysis helps to identify critical points in parameter space where the behavior of
solutions undergoes qualitative changes. Understanding these points is crucial for predicting the
stability and characteristics of solutions to the original PDE. Here, we perform the bifurcation analysis
on Eq (1.4) by converting it into the corresponding planar dynamical system.

In Eq (3.3), by taking V ′ = U, Eq (1.4) is converted into the following planar dynamical system:

V ′ =U,

U′ =V(a2 + b2V),
(5.1)

where a2 =
1−ρ+kθ2

b1ρ
and b2 =

a1
b1ρ

.
For the above autonomous system, the trace of the Jacobian matrix is zero. In this case, according to

the bifurcation theory of planar nonlinear dynamical systems [42, 43], the equilibrium point (v, u) is a
center point if J(v, u) > 0, and a saddle point, if J(v, u) < 0. J(v, u) represents the Jacobian determinant
of the coefficient matrix of the system. The planar dynamical system (5.1) has two equilibrium points,
V1 = (0, 0) and V2 = (−a2

b2
, 0).

Case 1. When a2b2 > 0.

(i) For a2 > 0, b2 > 0, the Jacobian determinant, J(V1) < 0 and J(V2) > 0, and hence V1 is a saddle
point, whereas V2 is a center point. See Figure 5(a).

(ii) For a2 < 0, b2 < 0, we have J(V1) > 0 and J(V2) < 0, and hence V1 is a center point, while V2 is
a saddle point. See Figure 5(b).

The trajactory I in Figure 5(a) indicates that the periodic solution exists while the trajectory II indicates
the existence of a soliton solution [42]. Similar conclusions are shown by Figure 5(b).

AIMS Mathematics Volume 9, Issue 4, 8749–8767.



8761

Case 2. When a2b2 < 0.

(i) For a2 < 0, b2 > 0, we have J(V1) > 0 and J(V2) < 0, and hence V1 is a center point, while V2 is
a saddle point. See Figure 6(a).

(ii) For a2 > 0, b2 < 0, we have J(V1) < 0 and J(V2) > 0, and hence V1 is a saddle point, while V2 is
a center point. See Figure 6(b).

The trajectories I and II in Figure 6 shows similar conclusions as in Case 1.

(a) When a2 > 0 and b2 > 0
(b) When a2 < 0 and b2 < 0

Figure 5. Phase portrait for system (5.1) when a2b2 > 0.

(a) When a2 < 0 and b2 > 0
(b) When a2 > 0 and b2 < 0

Figure 6. Phase portrait for system (5.1) when a2b2 < 0.

6. Chaotic behavior

Chaotic dynamics may emerge as a result of bifurcations, leading to complex and seemingly random
behavior in the solutions of the PDE. In the previous section, we see that the planar dynamical
system (5.1) has no chaotic phenomenon, however we found that upon addition of an external perturbed
term, the chaotic behavior does exist. The corresponding perturbation form of the planar dynamical
system (5.1) is as follows:

V ′ =U,

U′ =V(a2 + b2V) + P(Ω),
(6.1)
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where P(Ω) is perturbed term.
For analyzing the chaotic behavior, we consider some special perturbation terms as follows:

(i) Trigonometric function: Taking P(Ω) = cos(0.12Ω), we get the phase portraits as in Figure 7.

(a) (b)

Figure 7. (a) Phase portrait for system (6.1) in 2 dimension, when a2 = −1.85, b2 = 0.01
and P(Ω) = cos(0.12Ω); (b) phase portrait with perturbation term.

(ii) Gaussian function: Taking P(Ω) = 90
√

2π
e−

(0.12Ω)2
2 , the phase portraits as in Figure 8 are obtained.

(a) (b)

Figure 8. (a) phase portrait for system (6.1) in 2 dimension, when a2 = −20, b2 = −12 and
P(Ω) = 90

√
2π

e−
(0.12Ω)2

2 ; (b) phase portrait with perturbation term.
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(iii) Hyperbolic function: Taking P(Ω) = cosh(0.023Ω), the phase portraits appears as in Figure 9.

(a)
(b)

Figure 9. (a) phase portrait for system (6.1) in 2 dimension, when a2 = 0.3, b2 = −2.5 and
P(Ω) = cosh(0.023Ω); (b) phase portrait with perturbation term.

From the above three cases we can conclude that the perturbed system (6.1) has different chaotic
behaviors for different perturbed terms, and the phase portraits obtained are different.

7. Conclusions

In conclusion, the KP-BBM equation has been studied successfully by using the new Kudrashov and
generalized Arnous method. Our study showed a range of traveling wave responses, and established
the necessary conditions for the existence of these solutions, considering relevant physical factors.
The approach we have proposed has generated a collection of solutions that could be useful in
understanding certain physical events. A variety of solitons and other solutions such as the bright
soliton solutions and dark soliton solutions were presented. The restrictions on the parameters were
considered to guarantee the existence of the obtained solitons. Moreover, the obtained solutions were
illustrated graphically to discuss their physical nature. Further, we have carried out bifurcation analysis,
and the results of our qualitative analysis show that periodic and solitons solutions exist. The system
also behaves chaotically when external disturbance terms are taken into consideration.

These findings contribute to a deeper understanding of the dynamics of the KP-BBM wave equation
and its applications in real-world phenomena. The presentation of 3D and 2D graphical structures
of the obtained solitary wave solutions enhances the understanding of the mathematical model.
Additionally, the chaotic behavior observed in the presence of external perturbations highlights the
sensitivity of the system to small changes, emphasizing the need for careful consideration when
studying its behavior in practical scenarios. In the future, these methodologies can be applied to the
generalized form of the KP-BBM equation, the KP-BBM equation with competing dispersion effects,
and a wider range of physical phenomena. This will further enhance our ability to predict and analyze
complex systems governed by nonlinear partial differential equations.
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