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1. Introduction

Fractional calculus is a branch of mathematics that deals with generalizations of the concepts
of differentiation and integration to noninteger orders. In traditional calculus, differentiation and
integration are defined for integer orders. Fractional calculus extends these operations to include
noninteger orders, often involving fractional or real numbers. This field has found applications in
various scientific and engineering disciplines. Some key aspects and applications of fractional calculus
are fractional derivatives and integrals, partial differential equations and their applications in physics,
modeling complex phenomena, anomalous diffusion, signal processing, electromagnetics, biology and
medicine, finance, optimal control, mechanical engineering, and approximation theory.

Recently, in [1], there has been a comprehensive introduction to the theory of bases of
polynomials (BPs) and the theory of fractional calculus. To know more details about the theory of
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BPs, see [2–5]. Moreover, the emphasis of [6–10] is directed to the topic of fractional calculus. In [1],
the authors have studied the approximation of analytic functions by a series of complex conformable
derivative bases (CCDBs) and complex conformable integral bases (CCIBs) in F-spaces that have
links with some special functions such as Euler, Bernoulli, Chebyshev, and Bessel polynomials.
In [11], the authors studied the approximation properties of Cliffordian functions by hypercomplex
Ruscheweyh derivative bases in Fréchet modules that have related to Cliffordian special polynomials.
In the very recent paper [12], the authors derived a new base in F-modules in Clifford analysis, named
the equivalent base, and discussed its convergence properties.

Studying the approximation properties of some special polynomials is a significant topic in the
theory of polynomial bases. Consequently, the authors of [13] proved that Bernoulli and Euler’s
polynomials were not found to be effective anywhere. Furthermore, they determined that each of these
polynomials is of order 1. In [14, 15], Bessel polynomials were shown to be everywhere effective.
Additionally, the authors of [16] studied the effectiveness of the Chebyshev polynomials in the unit
disk. As we will conclude in this paper, the current study retains the same approximation properties
for certain bases constructed in terms of the previously mentioned polynomials.

The well-known Ruscheweyh operator was defined for analytic functions using the convolutional
technique [17] with some interesting geometric properties for this class, such as coefficient bound,
convexity radii of starlikeness, extreme point, and distortion bounds. Aligned with the intensive
development in employing various existing definitions of the fractional order derivatives, several
authors have presented several generalizations of the Ruscheweyh operator from different aspects.
In [18], the authors generalized the Ruscheweyh operator to fractional order (which is called the
Ruscheweyh-Goyal differential operator) using the Srivastava-Saigo fractional differential operator
involving hypergeometric functions. In 2020, the convexity and starlikeness properties of the
Ruscheweyh-Goyal derivative of a fractional order were studied in [19]. The authors of [20] studied a
certain class of analytic functions by employing generalized Ruscheweyh derivatives which involve a
fractional derivative operator.

Motivated by the above discussion, we establish a generalized Ruscheweyh derivative involving
a general complex conformable derivative operator proposed in [21], which is called the complex
conformable Ruscheweyh derivative (CCRD). Consequently, we apply the constructed operator on a
base of polynomials to derive the CCRD base of polynomials. Knowing the region of the effectiveness
of the original base, we investigate the required conditions to preserve the effectiveness of the
CCRDBPs correspondingly. The upper bounds for the order and type of the CCRDBPs are determined
and shown to be attainable. Furthermore, the Tρ-property of the CCRDBPs is deduced. According to
the results, several applications examining the effectiveness of some special polynomials are explained.

This paper is formulated in a nutshell as follows. We begin by introducing a short presentation of
some essential definitions, notations, and results of previous work on the topic under investigation.
In the following Section 3, we define a new base called the CCRDBPs. Section 4 deals with the
approximation properties of CCRDBPs in F-space. Section 5 is devoted to the study of effectiveness
properties of the CCRDBs in F-spaces in different regions including closed discs, open discs, and open
discs enclosing closed discs. In Section 6, we deduce bounds for the order and type and the TρQ-
property of CCRDBPs. Some examples are given showing that the resulting bounds are attainable.
Section 7 exhibits some applications of CCRDBPs for some special functions such as Euler, Bernoulli,
Chebyshev, and Bessel polynomials. Concluding remarks and open problems for possible future work
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are displayed in the last section.

2. Basic notations and preliminaries

Now, we recall the definition and the effectiveness of F-space (see [1, 11, 22]).

Definition 2.1. An F-space E over C is a complete Hausdorff topological vector space by countable
family of semi-norms S = {‖.‖s}s≥0, such that s < t ⇒ ‖u‖s ≤ ‖u‖t; (u ∈ E). Hence, U ⊂ E
is open if and only if ∀ u ∈ U, ∃ ε > 0, M ≥ 0 such that the set of all open disks of the form
Bs
ε(u) = {v ∈ E : ‖u − v‖s < ε} ⊂ U, ∀s ≤ M.

Definition 2.2. (Convergent sequences in F-spaces) Let E be the F-space. A sequence {un} in E
converges to v in E if

lim
n→∞

‖un − v‖s = 0

for all ‖.‖s ∈ S.

