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1. Introduction

The concept of majorization has a rich history in mathematics with applications that span a wide
range of disciplines. Majorization theory originated in economics [1], where it was employed to
rigorously explain the vague notion that the components of a given vector are “more nearly equal”
than the components of a different vector. Nowadays, majorization theory finds applications in
numerous areas, ranging from pure mathematics to combinatorics [2–4], from information and
communication theory [5–13] to thermodynamics and quantum theory [14, 15], from mathematical
chemistry [16] to optimization [17], and much more.

There are many equivalent conditions for majorization. We review the most common ones in
Section 2. Successively, we present our new conditions for majorization in Sections 3 and 4. Finally,
in Section 5, we present an application to entropy inequalities.

2. Preliminaries

Throughout the paper, we will consider vectors x = (x1, . . . , xn) ∈ Rn
+ ordered component-wise, that

is, for which x1 ≥ . . . ≥ xn.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024419


8642

Definition 2.1. [2, Def. A.1] For x, y ∈ Rn
+,

x ≺ y if


k∑

i=1

xi ≤

k∑
i=1

yi, k = 1, . . . , n − 1,

n∑
i=1

xi =

n∑
i=1

yi.

(2.1)

When x ≺ y, we say that vector x is majorized by y (equivalently, that y majorizes x).
There are many equivalent conditions for majorization (e.g., see [2], Chapter 4). The conditions that

are more closely related to the subject matter of our paper are expressed in terms of doubly stochastic
matrices and T -transforms.

Definition 2.2. An n × n matrix P = [Pi j] is doubly stochastic if

Pi j ≥ 0 ∀i, j ∈ {1, . . . , n},

and
n∑

i=1

Pi j = 1, j = 1, . . . , n;

n∑
j=1

Pi j = 1, i = 1, . . . , n.

Definition 2.3. An n × n matrix T is a T-transform if

T = λI + (1 − λ)Q,

where 0 ≤ λ < 1, I is the n × n identity matrix, and Q = [Qℓm] is a permutation matrix such that

Qℓm =


1 for ℓ = m, and ℓ,m < {i, j}

1 for ℓ = j and m = i

1 for ℓ = i and m = j

0 otherwise,

(2.2)

for some indices i, j ∈ {1, . . . , n}, i , j.

Thus, for an arbitrary x = (x1, . . . xn) ∈ Rn
+, it holds that the vector xT has the form

xT = (x1, . . . , xi−1, λxi + (1 − λ)x j, xi+1, . . . , x j−1, λx j + (1 − λ)xi, x j+1, . . . , xn). (2.3)

Notice that each T-transform is a doubly stochastic matrix. It holds that:

Theorem 2.1. [2, Proposition B.6, Ch. 2] For any x, y ∈ Rn, the following conditions are equivalent:

(1) x ≺ y;
(2) x = yP for some doubly stochastic matrix P;
(3) x can be derived from y by successive applications of at most n− 1 T-transforms, as described in

Definition 2.3.
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3. Majorization by lower triangular stochastic matrices

We start this section by introducing the concept of A-transform.
Informally, an A-transform of a vector x = (x1, . . . , xn) is a transformation that involves two vector

components, xi and x j, with i < j. The transformation operates on the vector x by increasing the value
of the component xi by the quantity λx j and decreasing the value of the component x j by the same
value λx j, where λ is a real number λ ∈ [0, 1]. More formally, an A-transform can be described by the
matrix:

A = I + X, (3.1)

where I is the n × n identity matrix and X = [Xℓm] is a matrix with all entries equal to 0 except for two
elements X ji and X j j, for a given pair of indices i, j, j > i, where X ji = λ and X j j = −λ. Thus, the
vector xA has the form

xA = (x1, . . . , xi−1, xi + λ x j, xi+1, . . . , x j−1, x j − λ x j, x j+1, . . . , xn). (3.2)

Note that the matrix A = [Lℓm] is lower triangular and row-stochastic, that is,

Aℓm ≥ 0 for each ℓ,m, (3.3)
Aℓm = 0 for ℓ<m, (3.4)

n∑
m=1

Aℓm = 1 for all ℓ. (3.5)

The following theorem holds.

Theorem 3.1. Let x, y ∈ Rn
+. It holds that x ≺ y if, and only if, y can be derived from x by the successive

applications of a finite number of A-transforms.

Proof. Let x ≺ y. To avoid trivialities, we assume x , y. We shall prove that y can be derived from x
by the successive applications of a finite number of A-transforms.

Since the first condition of (2.1) holds, there is an index j such that
j−1∑
i=1

xi =

j−1∑
i=1

yi and
j∑

i=1

xi <

j∑
i=1

yi. (3.6)

For such an index j, it holds that x j < y j. From (3.6) and the second condition of (2.1), we get that
there exists an index k > j such that xk > yk.

Let j be the smallest index such that y j > x j, and let k be the smallest index greater than j such that
xk > yk.

