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1. Introduction

Counting the number of integral solutions of a certain Diophantine equation is an interesting project
in number theory. Let Nk(H) be the number of pairs of positive integers x1, x2 ⩽ H whose product
x1x2 is a perfect k-th power. Tolev [1] first established an asymptotic formula for Nk(H). The proof
combines Perron’s formula with elementary ideas from the work of Heath-Brown and Moroz [2]. It is
proved that for any integer k ⩾ 2,

Nk(H) = ckH2/k(log H)k−1 + O
(
H2/k(log H)k−2

)
,

where ck > 0 is an explicit constant depending on k. De la Bretèche et al. [3] improved this result based
on the multiple Dirichlet series theory and complex analysis. They showed that there exists a constant
θk > 0 such that

Nk(H) = H2/kQ(log H) + O
(
H2/k−θk+ε

)
,

where Q is a polynomial of degree k − 1 with leading coefficient ck. In fact, they considered a more
general case and counted the number of tuples of n ⩾ 2 integers whose product is a perfect k-th power.
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Precisely, they proved that there exists a constant θn,k > 0, such that

Nn,k =
∣∣∣{(x1, · · · , xn) ∈ [1,H]n ∩ Nn : x1, · · · , xn = zk, z ∈ N}

∣∣∣
= Hn/kQn,k(log H) + O

(
Hn/k−θn,k

)
,

where Qn,k is a polynomial of degree
(

n+k−1
k

)
− n.

It is natural to consider the analogue of the above results for polynomials. Liu and Niu [4] counted
pairs of polynomials whose product is a cube over finite field and obtained an asymptotic formula
(see [4, Theorem 1.2]) by contour integration. It is indicated that there are some differences and
challenges between polynomials and integers.

Returning to the case of integers, this problem is closely related to the integral points on algebraic
surface

S : x1x2x3 = x3
0.

This is a split toric surface and can also be regarded as the product of three integers forming a perfect
cube. It has been studied by many authors including de la Bretèche [5], Fouvry [6], Heath-Brown
and Moroz [2], and Salberger [7]. Denote by NS (H) the number of primitive integral points (i.e.,
gcd(x0, x1, x2, x3) = 1) on S satisfying x0 , 0 and max0⩽i⩽3 |xi| ⩽ H. The sharpest unconditional result
is proved by de la Bretèche [5], which states

NS (H) = HP(log H) + O
(
H7/8 exp(−c(log H)3/5)(log log H)−1/5)

)
,

where P is a polynomial of degree 6 and c is a positive constant. Now, we look at the corresponding
non-split toric surface

S ′ : x(y2
1 + y2

2) = z3.

It can be observed that S ′ and S are isomorphic over Q(i). Denote by NS ′(H) the number of primitive
integral points on S ′ satisfying z , 0 and

max
{
|x|,

√
y2

1 + y2
2, |z|

}
⩽ H.

De la Bretèche et al. [8] studied this surface and proved that

NS ′(H) = HP′(log H) + O
(
H8/9+ε

)
,

where P′ is a cubic polynomial. Liu et al. [9] further considered the following case

S 4 : x(y2
1 + y2

2 + y2
3 + y2

4) = z3. (1.1)

For ease of presentation, we let

y = (y1, y2, y3, y4), ∥y∥ =
√

y2
1 + y2

2 + y2
3 + y2

4,

and denote by N4(H) the number of integral tuples (x, y1, · · · , y4), satisfying max{|x|, ∥y∥} ⩽ H, which
form nonzero perfect cubes in the way of (1.1) since the variable z is completely determined by x and
y. They showed that

N4(H) = c4H3(log H)2 + O
(
H3 log H

)
.
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In fact, they dealt with a more general case that the number of squares is a multiple of 4 (see [9,
Theorem 7.1]). Zhai [10] improved this result by obtaining a power-saving error term that

N4(H) = H3P4(log H) + O
(
H3−1/4+ε

)
,

where P4 is a quadratic polynomial. All above results are obtained by studying the corresponding
multiple Dirichlet series. Liu et al. stated in [9] that the same idea can be applied to investigate the
number of integral solutions of some higher-degree Diophantine equation like

xd = (y2
1 + y2

2 + y2
3 + y2

4)zd−2, d ⩾ 4.

They obtained an asymptotic formula in [11] for d = 4, and Wen [12] established the asymptotic
formulae for any integer d ⩾ 4 with power-saving error terms.

We remark here that the Diophantine equations S , S ′, and S 4 mentioned above are homogeneous,
so there is an equivalent relation between rational points in projective space and integral points in affine
space up to a scalar multiplication. They are actually related to another project in number theory, which
is Manin’s conjecture (see [2, 5–9] for more details).