The domains of representation adopted here are the open disk C(R), the closed disk C(R), and
C+(R); R > 0, where C+(R) is any open disk enclosing closed disks. These sets are defined as:

C(R) = {z ∈ C : |z| < R},

C(R) = {z ∈ C : |z| ≤ R},

C+(R) = {z ∈ C : |z| < R+}.

Remark 2.1.

(1) Let J[C(R)], J[C(R)], J[C+(R)], and J[0+] denote the classes of functions, which are analytic
in C(R), C(R), C+(R), and at the origin, respectively. The countable family of semi-norms of each
of the classes mentioned above are given, respectively, by:

‖u‖r = sup
C(r)

|u(z)|, ∀r < R, u ∈ J[C(R)],

‖u‖R = sup
C(R)

|u(z)|, ∀u ∈ J[C(R)],

‖u‖r = sup
C(r)

|u(z)| ∀R < r, u ∈ J[C+(R)],

‖u‖ε = sup
C(ε)

|u(z)|, ε > 0 ∀u ∈ J[0+],

making these classes into an F-space.
(2) Let J[∞] be the class of function on the whole plane C. The countable family of semi-norms

‖u‖n = sup
C(n)

|u(z)|, ∀u ∈ J[∞], n < ∞

makes J[∞] into an F-space.
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Now, suppose that {Qn(z)} is a base of an F-space E such that

Qn(z) =

∞∑
k=0

Qn,k zk, (2.1)

zn =

∞∑
k=0

πn,k Qk(z), (2.2)

‖Qn‖R = sup
C(R)

|Qn(z)|, (2.3)

Ψ(Qn,R) =
∑

k

|πn,k| ‖Qk‖R, (2.4)

where the latest sum is called Cannon sum. Moreover,

Ψ(Q,R) = lim sup
n→∞

{Ψ(Qn,R)}
1
n (2.5)

represents the Cannon function of the base {Qn(z)} in the closed disk C(R).
Suppose that Dn denotes the highest degree polynomial in (2.2). The following restrictions are

imposed:

lim
n→∞
{Dn}

1
n = 1, (2.6)

Dn = O[na], a ≥ 1, (2.7)

Dn = o(n log n). (2.8)

If {Qn(z)} is a polynomial of degree dn, then dn ≤ Dn (see [23]).
Let Q = (Qn,k) and Π = (πn,k) be the matrices of coefficients and operators, respectively of the set

{Qn(z)}. Thus according to [23], the set {Qn(z)} will be base if and only if

QΠ = ΠQ = I, (2.9)

where I is the unit matrix.
Let u(z) =

∑∞
n=0 an zn be any function that is analytic at the origin. Inserting for zn from (2.2), we

get the basic series:

u(z) ∼
∞∑

n=0

Πn Qn(z) (2.10)

where

Πn =

∞∑
k=0

ak πk,n. (2.11)
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The authors in [1, 11, 22] introduced the idea of effectiveness for the class J[C(R)]. The basic
series (2.10) represents u(z) in C(R) if it converges uniformly to u(z) in C(R). A base {Qn(z)} is effective
for the class J[C(R)] if every function u(z) ∈ J[C(R)] analytic in C(R) is represented there by the
basic series. Similar definitions are used for effectiveness in the classes J[C(R)], J[C+(R)], J[∞],
and J[0+]. The following result was proved in [22].

Theorem 2.1. A base {Qn(z)} is effective for the classes J[C(R)], J[C(R)], J[C+(R)], J[∞], or
J[0+] if and only if Ψ(Q,R) = R, Ψ(Q, r) < R ∀ r < R, Ψ(Q,R+) = R, Ψ(Q,R) < ∞ ∀ R < ∞, or
Ψ(Q, 0+) = 0, respectively.

Now, we give two examples that explain the approximation of analytic functions by basic series of
polynomials:

Example 2.1. Consider the BPs {Qn(z)} defined by

Qn(z) =

1, n = 0,
1 + zn, n ≥ 1.

We can write zn as follows:

zn = Qn(z) − Q0(z),

that is the representation is available and

πn,0 = 1, πn,k = 0 for k , o, n. (2.12)

It follows that Ψ(Qn,R) = 2 + Rn. Take R = 1, Ψ(Qn, 1) = 3, and

Ψ(Q, 1) = lim sup
n→∞

{Ψ(Qn, 1)}
1
n = 1.

Therefore, Ψ(Q, 1) = 1 and the base {Qn(z)} is effective for H[C(1)]. Suppose that u(z) = ez is function
analytic in C(1), then the basic series

∑∞
n=0 Πn(u) Qn(z) represents this function in C(1). To find the

actual form of the basic series, we substitute from (2.12) in (2.10) to obtain the following:

ez ∼ 2 − e +

∞∑
n=1

Qn(z)
n!

.

Example 2.2. Consider the BPs {Qn(z)} defined by

Qn(z) =

1, n = 0,
zn − n zn−1, n ≥ 1.

It is clear that

zn = n!
n∑

j=0

1
j!

