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1. Introduction

The study of differential equations and variational problems with double phase operators is a
new and interesting topic. Originally, in order to investigate the Lavrentiev phenomenon from strongly
anisotropic materials, Zhikov [1] introduced the following functional∫

Ω

(|∇υ|p + µ(x)|∇υ|q) dx,

where the function µ(·) was used as an aid to regulate the mixture between two different materials,
with power hardening of rates p and q, respectively. Since then, many scholars studied double phase
problems and obtained abundant theoretical achievements.

In [2], Colasuonno and Squassina studied an eigenvalue problem of double phase variational
integrals and proved some properties of the Musielak-Orlicz space for the first time. Liu and Dai [3]
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investigated the following problem −div
(
|∇υ|p−2∇υ + a(x)|∇υ|q−2∇υ

)
= h(x, υ), x ∈ Ω,

υ = 0, x ∈ ∂Ω,
(1.1)

By variational methods, they verified various existence and multiplicity results. Furthermore, they also
obtained some essential properties of double phase operators, which has been applied to many double
phase problems. For Eq (1.1), the existence of solutions has also been studied by applying Morse
theory [4]. In [5–7], the authors consider a double phase problem in RN with reaction terms, which
does not satisfy the Ambrosetti-Rabinowitz condition. They derived some existence results based on
various variational methods. For more related results on the double phase problem, one can refer
to [8–12] and references therein.

If nonlinearity h also depends on the gradient ∇υ, such functions are usually called convection
terms. Its presence increases the difficulty of the double phase problem because the gradient dependent
term is non-variational. In [13], Gasinski and Winkert considered the following convection problem −div

(
|∇υ|p−2∇υ + µ(x)|∇υ|q−2∇υ

)
= h(x, υ,∇υ), x ∈ Ω,

υ = 0, x ∈ ∂Ω,
(1.2)

They discussed the existence of weak solutions by using the theory of the pseudomonotone
operator. The same methodology can be found in reference [14, 15]. In addition, the methods for
dealing with the existence of solutions to elliptic equations with convection terms also included
Galerkin method [16, 17], Brezis theorem [18], and Leray-Schauder alternative principle [19, 20].

So far, there are only few results involving the variable exponent double phase operator. In [21], the
authors considered double phase problems with variable exponent for the first time and established a
suitable function spaces. Moreover, we refer to the recent results [22, 23] for the existence of constant
sign solutions and the existence results in complete manifolds, and to [24, 25] for the study of the
double phase problem with concave-convex nonlinearities or Baouendi-Grushin type operators. To our
knowledge, no work has established the results for Schrödinger equations in RN , which involves double
phase operators and convection terms. Enlightened by the above literatures, we discuss this kind of
equation as follows

−div(|∇υ|p(x)−2∇υ + λ(x)|∇υ|q(x)−2∇υ) + V(x)(|υ|p(x)−2υ + λ(x)|υ|q(x)−2υ) = h(x, υ,∇υ), x ∈ RN , (HV)

where V : RN → R+ is a potential function, h : RN × R × RN → R is a Carathéodory function, and
0 ≤ λ(·) ∈ L1(RN). p(x), q(x) ∈ C+(RN) such that 1 < p(x) < N, p(x) < q(x) < p∗(x) and q(x)

p(x) < 1 + 1
N .

The Sobolev critical exponent is defined by

p∗(x) =


N p(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N,

and also defines

C+(RN) :=
{
y(x) : y(x) ∈ C(RN ,R), 1 < y− ≤ y(x) ≤ y+ < ∞

}
.
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For each y(x) ∈ C+(RN), we denote

y− := min
x∈RN

y(x), y+ := max
x∈RN

y(x).

Throughout the paper, we consider equations (HV) under some assumptions for the potential function V
and Carathéodory function h.

(V): V(x) ∈ C(RN) and there exists V0 > 0 such that

inf
x∈RN

V(x) ≥ V0, lim
|z|→∞

∫
S 1(z)

1
V(x)

dx = 0,

where S 1(z) = {x ∈ RN : |x − z| ≤ 1}, S a(z) denotes a ball of radius a with center z.

(H): There exist a nonnegative function γ ∈ L1(RN) ∩ Lp′(x)(RN) and constants d1, d2 ≥ 0 with
max

{
d2 −

d2
p+ ,

d1 p−+d2
V0 p−

}
< 1 such that

|h(x, u, v)| ≤ γ(x) + d1|u|p(x)−1 + d2|v|p(x)−1, for any (x, u, v) ∈ RN × R × RN .