Let
δ = min {y j − x j, xk − yk}. (3.7)

We define an A-transform as in (3.2), with λ = δ/xk and X = [Xℓm] defined as follows:

Xℓm =


λ if ℓ = k and m = j,

−λ if ℓ = m = k,

0 otherwise.
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The application of such a matrix A on the vector x gives the vector xA = x′ with components

x′ = (x1, . . . , x j−1, x j + δ, x j+1, . . . , xk−1, xk − δ, xk+1, . . . , xn). (3.8)

We pause here to illustrate the rest of our proof technique, which proceeds through the following
steps:
(1) We compute the smallest index j for which (3.6) holds. This means that vectors x and y coincide
on the first j − 1 components.
(2) We modify vector x according to the A operator defined above, to get vector x′ as described
in (3.8).
(3) We prove (3.9) below, without altering the order of the components of x′ = xA (this is crucial).
(4) The number of components on which x′ and y now coincide is greater than the number of
components on which x and y coincide.

Let us show that the new vector x′ satisfies the following property:
ℓ∑

i=1

x′i ≤
ℓ∑

i=1

yi, ℓ = 1, . . . , n − 1,

n∑
i=1

x′i =
n∑

i=1

yi.

(3.9)

From (3.8) and since the vector x satisfies the first condition of (2.1), we get

ℓ∑
i=1

x′i =
ℓ∑

i=1

xi ≤

ℓ∑
i=1

yi, ℓ = 1, . . . , j − 1. (3.10)

From (3.7), we know that x j + δ ≤ y j. Thus, from (3.8) and (3.10), we get

j∑
i=1

x′i =
j−1∑
i=1

xi + (x j + δ) ≤
j−1∑
i=1

yi + y j =

j∑
i=1

yi. (3.11)

By definition, the index k is the smallest index greater than j for which xk > yk. It follows that

xℓ ≤ yℓ, ℓ = j + 1, . . . , k − 1. (3.12)

Therefore, from (3.8) and (3.11), we obtain that for each ℓ = j + 1, . . . , k − 1, it holds that

ℓ∑
i=1

x′i =
j−1∑
i=1

xi + (x j + δ) +
ℓ∑

i= j+1

x j

≤

j−1∑
i=1

yi + y j +

ℓ∑
i= j+1

xi(since x j + δ ≤ y j)

≤

j−1∑
i=1

yi + y j +

ℓ∑
i= j+1

yi (from (3.12))
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=

ℓ∑
i=1

yi. (3.13)

From (3.8) and since the vector x satisfies the first condition of (2.1), we get

k∑
i=1

x′i =
k∑

i=1,i, j,k

xi + (x j + δ) + (xk − δ)

=

k∑
i=1

xi ≤

k∑
i=1

yi. (3.14)

Finally, since the vector x satisfies the first and second condition of (2.1), we have that
ℓ∑

i=1

x′i =
ℓ∑

i=1

xi ≤

ℓ∑
i=1

yi, ℓ = k + 1, . . . , n − 1,

n∑
i=1

x′i =
n∑

i=1

xi =

n∑
i=1

yi.

(3.15)

Therefore, from (3.10), (3.11), and (3.13)–(3.15), we have that (3.9) holds.
Notice that if δ = y j − x j, then x′j is equal to y j; equivalently, if δ = xk − yk, then x′k will be equal to

yk. Thus, the vector x′ = xA has at least one additional component (with respect to x) that is equal to
a component of y. Moreover, since each A-transform preserves the property (3.9), we can iterate the
process starting from x′ = xA. It follows that y can be derived from x by the application of a finite
number of A-transforms.

Let us prove the converse part of the theorem. Hence, we assume that y can be derived from x by a
finite number of A-transforms, and we prove that x ≺ y. Let

x1 = xA1, x2 = x1A2, . . . , xk = xk−1Ak = y (3.16)

be the vectors obtained by the successive applications of a number k of A-transforms. Given an
arbitrary vector z ∈ Rn

+, let us denote with z↓ the vector with the same components as z, ordered in a
nonincreasing fashion. From the definition (3.8) of A-transform, it follows that the partial sums of x′
are certainly greater than or equal to the corresponding partial sums of x. Therefore,

x ≺ x↓1 ≺ x↓2 ≺ · · · ≺ x↓k = y.*

By the transitivity property of the partial order relation ≺, we get x ≺ y. □

Corollary 3.2. Let x, y ∈ Rn
+. If x ≺ y, then y can be derived from x by the successive application of,

at most, n − 1 A-transforms.

Proof. In the proof of Theorem 3.1, we have shown that the application of each A-transform equalizes
at least one component of the intermediate vectors x j = x j−1A to a component of y. Since all vectors
appearing in (3.16) have an equal sum, the last A-transform always equalizes both the affected
components to the respective components of y. As a result, y can be obtained by the application of at
most n − 1 A-transforms. □

*Recall that x = x↓ and y = y↓.
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Although it is evident, let us explicitly mention that if y can be derived by the application of at most
n − 1 A-transforms, then it holds that y = xL, where the matrix L is the product of the individual
A-transforms.