Q j(z).

Hence,

Ψ(Qn,R) = n!
n∑

j=0

1
j!
‖Q j‖R > n! ‖Q0‖R = n!
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Therefore,

Ψ(Q,R) = lim sup
n→∞

{Ψ(Qn,R)}
1
n ≥ lim sup

n→∞
{n!}

1
n = ∞,

which means that the base {Qn(z)} is not effective in the closed disk C(R) for any value of R. We can
find a function analytic in C(R) not represented by the basic series (2.10) in C(R). The formula (2.11)
for the coefficients of basic series (2.10) takes the form

Πn(u) = −

∞∑
k=0

u(k)(0).

Applying this to ez, an analytic function in C(R), we obtain Πn(u) = −(1 + 1 + . . . ). Since the
formula (2.11) fails to define coefficients for the basic series (2.10), it is customary to say that the
basic series does not exist and certainly does not represent ez.

3. Complex conformable Ruscheweyh derivative bases

Recently, the authors of [21] introduced a new complex conformable derivative (CCD) with
noninteger order α, which coincides with the classical complex derivative and integral for α = 1.

Definition 3.1. Let u : C → C be a complex function. For α ∈ (0, 1], the conformable derivative of
order α for the function u is defined as follows:

Tα(u)(z) = lim
ε→0

u(z + εz1−α) − u(z)
ε

, ∀z ∈ C. (3.1)

Suppose that u and w are α-complex differentiable functions at a point z0 ∈ C. In [21], the following
properties were verified.

(1) Tα(au + bw) = aTα(u) + bTα(w) for a, b ∈ R.
(2) Tα(zq) = qzq−α for q ∈ R.
(3) If u(z) = β where β is a constant, then Tα(u) = 0.
(4) Tα(uw) = uTα(w) + wTα(u).
(5) Tα( u

w ) =
wTα(u)−uTα(w)

w2 ,w(z) , 0.
(6) If u is differentiable, then Tα(u)(z) = z1−α u′(z).

Remark 3.1. Definition 3.1 is a generalization of conformable fractional derivative (CFD) and
conformable fractional integral (CFI) defined by Khalil et al. [24]. Khalil’s definition has a number of
applications in plasma, physics, and engineering astronomy (see [25–30]). Moreover, there are several
applications of Definition 3.1 in the theory of complex conformable analysis (see [31–34]).

In 1993, Miller and Ross [35] introduced the sequential composition of fractional derivative D〈α〉 in
the following way:

D〈α〉 f (z) = Dα1(Dα2(. . . (Dαi( f (z)))),

〈α〉 = α1 + α2 + · · · + αi,
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αs ∈ (0, 1], s ∈ {1, 2, . . . , i}.

Combining the definitions of the sequential composition and the CCD, we aim to establish a
generalized Ruscheweyh operator called the CCRD as follows:

LetA denote the class of functions of the form:

u(z) =

∞∑
k=0

ak zk, (3.2)

where u(z) is analytic at the origin. For any two analytic functions u(z) and w(z) with

u(z) =

∞∑
k=0

ak zk and w(z) =

∞∑
k=0

bk zk,

the convolution (Hadamard product) is given by the power series as follows:

(u ∗ w)(z) =

∞∑
k=0

ak bk zk. (3.3)

Let u(z) ∈ A. Denote by R〈α〉 : A → A the operator defined by

R
〈α〉u(z) =

z
(1 − z)〈α〉+1 ∗ u(z) =

∞∑
k=0

ηn,〈α〉 ak zk

where

ηn,〈α〉 =
n − 1 + 〈α〉

Γ(〈α〉 + 1)

i−1∏
j=1

(n − 1 + 〈α〉 −

j∑
s=1

αs).

It is obvious that
R
α1u(z) =

z
Γ(α1 + 1)

Tα1(z
α1−1u(z)),

R
α1+α2u(z) =

z
Γ(α1 + α2 + 1)

Tα1+α1(z
α1+α2−1u(z))

and

R
〈α〉u(z) =

z
Γ(〈α〉 + 1)

T〈α〉(z〈α〉−1u(z)), (3.4)

where T〈α〉 := Tα1(Tα2(. . . (Tαi))). The operator R〈α〉u(z) defines the CCRD of u(z).

Remark 3.2. Observe that from (3.4), we have the following:

R
〈α〉zn = ηn,〈α〉 zn, (3.5)

where

lim
n→∞
{ηn,〈α〉}

1
n = 1.
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Remark 3.3. If α1 = α2 = · · · = αi = β, it follows that the operator in (3.4) can be written as

Tβi = Tβ(Tβ(. . . (Tβ)))

that is, applying the derivative Tβ, i times, then (3.5) reduces to

R
βi(zn) = ηn,βi zn, β ∈ (0, 1]. (3.6)

Remark 3.4. If α1 = α2 = · · · = αi = 1, then (3.5) reduces to ordinary Ruscheweyh derivative of
order i (see [17])

R
izn = ηn,i zn, (3.7)

where ηn,i =

(
i + n − 1

i

)
.