Motivated by the above work, in this paper, we mainly focus on the Diophantine equation

S k
4 : x(y2

1 + y2
2 + y2

3 + y2
4) = zk (1.2)

for k ⩾ 2. Similar to (1.1), we denote by Nk
4(H) the number of integral tuples (x, y1, · · · , y4) satisfying

max{|x|, ∥y∥} ⩽ H, which form nonzero perfect k-th powers in the way of (1.2). Recall that the Lindelöf
hypothesis (LH in brief, [13, §II.3.4]) states that

ζ(1/2 + it) ≪ (|t| + 1)ε

for any ε > 0. Our main result is as follows.

Theorem 1.1. Let k ⩾ 4 be any integer. Assuming LH, then for any ε > 0, there exists a constant ϑk,
such that

Nk
4(H) = H2+3/kP(log H) + O

(
H2+3/k−ϑk+ε

)
,

where
ϑk =

3
2k

(
1 −

2k/3 − 1
[2k/3]

)
> 0,

and [α] is the integral part of α, the implied constant only depends on k and ε, P is a polynomial of
degree k−1 given by (3.14) with leading coefficient 16Ck, and Ck is a positive constant given by (3.13).

Remark 1.2. The assumption of LH is just for simplifying the calculation. We claim that the above
asymptotic formulae still holds for k = 4 unconditionally, since we can apply the fourth moment
estimate of the Riemann zeta function instead of LH as in (4.8).

The case of k = 3 has been solved in [9,10] unconditionally as mentioned above. In fact, following
the proof of Theorem 1.1, one can easily obtain an asymptotic formula for k = 3 with a power-saving
error term O(H3−1/5+ε). We shall leave that as an example to justify our result. We next give an
unconditional result for k = 2.

Theorem 1.3. Unconditionally, we have

N2
4 (H) = 16H2+3/2P(log H) + O

(
H2+3/2−1/3+ε

)
,

where P is a linear polynomial given by (4.7) and the implied constant only depends on ε.
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2. Application of Perron’s formula

We first introduce the bivariate Perron’s formula [10, Lemma 2.2], which plays an important role in
our proof.

Lemma 2.1. Suppose that f (n1, n2) is a bivariate arithmetic function and its Dirichlet series

F(s1, s2) =
∞∑

n1=1

∞∑
n2=1

f (n1, n2)
ns1

1 ns2
2

is absolutely convergent for ℜ(s j) > σ j ( j = 1, 2) with some σ1, σ2 > 0. Let x1, x2, T1, T2 ⩾ 10 be
parameters such that x j < N, and define

b j = σ j + 1/log x j, j = 1, 2.

We have ∑
n1⩽x1

∑
n2⩽x2

f (n1, n2) =
1

(2πi)2

∫ b1+iT1

b1−iT1

∫ b2+iT2

b2−iT2

F(s1, s2)xs1
1 xs2

2

s1s2
ds2 ds1 + O

(
xσ1

1 xσ2
2 E

)
,

where

E :=
2∑

j=1

∞∑
n1=1

∞∑
n2=1

| f (n1, n2)|

nb1
1 nb2

2

min
{

1,
1

T j

∣∣∣ log x j

n j

∣∣∣
}
.

Recalling the definition of Nk
4(H) before, we see that

Nk
4(H) =

∣∣∣{(x, y, z) ∈ Z6 ∩ S k
4 : max{|x|, ∥y∥} ⩽ H, z , 0}

∣∣∣ .
Let r4(n) be the number of representations of a positive integer n as the sum of four squares

n = y2
1 + y2

2 + y2
3 + y2

4

with
(y1, y2, y3, y4) ∈ Z4.

It is well known that
r4(n) = 8r∗4(n) with r∗4(n) =

∑
d|n

d.0 (mod 4)

d, (2.1)

and r∗4(n) is a multiplicative arithmetic function. Let 1k denote an indicator function of perfect k-th
power defined by

1k(n) =

1, if n is a perfect k-th power,
0, otherwise.

(2.2)

In view of the above problem, we can write

Nk
4(H) = 2

∑
1⩽m⩽H

∑
1⩽n⩽H2

r4(n)1k(n)

= 16
∑

1⩽m⩽H

∑
1⩽n⩽H2

r∗4(n)1k(n).
(2.3)
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In order to deal with this double sum, we define the corresponding Dirichlet series

Fk(s,w) =
∞∑

m,n=1

r∗4(n)1k(mn)
msnw . (2.4)

The following proposition gives the expression and convergence of Fk(s,w), which allows us to
extend the double Dirichlet series to a suitable large region.

Proposition 2.2. Let k ⩾ 2. Ifℜ(s) > 1/k andℜ(w) > 1 + 1/k, then

Fk(s,w) =
k∏

j=0

ζ ((k − j)s + j(w − 1))Hk(s,w), (2.5)

where Hk(s,w) is an Euler product given by (2.16), which is absolutely convergent if s and w satisfy
the conditions

min
1⩽i⩽k−1

ℜ((k − i)s + i(w − 1)) ⩾ 1/2 + ε and ℜ(w) ⩾ 1 + ε. (2.6)

Furthermore, we have
Hk(s,w) ≪ 1 (2.7)

in the above region, and the implied constant is absolute.