The condition (V) was introduced by [26] to guarantee compactness of the embedding of the Sobolev
space into Lebesgue space. Another condition on function V is used in the literature [27], which
satisfies

V ∈ C
(
RN , (0,+∞)

)
, meas

(
{x ∈ RN : V(x) ≤ L}

)
< ∞ for all L > 0. (1.3)

It is worth noting that the condition (1.3) is stronger than (V) (see [28]). In this paper, we will prove a
new embedding theorem for the variable exponents Sobolev space in RN under weaker assumption (V).
In addition, we cannot implement the usual critical point theory due to the equation (HV) not having a
variational structure. Our main innovation is the first study of double phase variable exponent problems
with convection terms by using Galerkin methods together with the topological degree theorem.

The outline of this article is as follows. In Section 2, we collect some necessary definitions and
basic lemmas of Musielak-Orlicz space and corresponding Sobolev space. In Section 3, we present
some classes of mappings and topological degree theory. We obtain the existence of strong
generalized solutions and weak solutions in Sections 4 and 5, respectively. Finally, a conclusion is
given in Section 6.

2. Preliminaries

In this section, we first review some known results of Lebesgue and Sobolev spaces with the variable
exponent, which will be used later.

Let the variable exponent Lebesgue spaces be defined as

Lp(x)(RN) :=
{
υ : υ is measurable and

∫
RN
|υ(x)|p(x)dx < ∞

}
,

endowed with the Luxemburg norm

|υ|p(x) = inf
{
χ > 0 : ϱp(x)

(
υ

χ

)
≤ 1

}
,

AIMS Mathematics Volume 9, Issue 4, 8610–8629.



8613

where ϱp(x)(υ) :=
∫
RN |υ|

p(x)dx is called modular and p′(x) denotes the conjugate function of p(x). Also,
W1,p(x)(RN) stands for the corresponding Sobolev spaces. Define a linear subspace of W1,p(x)(RN) as

W :=
{
υ ∈ W1,p(x)(RN) :

∫
RN

V(x)|υ(x)|p(x)dx < ∞
}
,

equipped with the norm

∥υ∥W = inf
{
χ > 0 :

∫
RN

(∣∣∣∣∣∇υχ
∣∣∣∣∣p(x)

+ V(x)
∣∣∣∣∣υχ

∣∣∣∣∣p(x))
dx ≤ 1

}
.

The spaces Lp(x)(RN), W1,p(x)(RN), and W are separable reflexive Banach spaces (see [27, 29]).
Next, we introduce a new function space used in our study and give some of its properties. Let

H(x, t) = tp(x) + λ(x)tq(x), (x, t) ∈ RN × R+.

Obviously, H ∈ N(RN) is locally integrable (see [24]).
The Musielak-Orlicz space LH(RN) is given by

LH(RN) :=
{
υ : υ is measurable and

∫
RN

H(x, |υ|)dx < ∞
}
,

endowed with the Luxemburg norm

∥υ∥H = inf
{
χ > 0 :

∫
RN

H
(
x,

∣∣∣∣∣υχ
∣∣∣∣∣) dx ≤ 1

}
.

Lemma 2.1. [21] Suppose that ϱH(υ) =
∫
RN (|υ|p(x) + λ(x)|υ|q(x))dx. For υ ∈ LH(RN), we have

(i) χ = ∥υ∥H if, and only if, ϱH( υ
χ
) = 1;

(ii) ∥υ∥H < 1⇒ ∥υ∥q
+

H ≤ ϱH(υ) ≤ ∥υ∥p
−

H ;
(iii) ∥υ∥H > 1⇒ ∥υ∥p

−

H ≤ ϱH(υ) ≤ ∥υ∥q
+

H ;
(iv) ∥υ∥H < 1 (= 1;> 1)⇔ ϱH(υ) < 1 (= 1;> 1).

The corresponding Sobolev spaces are given by

W1,H(RN) :=
{
υ ∈ LH(RN) : |∇υ| ∈ LH(RN)

}
,

endowed with the norm
∥υ∥1,H = ∥∇υ∥H + ∥υ∥H.

Moreover, in order to study problems (HV), we consider the following space

E =
{
|∇υ| ∈ LH(RN),

∫
RN

V(x)H(x, |υ|)dx < ∞
}
,

with the equivalent norm

∥υ∥ = inf
{
χ > 0 : ϱ

(
υ

χ

)
≤ 1

}
.
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The modular ϱ : E → R is given by

ϱ(υ) =
∫
RN

(
|∇υ|p(x) + λ(x)|∇υ|q(x)

)
+ V(x)

(
|υ|p(x) + λ(x)|υ|q(x)

)
dx.

Analogy to the proof of Proposition 2.13 in [21], we have the following connection between modular
and norm ∥ · ∥.