By applying the operator R〈α〉 into (2.1), we conclude the following definition.

Definition 3.2. Let {Qn(z)} be a base. The CCRDB is defined as:

R
〈α〉(Qn)(z) =

∑
k

Qn,k ηk,〈α〉 zk. (3.8)

For the sake of shortening notations, we write {R〈α〉(Qn)(z)} = {R
〈α〉
n (z)}.

In this paper, knowing the effectiveness of the base {Qn(z)} in different regions in F-spaces, we study
the effectiveness properties of the derived CCRDB {R〈α〉n (z)} in these regions. Furthermore, the upper
bounds of the order and type of the base {R〈α〉n (z)} are determined in terms of the order and type of the
original base {Qn(z)}. The conditions for which the base {R〈α〉n (z)} has the same Tρ-property as {Qn(z)}
are investigated.

4. Effectiveness of the CCRDBPs for the class J[C(R)]

This section discusses the base property of CCRD {R〈α〉n (z)} and the conditions on the base {Qn(z)}
to possess the effectiveness of CCRDBPs {R〈α〉n (z)} in the space J[C(R)].

Theorem 4.1. If {Qn(z)} is a base, then the CCRD set {R〈α〉n (z)} is also a base.

Proof. By constructing the coefficient matrix R〈α〉 and applying the CCRD R〈α〉 into (2.1), we have

R
〈α〉Qn(z) = R〈α〉n (z) =

∑
k

Qn,k ηk,〈α〉zk.

Hence, the coefficients matrix R〈α〉 is given by the following:

R
〈α〉 = (R〈α〉n,k ) = (ηk,〈α〉 Qn,k).

Also, the operators matrix Π〈α〉 follows from the effect R〈α〉 on both sides of the representation (2.2)
where

zn =
1

ηn,〈α〉

∑
k

πn,k R
〈α〉
k (z)
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and

Π〈α〉 = (π〈α〉n,k ) =

(
1

ηn,〈α〉
πn,k

)
.

Consequently,

R
〈α〉Π〈α〉 =

∑
k

R〈α〉n,kπ
〈α〉
k,h

 =

∑
k

Qn,kπk,h

 =
(
ηn,h

)
= I.

Moreover,

Π〈α〉R〈α〉 =

∑
k

π〈α〉n,kR
〈α〉
k,h

 =

∑
k

1
ηn,〈α〉

πn,k ηh,〈α〉 Qk,h

 =

(
ηh,〈α〉

ηn,〈α〉
ηn,h

)
= I.

We easily obtain from (2.9) that the set {R〈α〉n (z)} is a base. �

Theorem 4.2. The BPs {Qn(z)} for which the condition (2.6) is satisfied and its CCRDBPs {R〈α〉n (z)}
have the same region of effectiveness for the class J[C(R)].

Proof. To obtain a fundamental inequality concerning the Cannon sum Ψ
(
R
〈α〉
n ,R

)
of the base {R〈α〉n (z)},

we write

‖R〈α〉n ‖R ≤
∑

j

|Qn, j|η j,〈α〉R j

≤ ‖Qn‖R

∑
j

η j,〈α〉

≤ ‖Qn‖R ηdn,〈α〉

(
ηdn,〈α〉 + 1

)
. (4.1)

Applying (2.4) and (4.1), it follows that

Ψ(R〈α〉n ,R) =
∑

k

|π〈α〉n,k | ‖R
〈α〉
k ‖R

≤
1

ηn,〈α〉

∑
k

|πn,k| ‖Qk‖R ηdk ,〈α〉

(
ηdk ,〈α〉 + 1

)
≤

1
ηn,〈α〉

ηDn,〈α〉

(
ηDn,〈α〉 + 1

)
Ψ(Qn,R). (4.2)

A combination of (2.5), (2.6), and (4.2) gives Ψ(R〈α〉,R) ≤ Ψ(Q,R) ≤ R, but Ψ(R〈α〉,R) ≥ R. We
finally deduce that Ψ(R〈α〉,R) = R and the CCRDBPs {R〈α〉n (z)} is effective for J[C(R)]. �

We now show that Theorem 4.2 may be false if the condition (2.6) is not satisfied.

Example 4.1. Define

Qn(z) =

zn, n is even,

zn + zb, b = 2n, n is odd.

In the case when n is even, we have zn = Qn(z) and, hence, Ψ(Qn,R) = Rn. Thus, if R = 1, then
Ψ(Qn, 1) = 1 and lim

n→∞
{Ψ(Q2n, 1)}

1
2n = 1.

Now, if n is odd, then zn = Qn(z) − Qb(z) and

Ψ(Qn,R) = Rn + 2 Rb.
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Thus, putting R = 1 implies that Ψ(Qn, 1) = 3 and we obtain

lim
n→∞
{Ψ(Q2n+1, 1)}

1
2n+1 = 1.

Consequently, Ψ(Q, 1) = lim sup
n→∞

{Ψ(Qn, 1)}
1
n = 1 and the base {Qn(z)} is effective for J[C(1)].