Proof. Note that r∗4(n) is multiplicative, and (2.1) yields r∗4(1) = 1 and

r∗4(pν) =


1 − pν+1

1 − p
, if p ⩾ 3,

3, if p = 2,
(2.8)

for any integer ν ⩾ 1, then we can rewrite Fk(s,w) in (2.4) as the Euler product

Fk(s,w) =
∏

p

∑
µ⩾0

∑
ν⩾0

r∗4(pν)1k(pµ+ν)
pµs+νw

=
∏

p

∑
d⩾0

p−kds
∑

0⩽ν⩽kd

r∗4(pν)
pν(w−s)

=:
∏

p

Fk,p(s,w).

(2.9)

Here, we let µ + ν = kd for d ⩾ 0, according to the definition of 1k in (2.2). On the other hand, a
simple formal calculation shows∑

d⩾0

xd
∑

0⩽ν⩽kd

yν
1 − zkd+1

1 − z
=

1
1 − z

∑
d⩾0

xd

(
1 − ykd+1

1 − y
− z

1 − (yz)kd+1

1 − yz

)
=

1
1 − z

(
1

1 − y

(
1

1 − x
−

y
1 − xyk

)
−

z
1 − yz

(
1

1 − x
−

yz
1 − x(yz)k

))
=

Gk(x, y, z)
(1 − x)(1 − xyk)(1 − x(yz)k)

(2.10)
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with
G2(x, y, z) = 1 + xy(1 + z) + xy2z

and

Gk(x, y, z) = 1 + xy(1 + z) + xy2(1 + z + z2) + · · · · · · + xyk−1(1 + z + · · · + zk−1)
+ xyk(z + z2 + · · · + zk−1) + x2yk+1(z2 + z3 + · · · + zk−1)
+ x2yk+2(z3 + z4 + · · · + zk−1) + · · · · · · + x2y2k−2zk−1

for k ⩾ 3. Similarly, we have

1 +
∑
d⩾1

xd

1 + 3
∑

1⩽ν⩽kd

yν
 = 1

1 − x
+

3
1 − y

∑
d⩾1

xd
(
y − ykd+1

)
=

1
1 − x

+
3(xy − xyk+1)

(1 − y)(1 − x)(1 − xyk)

=
1 + 3xy(1 + y + · · · + yk−2) + 2xyk

(1 − x)(1 − xyk)
.

(2.11)

When p ⩾ 3, in view of (2.8), we apply (2.10) with

(x, y, z) = (p−ks, p−(w−s), p)

to deduce that

Fk,p(s,w) =
∏

0⩽ j⩽k

(
1 −

1
p(k− j)s+ j(w−1)

)−1

Hk,p(s,w), (2.12)

where

Hk,p(s,w) = Gk

(
p−ks, p−(w−s), p

) (
1 −

1
pkw

)−1 ∏
1⩽ j⩽k−1

(
1 −

1
p(k− j)s+ j(w−1)

)
. (2.13)

Meanwhile, for p = 2, the formula (2.11) with

(x, y) = (2−ks, 2−(w−s))

gives us

Fk,2(s,w) =
∏

0⩽ j⩽k

(
1 −

1
2(k− j)s+ j(w−1)

)−1

Hk,2(s,w), (2.14)

where

Hk,2(s,w) =
(
1 +

3
2(k−1)s+w

(
1 +

1
2w−s + · · · +

1
2(k−2)(w−s)

)
+

1
2kw−1

)
×

(
1 −

1
2kw

)−1 ∏
1⩽ j⩽k

(
1 −

1
2(k− j)s+ j(w−1)

)
. (2.15)

It can be observed that Fk,p(s,w)/Hk,p(s,w) will give the Euler product of Riemann zeta functions
in (2.12) and (2.14). Combining (2.9) and (2.12)–(2.15), we get (2.5) with

Hk(s,w) = Hk,2(s,w)
∏
p⩾3

Hk,p(s,w). (2.16)
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Next, we shall discuss the convergence. In view of the expression ofHk,p(s,w) in (2.13) and (2.15),
when expanding Hk,p(s,w) into 1 plus some monomials about p, we see that the power of p in the
denominator of each monomial is great than 1 if

min
1⩽i⩽k−1

ℜ((k − i)s + i(w − 1)) ⩾ 1/2 + ε and ℜ(w) ⩾ 1 + ε,

so we have
Hk,p(s,w) = 1 + O(p−1−ε),

andHk(s,w) is absolutely convergent in this region, which implies (2.7). This completes the proof. □

We next make use of bivariate Perron’s formula. Suppose H < N and let T ∈ [10,H1/2] be a
parameter to be chosen later. The analytic property of Fk(s,w) allows us to set

x1 = H, x2 = H2, s1 = s = σ + it, s2 = w = u + iv, b1 = 1/k + ε, b2 = 1/k + 1 + ε

in Lemma 2.1, then we get

Nk
4(H) =

16
(2πi)2

∫ b1+iT

b1−iT

∫ b2+10iT

b2−10iT

Fk(s,w)H s+2w

ws
dw ds + O

(
H2+ 3

k+ε
(
J1(H,T ) + J2(H,T )

))
with

J1(H,T ) :=
∞∑

m,n=1

r∗4(n)1k(mn)
mb1nb2

min
(
1,

1
T | log H

m |

)
,

J2(H,T ) :=
∞∑

m,n=1

r∗4(n)1k(mn)
mb1nb2

min
(
1,

1

T | log H2

n |

)
.