Lemma 2.2. Suppose that υn, υ ∈ E, then
(i) χ = ∥υ∥ if, and only if, ϱ( υ

χ
) = 1;

(ii) ∥υ∥ < 1⇒ ∥υ∥q
+

≤ ϱ(υ) ≤ ∥υ∥p
−

;
(iii) ∥υ∥ > 1⇒ ∥υ∥p

−

≤ ϱ(υ) ≤ ∥υ∥q
+

;
(iv) ∥υ∥ < 1 (= 1;> 1)⇔ ϱ(υ) < 1 (= 1;> 1));
(v) limn→∞ |υn − υ| = 0⇔ limn→∞ ϱ(υn − υ) = 0.

Theorem 2.1. LH(RN), W1,H(RN), and E are separable reflexive Banach spaces.

Proof. Since H ∈ N(RN) is locally integrable and the Lebesgue measure on RN is σ-finite and
separable, then LH(RN) is a separable Banach space that follows from ( [30], Theorems 7.7 and 7.10).
By Proposition 2.12 of [21], we know that H is uniformly convex. Note that

H(x, 2t) ≤ 2q+H(x, t),

which satisfies the condition (∆2). Thus, LH(RN) is uniformly convex, follows from ( [30],
Theorem 11.6), and is a reflexive space based on the Milman-Pettis theorem. Similar to the proof of
Theorem 2.7 (ii) in [5], we obtain W1,H(RN) as a separable reflexive Banach space and E as a closed
subspace of W1,H(RN).

We present the following embedding results. For convenience, the notation ⇀(→) is means
weak (strong) convergence and the symbol ↪→(↪→↪→) denotes the continuous (compact) embedding,
respectively.

Theorem 2.2. Assume that (V) holds and µ(x) ∈ C+(RN) satisfies p(x) ≤ µ(x) < p∗(x), then the spaces
W are continuously compact embedded in Lµ(x)(RN).

Proof. (i) First, we discuss the case µ(x) = p(x) and suppose that υn ⇀ 0 in W. If (V) holds, the
embedding W ↪→↪→ Lp(x)(S R(0)) holds ( [27], Proposition 2.4). So, we only show that for any ε > 0,
there exists R > 0 such that ∫

|x|≥R
|υn|

p(x)dx ≤ ε, for any n ∈ N.

Note that {υn}n∈N is a bounded sequence in W. Set ρ = ∥υn∥
p+

W + ∥υn∥
p−

W and choose an arbitrary number
s ∈ (1, N

N−p− ), then p(x) < sp(x) < p∗(x). Using Proposition 2.4 of [27] again, there is a constant Q > 0
such that (∫

RN
|υn|

sp(x)dx
) 1

s

≤ Q. (2.1)
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Let {zi}i ⊂ R
N such that

⋃∞
i=1 S 1(zi) = RN and every x ∈ RN is covered by at most 2N such balls. Denote

X(zi) =
{

x ∈ RN :
1

V(x)
< b

}
∩ S 1(zi), Y(zi) =

{
x ∈ RN :

1
V(x)

> b
}
∩ S 1(zi).

Thus ∫
X(zi)
|υn|

p(x)dx ≤
1
b

∫
RN

V(x)|υn|
p(x)dx ≤

1
b

∫
RN

(
|∇υn|

p(x) + V(x)|υn|
p(x)

)
dx

≤
1
b

(
∥υn∥

p+

W + ∥υn∥
p−

W

)
=
ρ

b
.

By the Hölder inequality and (2.1), we get∫
Y(zi)
|υn|

p(x)dx ≤
(∫

Y(zi)
|υn|

sp(x)dx
) 1

s
(∫

Y(zi)
dx

) s−1
s

= [meas(Y(zi))]
s−1

s Q.

Hence, ∫
|x|≥R
|υn|

p(x)dx ≤
∞∑

|zi |≥R−1

∫
S 1(zi)
|υn|

p(x)dx =
∞∑

|zi |≥R−1

[∫
X(zi)
|υn|

p(x)dx +
∫

Y(zi)
|υn|

p(x)dx
]

≤

∞∑
|zi |≥R−1

(
ρ

b
+ Q sup

|zi |≥R−1
[meas(Y(zi))]

s−1
s

)
≤

2Nρ

b
+ 2N Q sup

|zi |≥R−1
[meas(Y(zi))]

s−1
s .

Now, we choose b large enough such that 2N+1ρ ≤ bε. As is shown in [26], the meas (Y(z)) → 0
for |z| → ∞, then we can find that R′ > 0 satisfies

2N Q sup
|zi |≥R−1

[meas(Y(zi))]
s−1

s ≤
ε

2
.

For the above R′, ∫
|x|≥R′
|υn|

p(x)dx ≤ ε.