By forming the CCRDBPs {R〈α〉n (z)}, it follows that

R
〈α〉
n (z) =

ηn,〈α〉 zn, n ≥ 2 is even and

ηn,〈α〉 zn + ηb,〈α〉 zb, n is odd.

Since zn = (1 \ ηn,〈α〉) R〈α〉n (z), then when n is even, we obtain Ψ(R〈α〉n ,R) = Rn. Putting R = 1 implies
that Ψ(R〈α〉n , 1) = 1. Hence,

lim
n→∞
{Ψ(R〈α〉2n , 1)}

1
2n = 1.

Moreover, when n is odd, we have zn = (1 \ ηn,〈α〉)[R〈α〉n (z) − ηb,〈α〉R
〈α〉
b (z)]. Therefore, Ψ(R〈α〉n ,R) =

(1 \ ηn,〈α〉)[ηn,〈α〉Rn + 2 ηb,〈α〉Rb]. Consider R = 1, then

Ψ(R〈α〉, 1) = lim sup
n→∞

{Ψ(R〈α〉2n+1, 1)}
1

2n+1 = 2 > 1

and the CCRDBPs {R〈α〉n (z)} is not effective for J[C(1)].

Remark 4.1. In Example 4.1, it was shown the the CCRDBPs {Rn(z)} is not effective for J[C̄(1)].
With the same idea as Example 2.2, we can find an analytic function not represented by the basic
series (2.10) in C̄(1).

For a simple base of polynomials (SBPs) (Dn = n) (see [23]), we get the following result.

Corollary 4.1. When the SBPs {Qn(z)} is effective forJ[C(R)], then so will be the CCRDBPs {R〈α〉n (z)}.

5. Effectiveness of the CCRDBs for the classes J[C(R)], J[0+], J[∞], and J[C+(R)]

This section discusses the conditions on the base {Qn(z)} to possess the effectiveness of CCRDB
{R
〈α〉
n (z)} in the spaces J[C(R)], J[0+], J[∞], and J[C+(R)].

Theorem 5.1. The base{Qn(z)} and its CCRDB {R〈α〉n (z)} have the same region of effectiveness for the
classes J[C(R)], J[0+], J[∞], and J[C+(R)].

Proof. The base {R〈α〉n (z)} satisfies that

Ψ
(
R
〈α〉
n , r

)
=

∑
k

|π〈α〉n,k | ‖R
〈α〉
k ‖r.

Since

‖R〈α〉n ‖r = sup
C(r)

|R〈α〉n (z)|
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= sup
C(r)

∣∣∣∣∣∣∣∑j

Qn, jη j,〈α〉z j

∣∣∣∣∣∣∣
≤

∑
j

‖Qn‖R

R j η j,〈α〉r j

= ‖Qn‖R

∑
j

η j,〈α〉

( r
R

) j

= k1‖Qn‖R

for all r < R where k1 =
∑

j η j,〈α〉

(
r
R

) j
, it follows that

Ψ
(
R
〈α〉
n , r

)
≤

k1

ηn,〈α〉

∑
k

|πn,k| ‖Qk‖R =
k1

ηn,〈α〉
Ψ (Qn,R) . (5.1)

Therefore,
Ψ

(
R
〈α〉, r

)
= lim

R→∞
sup{Ψ

(
R
〈α〉
n , r

)
}

1
n ≤ Ψ(Q,R) (5.2)

for all r < R.
Now, suppose that the base {Qn(z)} is effective for J[C(R)]. We can apply Theorem 2.1 and we

have
Ψ(Q, r) < R, for all r < R. (5.3)

Hence, there is a number r1 such that r < r1 < R. Therefore, using (5.2) and (5.3), we deduce that

Ψ(Rα, r) ≤ Ψ(Q, r1) < R, for all r < R,

that is, to say the base {R〈α〉n (z)} is effective for J[C(R)].
By the effectiveness of the base {Qn(z)} for J[0+] and applying Theorem 2.1, it follows that

Ψ(Q, 0+) = 0. By making R and r tend to zero from the right in (5.2), we have Ψ(Rα, 0+) ≤ Ψ(Q, 0+) =

0, but we know that Ψ(Rα, 0+) ≥ 0, thus, Ψ(Rα, 0+) = 0. Therefore, the base {R〈α〉n (z)} is effective
for J[0+].

Now, suppose that the base {Qn(z)} is effective for J[∞]. Applying Theorem 2.1, we conclude that

Ψ(Q, r) < ∞ for all r < ∞. (5.4)

Thus, if we choose the number r2 such that r < r2 < R, making R→ ∞ in (5.2), then by using (5.4),
we obtain that

Ψ(R〈α〉, r) ≤ Ψ(Q, r2) < ∞ for all r < ∞ (5.5)

and the base {R〈α〉n (z)} is effective for J[∞].
If the base {Qn(z)} is effective for J[C+(R)] and r3 is any positive number such that r3 < r, we can

apply Theorem 2.1 and we obtain

Ψ(Q, r+
3 ) = r3, r3 < r < R. (5.6)