Noticing that
r∗4(n) ≪ nτ(n),

and following the arguments in [10], one can easily get

J1(H,T ) ≪
∞∑

m,n=1

τ(n)1k(mn)
(mn)b1

min
(
1,

1
T | log H

m |

)
≪

Hε

T
,

and the same result holds for J2(H,T ). It follows that

Nk
4(H) =

16
(2πi)2

∫ b1+iT

b1−iT

∫ b2+10iT

b2−10iT

Fk(s,w)H s+2w

ws
dw ds + O

(H2+3/k+ε

T

)
. (2.17)

It suffices to evaluate the double integral on the righthand side of (2.17).

3. Proof of the Theorem 1.1

In this section, we shall prove the main theorem. The proof is divided into three steps. We shall first
turn the double integral into some usual single integrals by Cauchy’s residue theorem and then deal
with the single integrals. The final step is choosing the suitable parameters.
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3.1. Application of Cauchy’s residue theorem

In this subsection, we shall apply Cauchy’s residue theorem to evaluate the inner integral over w
in (2.17) and derive the following result.

Lemma 3.1. Let k ⩾ 2 and Nk
4(H) be defined as in (2.3). Assuming LH, we have

Nk
4(H) = 16

k∑
j=1

I j(H,T ) + O
(
H2+3/k+ε/T + H2+2/k+ε

)
,

where

I j(H,T ) :=
1

2πi

∫ b1+iT

b1−iT
Res
w=w j

Fk(s,w)
ws

H s+2w j ds (3.1)

with
w j = (1 − (k − j)s)/ j + 1

for 1 ⩽ j ⩽ k.

Proof. In terms of the inner integral in (2.17), we consider the domain formed by four points

w = b2 ± 10iT, w = 1/2k + 1 ± 10iT.

In this domain, from Proposition 2.2, we easily see that the integrand function Fk(s,w)/(ws) has k
simple poles:

w j =
1
j (1 − (k − j)s) + 1

for 1 ⩽ j ⩽ k.
Using the residue theorem for the variable w, we get

Nk
4(H) = 16

k∑
j=1

I j(H,T ) + R1(H,T ) + R2(H,T ) − R3(H,T ) + O
(
H2+3/k+ε/T

)
, (3.2)

where I j(H,T ) is given by (3.1) and

R1(H,T ) :=
16

(2πi)2

∫ b1+iT

b1−iT

∫ b2+10iT

1
2k+1+10iT

Fk(s,w)H s+2w

ws
dw ds,

R2(H,T ) :=
16

(2πi)2

∫ b1+iT

b1−iT

∫ 1
2k+1+10iT

1
2k+1−10iT

Fk(s,w)H s+2w

ws
dw ds,

R3(H,T ) :=
16

(2πi)2

∫ b1+iT

b1−iT

∫ b2−10iT

1
2k+1−10iT

Fk(s,w)H s+2w

ws
dw ds.

Set s = b1 + it with −T ⩽ t ⩽ T and w = u + 10iT with 1/2k + 1 ⩽ u ⩽ b2. By Proposition 2.2, one
has Hk(s,w) ≪ 1, since the conditions in (2.6) are satisfied clearly. On the other hand, recall that LH
states

ζ(1/2 + it) ≪ (|t| + 1)ε,
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then we deduce from the Phragmén-Lindelöf principle that the subconvexity bound of the Riemann
zeta function under LH satisfies

ζ(σ + it) ≪

1, if σ > 1,
(|t| + 1)max{ 12−σ, 0}+ε, if 0 < σ ⩽ 1.

(3.3)

This will be used several times below, and it follows that

Fk(b1 + it, u + 10iT ) ≪ T ε

holds uniformly for 1/2k + 1 ⩽ u ⩽ b2. This implies

R1(H,T ) ≪
∫ T

−T

dt
|t| + 1

∫ b2

1
2k+1

T−1+εHb1+2u du

≪ H2+3/k+ε/T,

and the same bound holds for R3(H,T ). Similarly, for u = 1/2k + 1, we have

Fk(b1 + it, 1/2k + 1 + iv) ≪ (|t| + |v| + 1)ε,

and R2(H,T ) can be estimated as

R2(H,T ) ≪ Hb1+2(1/2k+1)
∫ T

−T
(|t| + 1)−1+ε dt

∫ 10T

−10T
(|v| + 1)−1+ε dv

≪ H2+2/k+ε.