The following technical lemma is probably already known in the literature. Since we have not found
a source that explicitly mentions it, we provide a proof of it to maintain the paper self-contained.

Lemma 3.3. Let C and D be two n × n lower triangular row-stochastic matrices. The product matrix
CD is still a lower triangular row-stochastic matrix.

Proof. Since CD is the product of two lower triangular matrices, one can see that CD is a lower
triangular matrix too. Thus, we need only to show that it is row-stochastic.

First of all, each entry (CD)i j of CD is nonnegative since it is the sum of nonnegative values. Let us
consider the sum of the elements of the i-th row:

n∑
j=1

(CD)i j =

n∑
j=1

 n∑
k=1

CikDk j


=

n∑
k=1

Cik

 n∑
j=1

Dk j


=

n∑
k=1

Cik · 1 (since
∑n

j=1 Dk j = 1)

=1 (since
∑n

k=1 Cik = 1).

Thus, since the above reasoning holds for each i = 1, . . . , n, the matrix CD is a lower triangular row-
stochastic matrix. □

It may be worth commenting that Lemma 3.3 also holds for a product of column-stochastic matrices,
which gives a column-stochastic matrix. This holds since (CD)T = DT CT , where, for an arbitrary
matrix D, DT denotes the transpose of D, and the transpose of a row-stochastic matrix is a column-
stochastic matrix.

The next Theorem characterizes majorization in terms of lower triangular row-stochastic matrices.

Theorem 3.4. Let x, y ∈ Rn
+. It holds that x ≺ y if, and only if, there exists a lower triangular row-

stochastic matrix L such that y = xL.

Proof. The implication that if x ≺ y, then there exists a lower triangular row-stochastic matrix L
such that y = xL directly follows from the results of Theorem 3.1 and Lemma 3.3. Indeed, from
Theorem 3.1 we know that y can be obtained from x by the successive application of A-transforms, and
from Lemma 3.3 we know that the product of two consecutive A-transforms is still a lower triangular
row-stochastic matrix. Hence, the matrix L obtained as the product of all the A-transforms is a lower
triangular row-stochastic matrix for which y = xL.

We notice that a different proof of the above result has been given by Li in [18, Lemma 1] by an
application of Algorithm 1 in [19]. □

Let us now prove the converse implication. Assume that there exists a lower triangular
row-stochastic matrix L = [Li j] for which y = xL. Let us prove that x ≺ y. For such a purpose, we can

AIMS Mathematics Volume 9, Issue 4, 8641–8660.
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express each component of y in the following way:

yi =

n∑
j=i

L jix j, i = 1, . . . , n. (3.17)

Hence, by using (3.17), we can rewrite the sum of the first k components of y as follows:

y1 + · · · + yk =

n∑
j=1

L j1x j +

n∑
j=2

L j2x j + · · · +

n∑
j=k

L jkx j.

By grouping the multiplicative coefficients of each xi, we get:

y1 + · · · + yk = x1

1∑
i=1

L1i + x2

2∑
i=1

L2i + · · · + xk

k∑
i=1

Lki + · · · + xn

k∑
i=1

Lni. (3.18)

Since the matrix L is lower triangular row-stochastic, we have that for each j = 1, . . . , n, it holds
that

∑ j
i=1 L ji = 1. Hence, from (3.18), we get

y1 + · · · + yk ≥ x1

1∑
i=1

L1i + x2

2∑
i=1

L2i + · · · + xk

k∑
i=1

Lki = x1 + · · · + xk

for each k = 1, . . . , n, and
y1 + · · · + yn = x1 + · · · + xn.

Thus, x ≺ y.
We point out the following interesting property of the matrix L that appears in the “if” part of

Theorem 3.4.

Corollary 3.5. Let x, y ∈ Rn
+. If x ≺ y, then there exists a lower triangular row-stochastic matrix L,

with at most 2n − 1 nonzero elements, such that y = xL.

Proof. From Corollary 3.2 and Theorem 3.4, we know that the matrix L, for which it holds that y = xL,
is the product of at most n − 1 A-transforms. Let

A1, . . . ,At (3.19)

be the individual matrices associated with such t A-transforms, t < n. By Definition (3.1), the matrix
A1 has n + 1 nonzero elements.

Let C be the matrix equal to the product of the first m− 1 A-transforms of (3.19), m ≤ t < n, that is,
C =

∏m−1
i=1 Ai. We show that the product

CAm (3.20)

gives a matrix with only one additional nonzero element with respect to C.
Let j, k be the pair of indices chosen to construct Am = I + Xm. From (3.20), we get

CAm = C(I + Xm) = C + CXm. (3.21)

AIMS Mathematics Volume 9, Issue 4, 8641–8660.
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For every A-transform, we recall that we always choose the smallest index j such that y j > x j, and
the smallest index k greater than j for which yk < xk. Therefore, all the previous A-transforms have
chosen indices less than or at most equal to k. Consequently, in the matrix C, all the rows after the
k-th row are equal to the rows of the identity matrix. By the definition, the matrix Xm has nonzero
elements only in the k-th row, (in positions Xk j and Xkk, respectively). Hence, the matrix CXm has
nonzero elements only in the entries (CXm)k j and (CXm)kk. Since the element (CXm)kk will be added to
the diagonal element of C, the only new nonzero element in CXm (with respect to C) is (CXm)k j. Hence,
from (3.21), we get that the product CAm gives a matrix with only one new element with respect to C.