Making R → r+
3 in (5.2), we easily obtain from (5.6) that Ψ(R〈α〉, r+

3 ) ≤ Ψ(Q, r+
3 ) = r3. However,

Ψ(R〈α〉, r+
3 ) ≥ r3, which implies that Ψ(R〈α〉, r+

3 ) = r3 and, consequently, the base {R〈α〉n (z)} is effective
for J[C+(R)]. �
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6. Order, type, and the Tρ-property of the CCRDBPs

The authors [4, 5] introduced the idea of the order and type of the BPs {Qn(z} as follows:

Definition 6.1. The order and type of the BPs {Qn(z} are given, respectively, by

ρQ = lim
R→∞

lim sup
n→∞

log Ψ(Qn,R)
n log n

(6.1)

and

τQ = lim
R→∞

e
ρ

lim sup
n→∞

{Ψ(Qn,R)}
1

nρ

n
. (6.2)

Importantly, if the base {Qn(z)} has finite order ρQ and finite type τQ, then it can represent every
entire function of order less than 1

ρQ
and type less than 1

τQ
in any finite disk.

Now, let {Qn(z)} be a BPs of order ρQ and type τQ, and the CCRDBPs {R〈α〉n (z)} is of order ρR〈α〉 and
type τR〈α〉 .

The following theorem provides the relation between the orders and types of the original base
{Qn(z)} and the base {R〈α〉n (z)}.

Theorem 6.1. Let ρQ and τQ be the order and type of the BPs {Qn(z)} satisfying the condition (2.7),
then the CCRDBPs {R〈α〉n (z)} has order ρR〈α〉 ≤ ρQ and type τR〈α〉 ≤ τQ whenever ρR〈α〉 = ρQ. The values
of ρQ and type τQ are attainable.

Proof. The proof of this theorem is denoted on the inequality (4.2) since

Ψ(R〈α〉n ,R) ≤
1

ηn,〈α〉
ηDn,〈α〉

(
ηDn,〈α〉 + 1

)
Ψ(Qn,R)

then

lim
R→∞

lim
n→∞

log Ψ(R〈α〉n ,R)
n log n

≤ lim
R→∞

lim
n→∞

log ηDn,〈α〉(ηDn,〈α〉 + 1) + log Ψ(Qn,R)
n log n

. (6.3)

In view of (6.1), it follows that the order of the CCRDBPs is at most ρQ. If ρR〈α〉 = ρQ, we have

lim
R→∞

e
ρR〈α〉

lim sup
n→∞

[Ψ(R〈α〉n ,R)]
1

nρ
R〈α〉

n
≤ lim

R→∞

e
ρP

lim sup
n→∞

[Ψ(Qn,R)]
1

nρP

n
. (6.4)

Therefore, the type of the CCRDBPs is at most τQ. �

Note that the upper bound in Theorem 6.1 is attainable and the following example explains this fact.

Example 6.1. Suppose that {Qn(z)} is the BPs defined by Qn(z) = nn + zn, Q0(z) = 1, for which

Ψ(Qn,R) = nn

[
2 +

(R
n

)n]
.

Simple steps for the base {Qn(z)} is of order ρP = 1 and type τP = e. Now, Construct the base {R〈α〉n (z)}
such that

R
〈α〉
n (z) = nn + ηn,〈α〉 zn, R〈α〉0 (z) = 1.
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Hence,

Ψ(R〈α〉n ,R) =
nn

ηn,〈α〉

[
2 +

ηn,〈α〉

R〈α〉

(R
n

)n]
.

Therefore, ρR〈α〉 = 1 and type τR〈α〉 = e for the base {R〈α〉n (z)}.

The following example shows the importance of condition (2.7) in Theorem 6.1.

Example 6.2. Let the BPs {Qn(z)} be defined by

Qn(z) =

zn, n is even,

µ ( z
b )2µ + zn, µ = nn, b > 1 and n is odd.

Hence,

zn = Qn(z) −
µ

b2µ Q2µ(z)

and

Ψ(Qn,R) = Rn + 2µ
(R

b

)2µ

.

Applying the definition of the order, we get ρQ = 1.
Now, we construct the CCRDBPs {R〈α〉n (z)} as follows:

R
〈α〉
n (z) =

ηn,〈α〉 zn, n is even,

ηn,〈α〉 zn +
µ

b2µ η2µ,〈α〉 z2µ, n is odd.

Thus,

zn =
1

ηn,〈α〉
R
〈α〉
n (z) −

µ

b2µ

η2µ<α>

ηn,〈α〉
R
〈α〉
2µ (z).

Consequently,

Ψ(R〈α〉n ,R) = Rn +
2µ
b〈α〉

η2µ,〈α〉

ηn,〈α〉

(R
b

)2µ

.

Therefore, ρR〈α〉 = 2 and ρR〈α〉 > ρP as required.

If the base of polynomials {Qn(z)} is a simple (Dn = n) (see [23]), then the following corollary is a
special case of Theorem 6.1.