Inserting the upper bounds of Ri(H,T ) (i = 1, 2, 3) into (3.2), we obtain the required formula. □

3.2. Evaluation of I j(H,T )

In this subsection, we shall evaluate I j(H,T ) for 1 ⩽ j ⩽ k, and our main idea is Cauchy’s residue
theorem.

Lemma 3.2. Let k ⩾ 4 and I j(H,T ) for 1 ⩽ j ⩽ k be defined as in (3.1), then we have the following
estimates under LH for each I j(H,T ):

I j(H,T ) ≪ H2+ 2
k+

j−2
2k(k− j−1)+ε + H2+ 3

k+ε/T, for 1 ⩽ j < 2k/3,

I2k/3(H,T ) = C2k/3H2+3/k + O
(
H2+ 3

k+ε/T
)
,

I j(H,T ) = H2+3/kP j(log H) + O
(
H2+ 3

2k+
2k−3

2k( j−1)+ε + H2+ 3
k+ε/T

)
, for 2k/3 < j < k,

Ik(H,T ) = H2+3/kPk(log H) + O
(
H2+ 2

k+
k−2

2k(k−1)+εT
1

2(k−1) + H2+ 3
k+ε/T

)
,

where C3k/2, P j(log H) for 2k/3 < j < k and Pk(log H) are defined in (3.6), (3.9), and (3.12),
respectively.

Remark 3.3. In fact, the above result still holds for k = 3 apart from the third formula, since the third
case vanishes if k = 3.
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Proof. Recall the definition of I j(H,T ) in (3.1). We deduce from Proposition 2.2 that

Res
w=w j

Fk(s,w)
ws

=
Hk(s,w j)

j · w js

∏
0⩽ℓ⩽k
ℓ, j

ζ

(
ℓ

j
+

(
1 −
ℓ

j

)
ks

)
=: G j(s).

It follows that

I j(H,T ) =
1

2πi

∫ b1+iT

b1−iT
G j(s)H2+ 2

j+(3− 2k
j )sds.

The proof of this lemma is divided into four parts based on whether 3 − 2k/ j is positive, negative, or
zero. Keep in mind that the letter j is always an integer.

If 1 ⩽ j < 2k/3, the condition (2.6) becomes

min
1⩽i⩽k−1

ℜ((k − i)s + i(w j − 1)) ⩾ 1/2 + ε,

which implies
ℜ(s) < (2k − 2 − j)/2k(k − 1 − j).

So, we shift the line of integration from b1 to

ℜ(s) = σ j = (2k − 2 − j)/2k(k − 1 − j) − ε.

By Proposition 2.2, the Euler productHk(s,w j) is absolutely convergent in the region b1 ⩽ ℜ(s) ⩽ σ j,
and we haveHk(s,w j) ≪ 1. It follows from this and (3.3) that

G j(σ + it) ≪
|Hk(s,w j)|
(|t| + 1)2

∏
0⩽ℓ⩽k
ℓ, j

∣∣∣∣∣∣ζ
(
ℓ

j
+

(
1 −
ℓ

j

)
k(σ + it)

)∣∣∣∣∣∣
≪

∣∣∣∣ζ ( k
j +

(
1 − k

j

)
k(σ + it)

)∣∣∣∣ /(|t| + 1)2−ε

≪ (|t| + 1)1/2(k−1− j)−2+ε

≪ (|t| + 1)−3/2+ε

(3.4)

for b1 ⩽ σ ⩽ σ j, since the real part of each zeta function is

ℜ(ℓ/ j + (1 − ℓ/ j)ks) > 1/2

for 0 ⩽ ℓ ⩽ k − 1 and ℓ , j. The above bound allows us to extend the integral of I j(H,T ) on [−T,T ] to
(−∞,∞), so we have

I j(H,T ) =
1

2πi

∫
(b1)

G j(s)H2+ 2
j−( 2k

j −3)s ds + O
(
H2+ 3

k+ε/T
)
,

where
∫

(b1)
means

∫ b1+i∞

b1−i∞
. Note that there is no pole in the region b1 ⩽ ℜ(s) ⩽ σ j. The residue theorem

tells us that

I j(H,T ) =
1

2πi

∫
(σ j)

G j(s)H2+ 2
j−( 2k

j −3)s ds + O
(
H2+ 3

k+ε/T
)
. (3.5)
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By (3.4), the integral on the righthand side can be estimated as

H2+ 2
j−( 2k

j −3)σ j

∫ ∞

−∞

|G j(σ j + it)| dt ≪ H2+ 2
k+

j−2
2k(k− j−1)+ε

∫ ∞

−∞

dt

(|t| + 1)
3
2−ε

≪ H2+ 2
k+

j−2
2k(k− j−1)+ε.