Therefore, υn → 0 in Lp(x)(RN).
(ii) For p(x) < µ(x) < p∗(x), there exists σ(x) ∈ (0, 1) such that 1

µ(x) =
σ(x)
p(x) +

1−σ(x)
p∗(x) , then we have

f (x) =
p(x)

µ(x)σ(x)
> 1, g(x) =

p∗(x)
µ(x)(1 − σ(x))

> 1.

According to the embedding W ↪→ Lp∗(x)(RN) and {υn} is bounded in W, we get∫
RN
|υn|

p∗(x)dx < ∞, for any n ∈ N. (2.2)
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From (i) and (2.2), we have∫
RN
|υn|

µ(x)dx ≤2
(∫
RN
|υn|

p(x)dx
) 1

f (x)
(∫
RN
|υn|

p∗(x)dx
) 1

g(x)

≤2

(∫
RN
|υn|

p(x)dx
) 1

f+

+

(∫
RN
|υn|

p(x)dx
) 1

f−

(∫

RN
|υn|

p∗(x)dx
) 1

g+

+

(∫
RN
|υn|

p∗(x)dx
) 1

g−


→0.

This means that υn → 0 in Lµ(x)(RN). The proof is complete.

Theorem 2.3. Suppose that (V) holds and p(x) ≤ θ(x) ≤ p∗(x) for x ∈ RN . Thus, the embedding
LH(RN) ↪→ Lp(x)(RN) and E ↪→ Lθ(x)(RN) holds. Moreover, E ↪→↪→ Lθ(x)(RN) also holds whenever
p(x) ≤ θ(x) < p∗(x). This implies there exists Cθ > 0 such that

|υ|θ(x) ≤ Cθ∥υ∥, υ ∈ E.

Proof. Let Hp = tp, then Hp < H. Thus, applying Theorem 10.3 of [30], we obtain

LH(RN) ↪→ Lp(x)(RN) and E ↪→ W.

From Theorem 2.2, we have W ↪→↪→ Lθ(x)(RN), so E ↪→↪→ Lθ(x)(RN) for p(x) ≤ θ(x) < p∗(x). Using
again the Theorem 10.3 of [30], we get E ↪→ W1,H(RN) ↪→ W1,p(x)(RN) ↪→ Lp∗(x)(RN).

Before stating our main results, we need to present the corresponding definitions.

Definition 2.1. Let E be a real reflexive Banach space with dual E∗. A mapping L : E → E∗ is said to
be
(i) of class (S +), if for each {υn} ∈ E with υn ⇀ υ and lim supn→∞⟨Lυn, υn − υ⟩ ≤ 0, then υn → υ in E ;
(ii) quasimonotone, if for each {υn} ∈ E with υn ⇀ υ, we have lim sup⟨Lυn, υn − υ⟩ ≥ 0.

Definition 2.2. We say that υ ∈ E is a weak solution of problems (HV), if〈
−∆V

λυ, φ
〉
=

∫
RN

h(x, υ,∇υ)φdx, (2.3)

for any φ ∈ E, where −∆V
λ denotes the double phase type operator as

−∆V
λυ = −div(|∇υ|p(x)−2∇υ + λ(x)|∇υ|q(x)−2∇υ) + V(x)(|υ|p(x)−2υ + λ(x)|υ|q(x)−2υ).

Define functional J : E → R as

J(υ) =
∫
RN

(
1

p(x)
|∇υ|p(x) +

λ(x)
q(x)
|∇υ|q(x)

)
dx +

∫
RN

V(x)
(

1
p(x)
|υ|p(x) +

λ(x)
q(x)
|υ|q(x)

)
dx. (2.4)

Obviously, J ∈ C1(E,R) (see [21]). We denote L = J′ : E → E∗, then

⟨Lυ, ϕ⟩ =

∫
RN

(
|∇υ|p(x)−2∇υ + λ(x)|∇υ|q(x)−2∇υ

)
∇ϕdx +

∫
RN

V(x)
(
|υ|p(x)−2υ + λ(x)|υ|q(x)−2υ

)
ϕdx, υ, ϕ ∈ E.

(2.5)
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Lemma 2.3. The operator L : E → E∗ has the properties, such as continuous, bounded, strictly
monotone, homeomorphism, and of type (S +).