Since each product generates a matrix with only one additional nonzero element with respect to the
previous one, we obtain that the final matrix L has at most n+1+n−2 = 2n−1 nonzero elements. □

We summarize our results in the next theorem, mirroring the classic Theorem 2.1.

Theorem 3.6. If x, y ∈ Rn
+, the following conditions are equivalent:

(1) x ≺ y;
(2) y = xL for some lower triangular row-stochastic matrix L;
(3) y can be derived from x by successive applications of at most n − 1 A-transforms, as defined

in (3.2).

Proof. The equivalences follow from the results of Theorems 3.1 and 3.4. □

Let us look at an example of how the matrix L is constructed.

Example 3.7. Let y = [0.6, 0.2, 0.1, 0.1] and x = [0.3, 0.3, 0.3, 0.1] with x ≺ y.
The first A-transform affects the elements x1 and x2 with δ = min {y1 − x1, x2 − y2} = 0.1 and

λ = δ/x2 = 1/3. As a result, the associated matrix A1 is:

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +

1 0 0 0
1
3 −

1
3 0 0

0 0 1 0
0 0 0 1

 =

1 0 0 0
1
3

2
3 0 0

0 0 1 0
0 0 0 1


and x1= xA1 = [0.4, 0.2, 0.3, 0.1].

The second A-transform affects the elements x1
1 and x1

3 with δ = min {y1 − x1
1, x

1
3 − y3} = 0.2 and

λ = δ/x1
3 = 2/3. Hence, the matrix A2 is

A2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +

1 0 0 0
0 1 0 0
2
3 0 −2

3 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
2
3 0 1

3 0
0 0 0 1


and x2= x1A2 = [0.6, 0.2, 0.1, 0.1] = y. Therefore, the final matrix for which y = xL is

L = A1A2 =


1 0 0 0
1
3

2
3 0 0

2
3 0 1

3 0
0 0 0 1

 . (3.22)
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It is worth noticing that the matrix L is not the inverse of the doubly stochastic matrix P, for which
x = yP, obtained by applying a series of T-transforms (Theorem 2.1). In fact, the inverse of L is

1 0 0 0
−1

2
3
2 0 0

−2 0 3 0
0 0 0 1


which is not a doubly stochastic matrix.

4. Majorization by upper triangular stochastic matrices

We now present our characterization of majorization through upper triangular row-stochastic
matrices.

A B-transformation or, more briefly, a B-transform, is a transformation of a vector y = (y1, . . . , yn)
that involves two vector components, yi and y j, with i < j. The transformation operates on the vector y
by decreasing the component yi by the quantity λyi and increasing the component y j by the same value
λyi, where λ is a real number such that λ ∈ [0, 1].

We can describe a B-transform as a matrix

B = I + Y, (4.1)

where I is the identity matrix and Y = [Yℓm] is a matrix with all entries equal to 0 except for two
elements Yii and Yi j, where Yii = −λ and Yi j = λ. Thus, yB has the form

yB = (y1, . . . , yi−1, yi − λyi, yi+1, . . . , y j−1, y j + λyi, y j+1, . . . , yn). (4.2)

Note that the matrix B = [Bℓm] is upper triangular and row-stochastic, that is,

Bℓm ≥ 0 for each ℓ,m, (4.3)
Bℓm = 0 for ℓ>m, (4.4)

n∑
m=1

Bℓm = 1 for all ℓ. (4.5)

The next theorem relates the B-transforms to majorization.

Theorem 4.1. Let x, y ∈ Rn
+. It holds that x ≺ y if, and only if, x can be derived from y by the successive

applications of a finite number of B-transforms.

Proof. Let x = (x1, . . . , xn) ≺ y = (y1, . . . , yn), x , y. We shall prove that x can be derived from y by
the successive applications of a finite number of B-transforms.

Let j be the largest index for which y j > x j, and let k be the smallest index greater than j such that
xk > yk. Note that such a pair j, k must exist (as we argued in the proof of Theorem 3.1). We set the
quantity δ as

δ = min {y j − x j, xk − yk}. (4.6)

AIMS Mathematics Volume 9, Issue 4, 8641–8660.
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We define a B-transform as in (4.1), with λ = δ/y j and Y such that

Yℓm =


−λ if ℓ = m = j,

λ if ℓ = j and m = k,

0 otherwise.