Combining this with (3.5), we obtain the first assertion in Lemma 3.2.
If j = 2k/3 is an integer, we find that

I j(H,T ) =
1

2πi

∫ b1+iT

b1−iT
G j(s)H2+ 2

j ds.

Otherwise, this case does not exist. Note that

G2k/3(s) ≪ (|t| + 1)−(2−ε)

for s = b1 + it, which shows that G2k/3(b1 + it, χ) has a good convergence as a function in t. It follows
that

I2k/3(H,T ) =
1

2πi

∫
(b1)

G2k/3(s)H2+ 3
k ds + O

(
H2+3/k+ε/T

)
=: C2k/3H2+3/k + O

(
H2+3/k+ε/T

)
,

where
C2k/3 =

1
2πi

∫
( 1

k+ε)
G2k/3(s) ds (3.6)

is an absolute constant. This gives the second assertion.
If 2k/3 < j < k, we shift the line of integration from b1 to

ℜ(s) = σ′j = ( j − 2)/2k( j − 1) + ε.

It is easy to check that (2.6) is exactly satisfied, so we haveHk(s,w j) ≪ 1. It follows from (3.3) again
that

G j(σ + it) ≪
|Hk(s,w j)|
|w js|

∏
0⩽ℓ⩽k
ℓ, j

∣∣∣∣∣∣ζ
(
ℓ

j
+

(
1 −
ℓ

j

)
k(σ + it)

)∣∣∣∣∣∣
≪
|ζ(k(σ + it))|

(|t| + 1)2

≪ (|t| + 1)max{1/2−kσ, 0}−2+ε

≪ (|t| + 1)−3/2+ε

(3.7)

for σ′j < σ ⩽ b1, which yields

I j(H,T ) =
1

2πi

∫
(b1)

G j(s)H2+ 2
j+(3− 2k

j )s ds + O
(
H2+ 3

k+ε/T
)
.
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Note that
0 < ℜ(ℓ/ j + (1 − ℓ/ j)ks) < 1

for 0 ⩽ ℓ < j, so there is only a pole s = 1/k of order j given by G j(s) in the strip σ′j ⩽ σ ⩽ b1. The
residue theorem gives us

I j(H,T ) = Res
s=1/k

G j(s)H2+3/k +
1

2πi

∫
(σ′j)

G j(s)H2+ 2
j+(3− 2k

j )s ds + O
(
H2+ 3

k+ε/T
)
. (3.8)

We can compute the residue in the main term as

Res
s=1/k

G j(s) =
1

( j − 1)!
lim

s→1/k

d j−1

ds j−1

((
s − 1

k

) jG j(s)H s− 1
k
)

=: P j(log H).
(3.9)

This is a polynomial of degree j − 1 with leading coefficient

Hk( 1
k ,

1
k + 1)( j/k) j−2

(k + 1)(( j − 1)!)2 .

The integral in (3.8) can be bounded by

H2+ 2
j+(3− 2k

3 )σ′j

∫ ∞

−∞

|G j(σ′j + it)| dt ≪ H2+ 3
2k+

2k−3
2k( j−1)+ε.

Inserting (3.9) and the above estimate into (3.8), we get the third formula in Lemma 3.2.
Finally, it remains to deal with the case j = k. Now, we shift the line of integration from b1 to

ℜ(s) = σk = (k − 2)/2k(k − 1) + ε.

Noticing that wk = 1/k + 1 is no longer dependent on s, it follows from (3.3) that

Gk(σ + it) =
Hk(s,wk)

k · wks

∏
0⩽ℓ<k

ζ

(
ℓ

k
+

(
1 −
ℓ

k

)
k(σ + it)

)
≪
|ζ(k(σ + it))|
(|t| + 1)1−ε

≪

(|t| + 1)(1/2−kσ)−1+ε, if σk ⩽ σ ⩽ 1/2k,
(|t| + 1)−1+ε, if 1/2k < σ ⩽ b1,

(3.10)

sinceHk(s,wk) is absolutely convergent for σk ⩽ ℜ(s) ⩽ b1 according to (2.6). Note that there is only
one pole s = 1/k of order k given by Gk(s) in the rectangle formed by σk ± iT and b1 ± iT . It follows
from the residue theorem that

Ik(H,T ) = Res
s=1/k

Gk(s)H2+3/k +

(∫ σk−iT

b1−iT
+

∫ σk+iT

σk−iT
+

∫ b1+iT

σk+iT

)
Gk(s)H2+ 2

k+s ds

= H2+3/kPk(log H) + K1(H,T ) + K2(H,T ) + K3(H,T ),
(3.11)
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where Ki(H,T ) for i = 1, 2, 3 corresponds to the above three integrals, respectively, and Pk is a
polynomial of degree k − 1 given by

Pk(log H) =
1

(k − 1)!
lim

s→1/k

dk−1

dsk−1

((
s − 1

k

)kGk(s)H s− 1
k
)

(3.12)

with leading coefficient

Ck =
Hk( 1

k ,
1
k + 1)