Corollary 6.1. When the SBPs {Qn(z)} is of type τQ and order ρQ, then the CCRDBPs {R〈α〉n (z)} will be
of type τR〈α〉 ≤ τP and order ρR〈α〉 ≤ ρP whenever ρR〈α〉 = ρP.

Now, we discuss the Tρ
R〈α〉

-property of CCRDBPs {R〈α〉n (z)} in C(R), C(R), and at the origin.
The TρQ-property of the base {Qn(z)} is defined by the authors in [36] as follows:

Definition 6.2. If the base {Qn(z)} represents all entire functions of order less than ρQ in C(R), C(R),
or at the origin, then it is said to have property TρQ in C(R), C(R), or at the origin.
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Let
ψ(Q,R) = lim sup

n→∞

log Ψ(Qn,R)
n log n

.

The following theorem concerns the property TρQ of the base {Qn(z)} (see [36]).

Theorem 6.2. A base {Qn(z)} is to have the property TρQ for all entire functions (EFs) of order less
than ρQ in C(R), C(R), or at the origin if and only if, ψ(Q,R) ≤ 1

ρQ
, ψ(Q, r) ≤ 1

ρQ
for all r < R or

ψ(Q, 0+) ≤ 1
ρQ
.

Next, we construct the Tρ
R
〈α〉
n

-property of the CCHDBPs in the closed disk C(R) for R > 0.

Theorem 6.3. Let {Qn(z)} be the BPs that have TρQ-property in C(R), where R > 0 and for which the
condition (2.8) is satisfied, then the CCRDBPs {R〈α〉n (z)} have the same property.

Proof. Suppose that the function ψ(R〈α〉,R) is given by:

ψ(R〈α〉,R) = lim sup
n→∞

log Ψ(R〈α〉n ,R)
n log n

, (6.5)

where Ψ(R〈α〉n ,R) is the Cannon sum of the CCRDBPs {R〈α〉n (z)} then by using (2.8), (4.2), and (6.5), we
obtain that

ψ(R〈α〉,R) ≤ lim sup
n→∞

log ηDn,〈α〉(ηDn,〈α〉 + 1) + log Ψ(Qn,R)
n log n

≤ ψ(Q,R). (6.6)

Since the base {Qn(z)} has the property TρQ in C̄(R), R > 0, by inequality (6.6) and Theorem 6.2, we
have

ψ(R〈α〉,R) ≤ ψ(Q,R) ≤
1
ρQ
.

and the base {R〈α〉n (z)} has property TρQ in C(R), R > 0. �

The fact that CCRDBPs {R〈α〉n (z)} does not have the property TρQ in C(R) if the condition (2.8) is not
satisfied is illustrated by the following example.

Example 6.3. Suppose that {Qn(z)} is defined by:

Qn(z) =

zn, n is even,

zn + zs(n)

2nn , n is odd

where s(n) is the nearest even integer to n log n + nn. When n is odd, we obtain:

zn = Qn(z) −
Qs(n)(z)

2nn .

Hence,

Ψ(Qn,R) = Rn + 2
Rs(n)

2nn .
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Putting R = 2, it follows that
Ψ(Qn, 2) = 2n + 2n log n+1

so that

ψ(Q, 2) = lim sup
n→∞

log Ψ(Qn, 2)
n log n

≤ log 2.

It follows that the base Qn(z) has the T 1
log 2

-property in C(2).

The CCRDBPs {R〈α〉n (z)} is

R
〈α〉
n (z) =

{
ηn,〈α〉zn, n even,
ηn,〈α〉zn + ηt(n),〈α〉

zt(n)

2nn , n odd.

Hence, when n is odd, we obtain

Ψ(R〈α〉n ,R) = Rn + 2
ηt(n),〈α〉

ηn,〈α〉

Rt(n)

2nn ,

so that when R = 2,

Ψ(R〈α〉n , 2) = 2n + 2
ηt(n),〈α〉

ηn,〈α〉

2t(n)

2nn .

Thus,

ψ(R〈α〉, 2) = lim sup
n→∞

log Ψ(R〈α〉n , 2)
n log n

≤ 1 + log2

and the CCRDBPs {R〈α〉n (z)} does not have the T 1
log 2

-property in C(2), as required.

If the BPs {Qn(z)} is simple (Dn = n) (see [23]), we get the following corollary.

Corollary 6.2. If the SBPs {Qn(z)} has the TρQ -property in C(R), then the base {R〈α〉n (z)}, associated
with it has the same property.

In the following, we deduce that the base {Qn(z)} and the CCRDBPs {R〈α〉n (z)} have the same TρQ in
C(R), where R > 0 or at the origin.

Theorem 6.4. Let {Qn(z)} be a BPs that has the TρQ-property at the origin or in C(R), R > 0, then the
CCRDBPs {R〈α〉n (z)} have the same property.