The application of such a matrix B on the vector y gives the vector yB = y′ with components

y′ = (y1, . . . , y j−1, y j − δ, y j+1, . . . , yk−1, yk + δ, yk+1, . . . , yn). (4.7)

Let us show that the new vector y′ still majorizes x.
From (4.7) and since x ≺ y, we get

ℓ∑
i=1

xi ≤

ℓ∑
i=1

yi =

ℓ∑
i=1

y′i , ℓ = 1, . . . , j − 1. (4.8)

From (4.6) and (4.7), we know that
y′j ≥ x j.

Furthermore, by definition, the index j is the largest index such that y j > x j, and k is the smallest index
greater than j such that yk < xk. It follows that

y′ℓ = yℓ = xℓ, ℓ = j + 1, . . . , k − 1. (4.9)

Thus, from (4.8), we obtain that for each ℓ = j, . . . , k − 1, it holds that

ℓ∑
i=1

y′i =
j−1∑
i=1

y′i + y′j +
ℓ∑

i= j+1

y′i ≥
j−1∑
i=1

xi + y′j +
ℓ∑

i= j+1

y′i

≥

j−1∑
i=1

xi + x j +

ℓ∑
i= j+1

y′i (since y′j ≥ x j)

=

j−1∑
i=1

xi + x j +

ℓ∑
i= j+1

xi (from (4.9))

=

ℓ∑
i=1

xi. (4.10)

From (4.7), we get

k∑
i=1

y′i =
∑

i=1,i, j,k

yi + (y j − δ) + (yk + δ)

=

k∑
i=1

yi ≥

k∑
i=1

xi (since x ≺ y). (4.11)

AIMS Mathematics Volume 9, Issue 4, 8641–8660.



8651

Finally, since x ≺ y, we have that
ℓ∑

i=1

y′i =
ℓ∑

i=1

yi ≥

ℓ∑
i=1

xi, ℓ = k + 1, . . . , n − 1,

n∑
i=1

y′i =
n∑

i=1

yi =

n∑
i=1

xi.

(4.12)

Therefore, from (4.8) and (4.10)–(4.12), we have that x ≺ y′.
Notice that if δ = y j − x j, then y′j is equal to x j; equivalently, if δ = xk − yk, then y′k is equal to xk.

Moreover, since each B-transform preserves the majorization, we can iterate the process starting from
y′ = yB. It follows that x can be derived from y by the application of a finite number of B-transforms.

Let us now prove the converse part of the theorem. We prove it by contradiction. Hence, we assume
that x ⊀ y, and show that if x can be derived from y by the successive applications of a finite number
of B-transforms, we get a contradiction.

Since x ⊀ y, there exists an index ℓ ∈ {1, . . . , n}, such that

ℓ∑
i=1

yi <

ℓ∑
i=1

xi. (4.13)

Moreover, by definition of B-transform (4.1), the quantity λy j can be moved between two components
y j and yk of y, with j > k, only from y j to yk. Therefore, the sum of the first ℓ components of y cannot
be increased in any way through B-transforms. Consequently, this leads to a contradiction, because not
all components y1, . . . , yℓ can be transformed into their respective components of x. Thus, it must hold
that x ≺ y. □

Corollary 4.2. Let x, y ∈ Rn
+. If x ≺ y, then x can be derived from y by the application of at most n − 1

B-transforms.

Proof. In the proof of Theorem 4.1, we have shown that the application of each B-transform equalizes
at least one component of the intermediate vectors y j = y j−1B j to a component of x. Observe that
since all vectors appearing in the sequence of transformation from y to x have an equal sum, the last
B-transform always equalizes both the affected components to the respective components of x. As a
result, x can be obtained by the application of at most n − 1 B-transforms. □

With the same technique of Lemma 3.3, we can prove the following result.

Lemma 4.3. Let C and D be two n × n upper triangular row-stochastic matrices. The product matrix
CD is still an upper triangular row-stochastic matrix.

The following theorem characterizes majorization in terms of the upper triangular row-stochastic
matrix.

Theorem 4.4. Let x, y ∈ Rn
+. It holds that x ≺ y if, and only if, there exists an upper triangular

row-stochastic matrix U such that x = yU.
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Proof. The implication that if x ≺ y, there exists an upper triangular row-stochastic matrix U such that
x = yU directly derives from the results of Theorem 4.1 and Lemma 4.3. Indeed, from Theorem 4.1, we
know that x can be derived from y by the successive application of B-transforms, and from Lemma 4.3
that the product of B-transforms is still an upper triangular row-stochastic matrix. Hence, the matrix
U obtained as the product of all B-transforms is an upper triangular row-stochastic matrix such that
x = yU.

We now prove the converse implication. Let U be an upper triangular row-stochastic matrix U such
that x = yU. It follows that each component of x can be written as follows:

x j =

j∑
i=1

Ui jyi, j = 1, . . . , n. (4.14)

By (4.14), we can express the sum of the first k components of x, with k = 1, . . . , n, as follows:

x1 + · · · + xk =

k∑
j=1

j∑
i=1

Ui jyi

=

k∑
i=1

 k∑
j=i

Ui j

 yi

≤

k∑
i=1

yi (since
∑k

j=i Ui j ≤ 1, given that U is row-stochastic).