(k + 1)((k − 1)!)2 . (3.13)

This is a positive constant depending on k. By (3.10), using the same method as before, we can estimate
K1(H,T ) by

K1(H,T ) ≪
∫ 1

2k

σk

H2+2/k+σ

T 1/2+kσ−ε dσ +
∫ b1

1
2k

H2+2/k+σ

T 1−ε dσ

≪ H2+ 2
k+

k−2
2k(k−1)+ε

/
T

2k−3
2(k−1) + H2+ 3

k+ε/T,

so does K3(H,T ). As for K2(H,T ), noting that

Gk(σk + it) ≪ (|t| + 1)−(2k−3)/2(k−1)+ε,

we get

K2(H,T ) ≪ H2+ 2
k+σk

∫ T

−T
(|t| + 1)−(2k−3)/2(k−1)+ε dt

≪ H2+ 2
k+

k−2
2k(k−1)+εT

1
2(k−1) .

The last formula in Lemma 3.2 is obtained followed from the above two estimates and (3.11). This
completes the proof. □

3.3. Completion the proof of Theorem 1.1

Combining Lemmas 3.1 and 3.2, we get

Nk
4(H)
H2 = 16H

3
k

(
1 j=2k/3C2k/3 +

∑
2k/3< j⩽k

P j(log H)
)
+ O

(
H

2
k+ε + H

3
k+ε/T

)
+ O

( ∑
1⩽ j<2k/3

H
2
k+

j−2
2k(k− j−1)+ε +

∑
2k/3< j<k

H
3
2k+

2k−3
2k( j−1)+ε + H

2
k+

k−2
2k(k−1)+εT

1
2(k−1)

)
for k ⩾ 4. It can be simplified to

Nk
4(H)/H2 = H

3
kP(log H) + O

(
H

3
k+ε/T + H

3
2k+

2k−3
2k[2k/3]+ε + H

2
k+

k−2
2k(k−1)+εT

1
2(k−1)

)
,

where [α] is the integral part of α and

P(log H) = 16
(
1 j=2k/3C2k/3 +

∑
2k/3< j⩽k

P j(log H)
)
. (3.14)

This is a polynomial of degree k − 1 with leading coefficient 16Ck. It suffices to choose a suitable T to
balance the error terms. It can be observed that the error term is actually dominated by H

3
2k+

2k−3
2k[2k/3]+ε for

k ⩾ 4. Just letting H9/4k2
≪ T ≪ H1/k, one can get the second formula in Theorem 1.1.
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4. Proof of Theorem 1.3

Following the proof of Theorem 1.1, we give a sketch of the proof for k = 2. According to
Proposition 2.2, the corresponding Dirichlet series can be written as

F2(s,w) = ζ(2s)ζ(s + w − 1)ζ(2(w − 1))H2(s,w)

with

H2(s,w) =
(
1 −

1
22w−2

)∏
p

(
1 +

1
ps+w +

1
ps+w−1 +

1
p2w−1

) (
1 −

1
p2w

)−1 (
1 −

1
ps+w−1

)
,

which is absolutely convergent and satisfiesH2(s,w) ≪ 1 in the region

ℜ(s + w) ⩾ 3/2 + ε, ℜ(w) ⩾ 1 + ε. (4.1)

Applying Perron’s formula, we get

N2
4 (H) =

16
(2πi)2

∫ b1+iT

b1−iT

∫ b2+10iT

b2−10iT

F2(s,w)H s+2w

ws
dw ds + O

(H2+3/2+ε

T

)
(4.2)

for b1 = 1/2 + ε and b2 = 3/2 + ε.
Following the arguments in Section 3, we still shift the path of integration over w to ℜ(w) = 5/4.

Clearly, (4.1) is satisfied. Applying the residue theorem to evaluate the inner integral in (4.2), we can
get (3.2) for k = 2. Note that the assumption of LH is used to bound Fk(s,w) and G j(s) in some region
before. Unconditionally, we have the following well-known estimate for the Riemann zeta function
(see [13, Theorem II.3.8] for example):

ζ(σ + it) ≪


1, if σ > 1,
(|t| + 1)

1−σ
3 +ε, if 1/2 ⩽ σ ⩽ 1,

(|t| + 1)
3−4σ

6 +ε, if 0 < σ < 1/2.

(4.3)

Just replacing (3.3) by (4.3) and using the same method as in §3.1, we can get

N2
4 (H) = 16

(
I1(H,T ) + I2(H,T )

)
+ O

(
H2+ 3

2+ε/T + H3+εT
1
2
)

(4.4)

with

I1(H,T ) =
1

2πi

∫ b1+iT

b1−iT

ζ(2s)ζ(2 − 2s)
(2 − s)s

H2(s, 2 − s)H4−s ds,

I2(H,T ) =
1

2πi

∫ b1+iT

b1−iT

ζ(2s)ζ(s + 1/2)
3s

H2(s, 3/2)H3+s ds.