Proof. Let {Qn(z)} have property TρQ in C(R), R > 0, then

ψ(Q, r) ≤
1
ρQ
∀r < R. (6.7)

Using (5.1), we obtain

ψ(R〈α〉, r) = lim sup
n→∞

log Ψ(R〈α〉n ,R)
n log n

≤ ψ(Q, r1). (6.8)
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such that r < r1 < R. Using (6.7) and (6.8), we have ψ(R〈α〉, r) ≤ 1
ρQ

for all r < R, and the the base

{R
〈α〉
n (z)} has the TρQ-property in C(R), R > 0.
If {Qn(z)} has the TρQ-property at the origin, then

ψ(Q, 0+) ≤
1
ρQ
. (6.9)

Let r1 → 0+ in (6.8), then by (6.9), we have

ψ(R〈α〉, 0+) ≤ ψ(Q, 0+) ≤
1
ρQ
.

and the base {R〈α〉n (z)} has the property TρQ at the origin. �

7. Applications

The problem of classical special functions such as Bessel, Chebyshev, Bernoulli and Euler
polynomials can be considered as an application of BPs. These polynomials are a family of orthogonal
polynomials that arise in approximation theory, numerical analysis, and signal processing. Also, these
polynomials have applications in number theory, combinatorics, and algebraic geometry. Recently, the
authors in [14, 15] proved that the base of proper Bessel polynomials (BPBPs) {Pn(z)} and the base of
general Bessel polynomials (BGBPs) {Gn(z)} are effective for J[C(R)].

The following corollaries are immediate consequences of Theorem 4.2.

Corollary 7.1. (1) The BPBPs {Pn(z)} and the CCRD of BPBPs {R〈α〉n Pn(z)} have the same region of
effectiveness for the class J[C(R)].

(2) The BGBPs {Gn(z)} and the CCRD of BGBPs {R〈α〉n Gn(z)} have the same region of effectiveness
for the class J[C(R)].

Recently in [16], it is proved that the base of Chebyshev polynomial (BCPs) {Cn(z)} is effective for
J[C(1)]. With the application of Theorem 4.2, we get the following result:

Corollary 7.2. The BCPs {Cn(z)} and the CCRD of BCPs {R〈α〉n Cn(z)} have the same region of
effectiveness for the class J[C(R)].

The base of Bernoulli polynomials (BBPs) {Bn(z)} is of type 1
2π and order 1, and the base of Euler

polynomials (BEPs)) {En(z)} is of type 1
π

and order 1 (see [13]).
Owing to Theorem 6.1, we obtain the following results:

Corollary 7.3. The BBPs {Bn(z)} and the CCRD of BBPs {R〈α〉n Bn(z)} are of the same type 1
2π and

order 1.

Corollary 7.4. The BEPs {En(z)} and the CCRD of BEPs {R〈α〉n En(z)} are of the same type 1
π

and order 1.

Moreover, in [13], the BBPs {Bn(z)} and the BEPs {En(z)} have the property T1.
From Theorem 6.3, we conclude directly the following corollary:

Corollary 7.5. If the BBPs {Bn(z)} and the BEPs {En(z)} have the property T1, then the CCRD of BBPs
{R
〈α〉
n Bn(z)} and BEPs {R〈α〉n En(z)} have the same property, respectively.
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Suppose that JN(R〈α〉n ) is a polynomial of the operator R〈α〉n as given in (3.4) such that

JN(R〈α〉n ) =

N∑
j=1

λ j (R〈α〉n ) j, λi ∈ C,

where (R〈α〉n ) j = (R〈α〉n ) j−1R
〈α〉
n . Clearly, Theorems 4.1, 4.2, 5.1, 6.1, 6.3, and 6.4 will be valid when we

replace the base {R〈α〉n Qn(z)} by the base {JN(R〈α〉n )Qn(z)}.
It must be stated here that we can obtain similar results for the generalized complex conformable

derivative and integral BPs {JN(Tα)Qn(z)} and {JN(Iα)Qn(z)}. These results generalize the result in [1].

8. Conclusions

Owing to the increasing interest in fractional calculus and its many practical applications, this study
concentrated on modeling analytic functions in terms of complex conformable fractional derivatives
and integral bases in various domains in F-spaces. In the current work, we constructed a generalized
Ruscheweyh derivative of a noninteger order in the complex conformable sense. We investigated the
effectiveness, the growth order and type and the Tρ-property of CCRDBPs in F-spaces in several
domains: Closed disks C(R), open disks C(R), open regions surrounding closed disks C+(R), at the
origin, and for all entire functions. Furthermore, some applications on the CCRDBPs of Bernoulli,
Euler, Bessel, and Chebyshev polynomials were discussed. Our results are considered as a modified
generalization to those given in [37–39].

It is clear that when 〈α〉 = 1 in Theorems 4.1, 4.2, 5.1, 6.1, 6.3, and 6.4, results obtained by [37–39]
yield. In the future, it will be of great interest to study some geometric properties of a class of analytic
functions associated with CCRDs. Moreover, it is possible to study some applications for partial
differential equations with solutions approximated by infinite basic series using numerical methods
and compare them with other methods. The convergence properties of CCRDBPs can be examined in
the case of higher-dimensional spaces (greater than three) in hyperspherical regions, polycylinderical
regions, hyperelliptical regions, or Faber regions, which will be a great start for further study.
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