Proof. (a) Since L = J′ and J ∈ C1, then L is continuous. For all η1, η2 ∈ R
N with η1 , η2, by the

well-known inequality
(|η1|

τ−2η1 − |η2|
τ−2η2)(η1 − η2) > 0, τ > 1, (2.6)

we obtain
⟨L(η1) − L(η2), η1 − η2⟩ > 0,

which implies that L is strictly monotone. Next, we show that L is bounded. Let χ1 = ∥υ∥, χ2 = ∥ϕ∥

and L = max
{
χ

p−−1
1 , χ

q+−1
1

}
. From Hölder’s inequality and Young’s inequality, we obtain〈

Lυ,
ϕ

χ2

〉
=

∫
RN

(
|∇υ|p(x)−2∇υ + λ(x)|∇υ|q(x)−2∇υ

) ∇ϕ
χ2

dx +
∫
RN

V(x)
(
|υ|p(x)−2υ + λ(x)|υ|q(x)−2υ

) ϕ
χ2

dx

≤L
∫
RN

(∣∣∣∣∣∇υχ1

∣∣∣∣∣p(x)−1

+ λ(x)
∣∣∣∣∣∇υχ1

∣∣∣∣∣q(x)−1) ∣∣∣∣∣∇ϕχ2

∣∣∣∣∣ + V(x)
(∣∣∣∣∣ υχ1

∣∣∣∣∣p(x)−1

+ λ(x)
∣∣∣∣∣ υχ1

∣∣∣∣∣q(x)−1) ∣∣∣∣∣∇ϕχ2

∣∣∣∣∣ dx

≤L
(∫
RN

∣∣∣∣∣∇υχ1

∣∣∣∣∣p(x)

dx
) 1

p′(x)
(∫
RN

∣∣∣∣∣∇ϕχ2

∣∣∣∣∣p(x)

dx
) 1

p(x)

+ L
(∫
RN
λ(x)

∣∣∣∣∣∇υχ1

∣∣∣∣∣q(x)

dx
) 1

q′(x)
(∫
RN
λ(x)

∣∣∣∣∣∇ϕχ2

∣∣∣∣∣q(x)

dx
) 1

q(x)

+ L
(∫
RN

V(x)
∣∣∣∣∣ υχ1

∣∣∣∣∣p(x)

dx
) 1

p′(x)
(∫
RN

V(x)
∣∣∣∣∣ ϕχ2

∣∣∣∣∣p(x)

dx
) 1

p(x)

+ L
(∫
RN
λ(x)V(x)

∣∣∣∣∣ υχ1

∣∣∣∣∣q(x)

dx
) 1

q′(x)
(∫
RN
λ(x)V(x)

∣∣∣∣∣ ϕχ2

∣∣∣∣∣q(x)

dx
) 1

q(x)

≤
L

p′−

∫
RN

∣∣∣∣∣∇υχ1

∣∣∣∣∣p(x)

dx +
L

q′−

∫
RN
λ(x)

∣∣∣∣∣∇υχ1

∣∣∣∣∣q(x)

dx

+
L

p′−

∫
RN

V(x)
∣∣∣∣∣ υχ1

∣∣∣∣∣p(x)

dx +
L

q′−

∫
RN
λ(x)V(x)

∣∣∣∣∣ υχ1

∣∣∣∣∣q(x)

dx

+
L
p−

∫
RN

∣∣∣∣∣∇ϕχ2

∣∣∣∣∣p(x)

dx +
L
q−

∫
RN
λ(x)

∣∣∣∣∣∇ϕχ2

∣∣∣∣∣q(x)

dx

+
L
p−

∫
RN

V(x)
∣∣∣∣∣ ϕχ2

∣∣∣∣∣p(x)

dx +
L
q−

∫
RN
λ(x)V(x)

∣∣∣∣∣ ϕχ2

∣∣∣∣∣q(x)

dx

≤
L

q′−
ϱ(
υ

χ1
) +

L
p−
ϱ(
ϕ

χ2
) =

L
q′−
+

L
p−
,

thus, we have

∥Lυ∥E∗ = sup
ϕ∈E, ∥ϕ∥E≤1

|⟨L(υ), ϕ⟩| ≤
L

q′−
+

L
p−
.

Hence, L is bounded.
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(b) Let {υn}n∈N ⊆ E such that

υn ⇀ υ and lim sup
n→∞

⟨L(υn) − L(υ), υn − υ⟩ ≤ 0. (2.7)

By the monotonicity of L, we get

lim inf
n→∞

⟨L(υn) − L(υ), υn − υ⟩ ≥ 0,

then
lim
n→∞
⟨L(υn) − L(υ), υn − υ⟩ = 0,

that is

lim
n→∞

∫
RN

(
|∇υn|

p(x)−2∇υn − |∇υ|
p(x)−2∇υ

)
(∇υn − ∇υ) + λ(x)

(
|∇υn|

q(x)−2∇υn − |∇υ|
q(x)−2∇υ

)
(∇υn − ∇υ)

+ lim
n→∞

∫
RN

V(x)
(
|υn|

p(x)−2υn − |υ|
p(x)−2υ

)
(υn − υ) + λ(x)V(x)

(
|υn|

q(x)−2υn − |υ|
q(x)−2υ

)
(υn − υ)dx = 0.