The treatments of I1(H,T ) and I2(H,T ) are a little different from before. There are only two
Riemann zeta functions involved here, which can be treated more carefully. As for I1(H,T ), we shift
the line of integration from b1 to σ1 = 1 − ε due to (4.1). It follows from (4.3) that

ζ(2s)ζ(2 − 2s)H2(s, 2 − s) ≪ |ζ(2 − 2s)| ≪ (|t| + 1)max{(2σ−1)/3, (8σ−5)/6}+ε
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for s = σ + it and b1 ⩽ σ ⩽ σ1. Noticing that there is no pole for the integrand function in this strip,
similar to (3.5), we deduce from the residue theorem that

I1(H,T ) =
1

2πi

∫
(σ1)

ζ(2s)ζ(2 − 2s)
(2 − s)s

H2(s, 2 − s)H4−s ds + O
(
H2+ 3

2+ε/T
)
.

For s = σ1 + it, the integral above can be bounded by

H4−σ1

∫ ∞

−∞

ζ(2ε − 2it)
(|t| + 1)2 dt ≪ H3+ε

∫ ∞

−∞

dt
(|t| + 1)3/2−ε ≪ H3+ε.

It follows that
I1(H,T ) ≪ H3+ε + H2+3/2+ε/T. (4.5)

It suffices to deal with I2(H,T ). In view of (4.1), we shift the path of integration from b1 ± iT to
ε ± iT . Note that there is a pole s = 1/2 of order 2 in this region. It follows from the residue theorem
that

I2(H,T ) = H2+ 3
2 P(log H) +

(∫ ε−iT

b1−iT
+

∫ ε+iT

ε−iT
+

∫ b1+iT

ε+iT

)
ζ(2s)ζ(s + 1/2)

3s
H2(s, 3/2)H3+s ds, (4.6)

where P is a linear polynomial given by

P(log H) = lim
s→1/2

d
ds

(
1
3s

(s − 1/2)2ζ(2s)ζ(s + 1/2)H2(s, 3/2)H s− 1
2

)
=

1
3
H2(1/2, 3/2) log H + (γ − 2/3)H2(1/2, 3/2) +

1
3
H ′2(1/2, 3/2)

(4.7)

and γ is Euler’s constant. We derive from (4.3) that the first and third integrals in (4.6) can be bounded
by ∫ 1/4

ε

T
2−5σ

3 −1+εH3+σdσ +
∫ b1

1/4
T 1/2−σ−1+εH3+σdσ ≪ H3+ε/T

1
3 + H3+ 1

4+ε/T
3
4 + H3+ 1

2+ε/T.

Recall the fourth moment estimate of the Riemann zeta function (see [14, Theorem 5.1])∫ T

−T
|ζ(σ + it)|4 dt ≪ T log4 T

for 1/2 ⩽ σ < 1 and the functional equation, which states

ζ(s) = χ(s)ζ(1 − s) with χ(s) ∼ (|t| + 1)1/2−σ

for σ ⩽ 1/2. By Hölder’s inequality and partial integration, we can estimate the second integral in (4.6)
as follows

H3+ε
∫ T

−T

|ζ(2ε + 2it)ζ(1/2 + ε + it)|
|t| + 1

dt

≪ H3+ε
(∫ T

−T

|ζ(2ε + 2it)|4

|t| + 1
dt

)1/4 (∫ T

−T

|ζ(1/2 + ε + it)|4

|t| + 1
dt

)1/4 (∫ T

−T

dt
|t| + 1

)1/2

≪ H3+ε

∫ T

−T

∣∣∣(|t| + 1)1/2−2εζ(1 − 2ε − 2it)
∣∣∣4

|t| + 1
dt


1/4

≪ H3+εT 1/2.

(4.8)
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Combining all the above, we get

I2(H,T ) = H2+ 3
2 P(log H) + O

(
H3+εT 1/2 + H3+1/4+ε/T 3/4 + H3+1/2+ε/T

)
. (4.9)

Finally, inserting (4.5) and (4.9) into (4.2), we get

N2
4 (H) = 16H2+ 3

2 P(log H) + O
(
H2+ 3

2+ε/T + H3+εT
1
2 + H3+ 1

4+ε/T
3
4
)
.

Choosing T = H1/3, the error terms are balanced to H2+3/2−1/3+ε. This gives the required formula in
Theorem 1.3.

5. Conclusions

In this paper, we study the number of integers which form perfect powers in the way of

x(y2
1 + y2

2 + y2
3 + y2

4) = zk

and the proof relies on techniques coming from complex analysis. We point out that this problem was
never done before except for the case k = 3. It is not easy to establish a unified asymptotic formula with
power-saving error terms for large k, so we assume the Lindelöf hypothesis for k ⩾ 4. Theorem 1.1
gives an asymptotic formula with a power-saving error term for the number of such integers of bounded
size under LH. This is the novelty of this paper. Moreover, Theorem 1.3 gives an unconditional result
for k = 2.
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