Thus, x ≺ y. □

We now bound the number of nonzero elements in the matrix U of Theorem 4.4.

Corollary 4.5. Let x, y ∈ R+n. If x ≺ y, then there exists an upper triangular row-stochastic matrix U,
with at most 2n − 1 nonzero elements, such that x = yU.

Proof. From Theorem 4.1 and Corollary 4.2, we know that the matrix U, for which it holds that x = yU,
is the product of at most n − 1 B-transforms. Let

B1, . . . ,Bt

be the individual matrices associated with such t B-transforms, t < n. By (4.1), the matrix B1 has n+ 1
nonzero elements.

Let C be the matrix equal to the product of the first m − 1 B-transforms, m ≤ t < n, that is,
C =

∏m−1
i=1 Bi. We show that the product

CBm (4.15)

gives a matrix with only one additional nonzero element with respect to C.
Let j, k be the pair of indices chosen to construct Bm = I + Ym. From (4.15), we get

CBm = C(I + Ym) = C + CYm. (4.16)

For every B-transform, we recall that we always choose the largest index j such that y j > x j, and the
smallest index k greater than j for which yk < xk. Therefore, all the previous B-transforms have chosen
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pairs of indices i, ℓ such that i is greater than or at most equal to j. Consequently, in the matrix C, all
the rows above the j-th row are equal to the rows of the identity matrix. In addition, by the definition,
the matrix Y has nonzero elements only in the j-th row, in positions Y j j and Y jk, respectively. Hence,
the matrix CYm has nonzero elements only in the entries (CYm) j j and (CYm) jk. Since the element
(CYm) j j will be added to the diagonal element of C, the only new nonzero element is (CYm) jk. Hence,
from (4.16), we get that the product gives a matrix with only one new additional element with respect
to C.

Since each product generates a matrix with only one additional nonzero element with respect to the
previous one, we obtain that the final matrix U has at most n+1+n−2 = 2n−1 nonzero elements. □

We summarize our results in the next theorem, in the fashion of the classic Theorem 2.1.

Theorem 4.6. If x, y ∈ Rn
+, the following conditions are equivalent:

(1) x ≺ y;
(2) x = yU for some upper triangular row-stochastic matrix U;
(3) x can be derived from y by the successive applications of at most n − 1 B-transforms, as defined

in (4.2).

Proof. The equivalences are a direct consequence of the results of Theorem 4.1, Corollary 4.2, and
Theorem 4.4. □

Let us now see an example of the construction of the matrix U.

Example 4.7. Let y = [0.6, 0.2, 0.1, 0.1] and x = [0.3, 0.3, 0.3, 0.1] with x ≺ y.
The first B-transform modifies the elements y1 and y2 with δ = min {y1 − x1, x2 − y2} = 0.1 and

λ = δ/y1 = 1/6. As a result, the associated matrix B1 is the following one:

B1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +

−1

6
1
6 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 =


5
6

1
6 0 0

0 1 0 0
0 0 1 0
0 0 0 1


and y1= yB1 = [0.5, 0.3, 0.1, 0.1].

The second B-transform affects the elements y1
1 and y1

3 with δ = min {y1
1 − x1, x3 − y1

3} = 0.2 and
λ = δ/y1

1 = 2/5. Hence, the matrix B2 is the following one

B2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +

−2

5 0 2
5 0

0 1 0 0
0 0 1 0
0 0 0 1

 =


3
5 0 2

5 0
0 1 0 0
0 0 1 0
0 0 0 1


and y2= y1B2 = [0.3, 0.3, 0.3, 0.1] = x. Hence, the final matrix is:

U = B1B2 =


1
2

1
6

2
6 0

0 1 0 0
0 0 1 0
0 0 0 1


It is worth pointing out that the above example also shows that the matrices U of this section are not
simply the inverses of the matrices L of Section 3.
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5. Applications

We recall that a real-valued function ϕ : A ⊆ Rn 7−→ R is said to be Schur-concave [2] if

x ≺ y =⇒ ϕ(x) ≥ ϕ(y).

In the rest of this section, we will assume that the set A corresponds to the (n − 1)-dimensional
probability simplex Pn, defined as

Pn = {x = (x1, . . . , xn) | x1 ≥ · · · ≥ xn > 0 and
n∑

i=1

xi = 1}.