In view of (2.6), ∇υn and υn converge in measure to ∇υ and υ in RN , respectively. Without loss of
generality, let ∇υn → ∇υ and υn → υ a.e., on RN . Based on the Fatou lemma, we obtain

lim inf
n→∞

J(υn) ≥ J(υ). (2.8)

Noting that limn→∞⟨L(υ), υn − υ⟩ = 0, then lim supn→∞⟨L(υn), υn − υ⟩ ≤ 0. According to Young’s
inequality, we also obtain

⟨L(υn), υn − υ⟩ =

∫
RN

(
|∇υn|

p(x)−2∇υn

)
(∇υn − ∇υ) + λ(x)

(
|∇υn|

q(x)−2∇υn

)
(∇υn − ∇υ)dx

+

∫
RN

V(x)
(
|υn|

p(x)−2υn

)
(υn − υ) + λ(x)V(x)

(
|υn|

q(x)−2υn

)
(υn − υ)dx

=

∫
RN

(
|∇υn|

p(x) + λ(x)|∇υn|
q(x) + V(x)|υn|

p(x) + λ(x)V(x)|υn|
q(x)

)
−

∫
RN
|∇υn|

p(x)−1|∇υ|dx −
∫
RN
λ(x)|∇υn|

q(x)−1|∇υ|dx

−

∫
RN

V(x)|υn|
p(x)−1|υ|dx −

∫
RN
λ(x)V(x)|υn|

q(x)−1|υ|dx

≥

∫
RN

(
|∇υn|

p(x) + λ(x)|∇υn|
q(x) + V(x)|υn|

p(x) + λ(x)V(x)|υn|
q(x)

)
−

1
p′(x)

∫
RN
|∇υn|

p(x)dx −
1

p(x)

∫
RN
|∇υ|p(x)dx

−
1

q′(x)

∫
RN
λ(x)|∇υn|

q(x)dx −
1

q(x)

∫
RN
λ(x)|∇υ|q(x)dx

−
1

p′(x)

∫
RN

V(x)|υn|
p(x)dx −

1
p(x)

∫
RN

V(x)|υ|p(x)dx

−
1

q′(x)

∫
RN
λ(x)V(x)|υn|

q(x)dx −
1

q(x)

∫
RN
λ(x)V(x)|υ|q(x)dx
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=J(υn) − J(υ).

From this and (2.8), we get

lim
n→∞

J(υn) = J(υ).

Let f (υ) = 1
p(x) |∇υ|

p(x) +
λ(x)
q(x) |∇υ|

q(x) +
V(x)
p(x) |υ|

p(x) +
λ(x)V(x)

q(x) |υ|
q(x). The Vitali theorem yields the uniform

integrability of the sequence { f (υn)}n∈N. On the other hand,

|∇υn − ∇υ|
p(x) + λ(x)|∇υn − ∇υ|

q(x) + V(x)|υn − υ|
p(x) + λ(x)V(x)|υn − υ|

q(x) ≤ 2q+−1q+ ( f (υn) + f (υ)) ,

which means the sequence{
|∇υn − ∇υ|

p(x) + λ(x)|∇υn − ∇υ|
q(x) + V(x)|υn − υ|

p(x) + λ(x)V(x)|υn − υ|
q(x)

}
n∈N

is also uniformly
integrable. Applying the Vitali theorem, it follows that

lim
n→∞

ϱ(υn − υ) = 0.

Hence, υn → υ in E.
(c) Since L is strictly monotone, L is an injection, and

lim
∥υ∥→∞

⟨Lυ, υ⟩

∥υ∥
=
ϱ(υ)
∥υ∥
= +∞,

L is coercive. In view of the Minty-Browder Theorem,L has an inverse mappingL−1 : E∗ → E. Next,
we prove that L−1 is continuous to ensure L is homeomorphism.

If ϖn, ϖ ∈ E∗, ϖn → ϖ, let υn = L
−1(ϖn), υ = L−1(ϖ), then L(υn) = ϖn, L(υ) = ϖ. Note that {υn}

is bounded in E by the coercivity of L. Without loss of generality, assume that υn ⇀ υ0. It follows
from ϖn → ϖ that

lim
n→∞
⟨L(υn) − L(υ), υn − υ⟩ = ⟨ϖn −ϖ, υn − υ⟩ = 0.

Thus, υn → υ0 in E, as L is of type (S +). Moreover, form L(υ0) = limn→∞L(υn) = limn→∞ϖn = ϖ,
we have υn → υ. Therefore, L−1 is continuous.

3. Some classes of mappings and topological degree

Let E be a real separable reflexive Banach space. E∗ is its dual space and denote by ⟨·, ·⟩ its duality
pairing. For a nonempty subset M of E, M and ∂M denote the closure and the boundary of M.