It is well known that the Shannon entropy H(x) = −
∑n

i=1 xi log2 xi, is Schur-concave over Pn.
Therefore, for any x, y ∈ Pn , if x ≺ y, it holds that

H(x) ≥ H(y). (5.1)

The above inequality (5.1) is widely used in information theory. There are several improvements to the
basic inequality (5.1). For instance, the authors of [20] proved that for any x, y ∈ Pn , if x ≺ y, then it
holds that

H(x) ≥ H(y) + D(y||x), (5.2)

where D(y||x) =
∑

i yi log(yi/xi) is the relative entropy between y and x.
The paper [21] proved a different strengthening of (5.1) (see also Proposition A.7.e. of [2]). More

precisely, Proposition A.7.e. of [2] states that if x, y ∈ Pn and x ≺ y, then it holds that

H(x) ≥ α(P) log2 n + (1 − α(P))H(y) ≥ H(y), (5.3)

where P = [Pi j] is a doubly stochastic matrix for which x = yP, and α(P) is the Dobrushin coefficient
of ergodicity of P, defined as:

α(P) = min
ℓ,m

n∑
i=1

min {Pℓi, Pmi}.

It might be useful to recall that there are papers that intend the Dobrushin coefficient of ergodicity of
P as 1 − α(P).

We show that our results from the previous sections can be used to obtain a different improvement
of the basic inequality (5.1). In fact, we prove the following result.

Theorem 5.1. Let x, y ∈ Pn and x ≺ y. Moreover, let U be the upper triangular matrix obtained
through the sequence of B-transforms described in Theorem 4.1 for which x = yU. If x , y, it holds
that

H(x) ≥ (1 − α(U))H(y) +
n∑

i=1

xi log2
1

(uU)i
− (1 − α(U)) log2 n (5.4)

> α(U) log2 n + (1 − α(U))H(y), (5.5)

where u = (1/n, . . . , 1/n) and α(U) is the Dobrushin coefficient of ergodicity of U.

To prove the theorem, we need some intermediate results. We recall that a matrix C is said to be
column-allowable if each column contains at least one positive element [21]. From [21][Thm. 1.4], we
obtain the following Lemma†.

†Theorem 1.4 of [21] is for general f -divergences.
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Lemma 5.2. Let C ∈ Rn×n
+ be a row-stochastic and column-allowable matrix and let x, y ∈ Pn, then

D(xC∥yC) ≤ (1 − α(C))D(x∥y), (5.6)

where D(x∥y) =
∑n

i=1 xi log2(xi/yi) is the relative entropy between x and y.

We note that Lemma 5.2 is a classical example of the role of contraction coefficients. Contraction
coefficients are important quantities in strong data-processing inequalities [8].

By exploiting the knowledge of the structure of the matrices U of Section 4, we obtain the following
result.

Lemma 5.3. Let x, y ∈ Pn, such that x ≺ y. Moreover, let U be the upper triangular matrix obtained
through the sequence of B-transforms described in Theorem 4.1 such that x = yU. If x , y, it holds
that

n∑
i=1

xi log2
1

(uU)i
> log2 n. (5.7)

Proof. Let U =
∏s

i=1 Bi be the upper triangular matrix obtained as product of the s B-transforms
B1, . . . ,Bs. To prove the lemma, we first show that

n∑
i=1

xi log2
1

(uB1)i
> log2 n. (5.8)

Successively, we prove that for each ℓ = 2, . . . , s − 1, it holds that

n∑
i=1

xi log2
1

(u(CBℓ))i
−

n∑
i=1

xi log2
1

(uC)i
=

n∑
i=1

xi log2
(uC)i

(u(CBℓ))i
> 0, (5.9)

where C =
∏ℓ−1

i=1 Bi.
Let j, k be the pair of indices, with j < k chosen in the first B-transform B1, then we know that

B1
ℓm =


1 − λ if ℓ = m = j,

λ if ℓ = j and m = k,

1 if ℓ = m , j

0 otherwise.

(5.10)

Hence, from (5.10) and by noticing that for each i = 1, . . . , n, it holds that (uB1)i = (1/n)
∑n
ℓ=1 B1

ℓi, we
get the following series of equalities and inequalities:

n∑
i=1

xi log2
1

(uB1)i
− log2 n =

n∑
i=1

xi log2
1

(uB1)i
−

n∑
i=1

xi log2 n

=

n∑
i=1

xi log2
1

n(uB1)i

=

n∑
i=1

xi log2
1

n1
n

∑n
ℓ=1 B1

ℓi
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=

n∑
i=1

xi log2
1∑n
ℓ=1 B1

ℓi

=
∑
i, j,k

xi log2
1
B1

ii

+ x j log2
1

B1
j j

+ xk log2
1

B1
kk + B1

jk

(from (5.10))

= x j log2
1

1 − λ
+ xk log2

1
1 + λ

≥ xk log2
1

(1 − λ)(1 + λ)
(since x j ≥ xk)

= xk log2
1

1 − λ2 > 0. (5.11)

Thus, we have proved that (5.8) holds.
Let C =

∏ℓ−1
i=1 Bi for an arbitrary ℓ ∈ {2, . . . , s − 1}. Let j, k be the pair of indices with j < k chosen

in the successive B-transform Bℓ = I + Yℓ, then we know that

Yℓtm =


−λ if t = m = j,

λ if t = j and m = k,

0 otherwise.

(5.12)

Therefore, we get
CBℓ = C(I + Yℓ) = C + CYℓ. (5.13)

For every B-transform, we recall that we always choose the largest index j such that y j > x j, and the
smallest index k greater than j for which yk < xk. Therefore, all the previous B-transforms have chosen
pairs of indices t,m such that t is greater than or at most equal to j. Consequently, in the matrix C, all
the rows above the j-th row are equal to the rows of the identity matrix. Thus, from (5.12), it follows
that the only nonzero entries in the matrix CYℓ are (CYℓ) jk = λC j j and (CYℓ) j j = −λC j j. Therefore,
from (5.13), the only entries of C that are different from the corresponding entries of CBℓ are C j j and
C jk. In particular, in the matrix CBℓ, the entry C j j of C is decremented by λC j j and C jk is incremented
by λC j j. Therefore, we have

(CBℓ)tm =


C j j − λC j j if t = m = j,

C jk + λC j j if t = j and m = k,

Ctm otherwise.

(5.14)

Thus, we get

n∑
i=1

xi log2
(uC)i

(u(CBℓ))i
=

n∑
i=1

xi log2
(1/n)

∑n
t=1 Cti

(1/n)
∑n

t=1(CBℓ)ti

=

n∑
i=1

xi log2

∑n
t=1 Cti∑n

t=1(CBℓ)ti
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=
∑
i, j,k

xi log2

∑n
t=1 Cti∑n
t=1 Cti

+ x j log2

∑n
t=1 Ct j∑n

t=1 Ct j − λC j j

+ xk log2

∑n
t=1 Ctk∑n

t=1 Ctk + λC j j
(from (5.14))

=x j log2

∑n
t=1 Ct j∑n

t=1 Ct j − λC j j
+ xk log2

∑n
t=1 Ctk∑n

t=1 Ctk + λC j j
. (5.15)

Observe that by construction of C, it holds that C j j ≤ 1 and that the only nonzero element in the j-th
column is C j j. Thus, it follows that

∑n
t=1 Ct j = C j j. Similarly, it also holds that Ckk = 1. In fact, since

yk < xk, the B-transforms do not modify the k-th row (that remains equal to the row of the identity
matrix). Thus, it follows that

∑n
t=1 Ctk ≥ 1. Therefore, we can rewrite (5.15) as follows

n∑
i=1

xi log2
(uC)i

(u(CBℓ))i
= x j log2

C j j

C j j − λC j j
+ xk log2

∑n
t=1 Ctk∑n

t=1 Ctk + λC j j

= x j log2
1

1 − λ
+ xk log2

1

1 + λC j j∑n
t=1 Ctk

≥ xk log2
1

(1 − λ)(1 + λC j j∑n
t=1 Ctk

)
(since x j ≥ xk)

≥ xk log2
1

(1 − λ)(1 + λ)

(
since 1 + λ ≥ 1 +

λC j j∑n
t=1 Ctk

)
> 0. (5.16)

Thus, we proved that (5.9) holds.
Since both (5.8) and (5.9) hold, we have proved the Lemma, given that

n∑
i=1

xi log2
1

(uU)i
>

n∑
i=1

xi log2
1

(uB1)i
> log2 n.

□

We can now prove Theorem 5.1.

Proof. Observe that the matrix U is a row-stochastic and column-allowable matrix. Thus, from
Lemma (5.2), we obtain

D(yU∥uU) ≤ (1 − α(U))D(y∥u),

and, since x = yU,
D(x∥uU) ≤ (1 − α(U))D(y∥u). (5.17)

Expanding the divergences in (5.17), we get

n∑
i=1

xi log2
1

(uU)i
− H(x) ≤ (1 − α(U))(log2 n − H(y)). (5.18)
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From (5.18), we get the following lower bound on the entropy of x:

H(x) ≥ (1 − α(U))H(y) +
n∑

i=1

xi log2
1

(uU)i
− (1 − α(U)) log2 n. (5.19)

From Lemma 5.3, we know that
n∑

i=1

xi log2
1

(uU)i
> log2 n. (5.20)

Thus, by applying (5.20) to (5.19), we finally get

H(x) ≥ (1 − α(U))H(y) +
n∑

i=1

xi log2
1

(uU)i
− (1 − α(U)) log2 n

> (1 − α(U))H(y) + log2 n − (1 − α(U)) log2 n

= (1 − α(U))H(y) + α(U)) log2 n

≥ H(y) (since H(y) ≤ log2 n).

□

6. Conclusions

In this paper, we have introduced two novel characterizations of the classical concept of
majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices. The
interesting features of our upper triangular (resp., lower triangular) row-stochastic matrices are that
they are quite sparse in the sense that they have few nonzero elements this property might be useful in
practical applications. Finally, we have used our new characterization of majorization in terms of
upper triangular row-stochastic matrices to derive an improved entropy inequality. We mention that
one could derive a similar (albeit nonequivalent) improved entropy inequality by using the
characterization of majorization in terms of lower triangular row-stochastic matrices that we have
given in Section 3. To do so, the way to proceed is similar to the one we presented in Section 5.
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