Definition 3.1. Let F be another real Banach space. A mapping L : M ⊂ E → F is called
(i) bounded, if it takes any bounded set into a bounded set,
(ii) demicontinuous, if for any {υn} ∈ M, υn → υ implies L(υn) ⇀ L(υ).

Definition 3.2. Let T : M1 ⊂ E → E∗ be a bounded operator such that M ⊂ M1 and any operator
L : M ⊂ E → E. If for any {υn} ∈ M with υn ⇀ υ, ωn := Tυn ⇀ ω and lim sup⟨Lυn, ωn − ω⟩ ≤ 0, we
have υn → υ, then L satisfies condition (S +)T .

For each M ⊂ E, define the following types of operators
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L1(M) :={L : M → E∗|L is demicontinuous, bounded, and satisfies condition(S +)},

LT (M) :={L : M → E|L is demicontinuous and satisfies condition(S +)T },

LT,B(M) :={L : M → E|L is demicontinuous, bounded, and satisfies condition(S +)T },

L(E) :={L ∈ LT,B(M)|M ∈ Θ, T ∈ L1(M)},

where Θ denotes the collection of all bounded open sets in E and T ∈ L1(M) is called an essential
inner map to L.

Lemma 3.1. [31] Let M ⊂ E be a bounded open set. Suppose that T ∈ L1(M) is continuous and
K : Ek ⊂ E∗ → E is demicontinuous such that T (M) ⊂ Ek, then the following properties hold
(i) If K is quasimonotone, then I + K ◦ T ∈ LT (M), where I stands for the identity operator.
(ii) If K is class of (S +), then K ◦ T ∈ LT (M).

Definition 3.3. Assume that M ⊂ E is a bounded open set, T ∈ L1(M) is continuous, and L,K ∈
LT (M). Define affine homotopyH : [0, 1] × M → E as

H(η, υ) = (1 − η)Lυ + ηKυ for (η, υ) ∈ [0, 1] × M,

where it is called an admissible affine homotopy with the common continuous essential inner map T
and it satisfies condition (S +)T (see [31]).

Now, we give the topological degree for the class L(E).

Theorem 3.1. There exists a unique degree function

d :
{
(L,M, h) : M ∈ Θ, T ∈ L1(M), L ∈ LT,B(M), h < L(∂M)

}
→ Z,

which satisfies the properties such as normalization, additivity, homotopy invariance, and
existence (see [31, 32]).

4. Existence of weak solutions

Lemma 4.1. Under assumptions (H), the operator K : E → E∗ given by

⟨Kυ, ξ⟩ = −
∫
RN

h(x, υ,∇υ)ξdx, υ, ξ ∈ E, (4.1)

is compact.

Proof. Define an operator φ : E → Lp′(x)(RN) as

φυ(x) = h(x, υ,∇υ) for x ∈ RN and υ ∈ E.

We prove that φ is bounded and continuous.
For every υ ∈ E, using the embedding E ↪→↪→ Lp(x)(RN) and condition (H), we obtain

|φυ|p′(x) ≤ϱp′(x)(φυ) + 1 =
∫
RN
|h(x, υ(x),∇υ(x))|p

′(x) dx + 1
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≤C
(
ϱp′(x)(γ) + ϱp(x)(υ) + ϱp(x)(∇υ)

)
+ 1

≤C
(
|γ|

p′+

p′(x) + |γ|
p′−

p′(x) + |υ|
p+

p(x) + |υ|
p−

p(x) + ϱ(υ)
)
+ 1

≤C
(
|γ|

p′+

p′(x) + |γ|
p′−

p′(x) + ∥υ∥
p+ + ∥υ∥p

−

+ ∥υ∥q
+
)
+ 1,

where C > 0 stands for arbitrary constant, which means that φ is bounded on E.
Let υn → υ in E, then υn → υ in Lp(x)(RN) and ∇υn → ∇υ in

(
Lp(x)(RN)

)N
. Thus, there exist a

subsequence {υk}k∈N of {υn}n∈N, and measurable functions ϑ ∈ Lp(x)(RN) and ζ ∈
(
Lp(x)(RN)

)N
satisfy

υk(x)→ υ(x) and ∇υk(x)→ ∇υ(x),

|υk(x)| ≤ ϑ(x) and |∇υk(x)| ≤ ζ(x),

for any k ∈ N and a.e. x ∈ RN . Since h is a Carathéodory function, we get

h (x, υk(x),∇υk(x))→ h (x, υ(x),∇υ(x)) , as k → ∞. (4.2)

It follows from (H) that

h (x, υk(x),∇υk(x)) ≤ γ(x) + d1|ϑ(x)|p(x)−1 + d2|ζ(x)|p(x)−1, (4.3)

for any k ∈ N and a.e. x ∈ RN . Note that

γ(x) + d1|ϑ(x)|p(x)−1 + d2|ζ(x)|p(x)−1 ∈ Lp′(x)(RN).

According to (4.2), (4.3), and the dominated convergence theorem, we have∫
RN
|h (x, υk(x),∇υk(x)) − h (x, υ(x),∇υ(x)) |p

′(x)dx→ 0, as k → ∞,

that is,

φυk → φυ in Lp′(x)(RN).

Therefore, the entire sequence φυn converges to φυ in Lp′(x)(RN). Thus, φ is continuous.
Recall that the embeding I : E ↪→↪→ Lp(x)(RN). It is known that the adjoint I∗ : Lp′(x)(RN) ↪→↪→ E∗.

Hence, we conclude that the composition K = I∗ ◦ φ is compact.

Theorem 4.1. Assume that condition (H) hold. Then problem (HV) has a weak solution in E.

Proof. Due to the Lemma 4.1 and the definition of the operator L , we have that υ ∈ E is a weak
solution of problem (HV) when, and only when,

Lυ = −Kυ. (4.4)

By the proof of Lemmas 2.3 and 4.1, we known that the inverse operator T = L−1 is continuous,
bounded, and of type (S +), and the operator K is continuous, bounded, and quasimonotone.
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Therefore, Eq (4.4) is equivalent to

υ = Tξ and ξ + K ◦ Tξ = 0. (4.5)

Next, we solve Eq (4.5) with degree theory. First, we prove that the set

A := {ξ ∈ E∗|ξ + ηK ◦ Tξ = 0 for some η ∈ [0, 1]}

is bounded. Indeed, let ξ ∈ A. Set υ = Tξ, then ∥υ∥ = ∥Tξ∥.
(i)If ∥υ∥ ≤ 1, then ∥Tξ∥ is bounded.
(ii)If ∥υ∥ > 1, then

∥Tξ∥p
−

= ∥υ∥p
−

≤ϱ(υ) = ⟨Lυ, υ⟩ = ⟨ξ,Tξ⟩

= − η⟨K ◦ Tξ,Tξ⟩ = η
∫
RN

h(x, υ,∇υ)υdx

≤

∫
RN
|γ||υ|dx + d1

∫
RN
|υ|p(x)dx + d2

∫
RN
|∇υ|p(x)−1|υ|dx

≤2|γ|p′(x)|υ|p(x) + d1ϱp(x)(υ) +
d2

p′(x)
ϱp(x)(∇υ) +

d2

p(x)
ϱp(x)(υ)

≤max
{

d2 −
d2

p+
,

d1 p− + d2

V0 p−

}
ϱ(υ) + 2|γ|p′(x)|υ|p(x). (4.6)

Now, we choose ς = 1 −max
{
d2 −

d2
p+ ,

d1 p−+d2
V0 p−

}
> 0, then by embedding E ↪→ Lp(x)(RN), we obtain

∥Tξ∥p
−

E ≤ C∥Tξ∥ +
1
ς
.

Thanks to the assumption p− > 1, ∥Tξ∥ is bounded, which means {Tξ|ξ ∈ A} is bounded.
Moreover, the boundedness of operator K and (4.5) implies the set A is bounded in E. Therefore,

there exists a > 0 such that
|ξ|E∗ < a, for any ξ ∈ A.

This means that
ξ + ηK ◦ Tξ , 0, for each ξ ∈ ∂S a(0) and each η ∈ [0, 1].

From Lemma 3.1, we conclude that

I + K ◦ Tξ ∈ LT (S a(0)), and I = L ◦ T ∈ LT (S a(0)),

and I + K ◦ T is also bounded due to that the operators I, K, and T are bounded. It follows that

I + K ◦ Tξ ∈ LT,B(S a(0)), and I = L ◦ T ∈ LT,B(S a(0)).

Next, discuss a homotopyH : [0, 1] × S a(0)→ E∗ as

H(η, ξ) = ξ + ηK ◦ Tξ, for (η, ξ) ∈ [0, 1] × S a(0).

Based on the normalization property and homotopy invariance of the degree d in Theorem 3.1, we have

d(I + K ◦ T, S a(0), 0) = d(I, S a(0), 0) = 1.

Thus, there exists a point ξ ∈ S a(0) that satisfies equation

ξ + K ◦ Tξ = 0,

which means that υ = Tξ is a weak solution of problem (HV).
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5. Existence of strong generalized solutions

Since the Banach space E is separable, we can find a Galerkin basis of E, which means a
sequence {En}n∈N of vector subspaces of E with

dim(En) < ∞, En ⊂ En+1 for all n ∈ N and
∞⋃

n=1

En = E.

First, we introduce the notion of the strong generalized solution, then we derive the existence of strong
generalized solutions for the problem (HV) based on the Galerkin method. Our approach is largely
inspired by [16].

Definition 5.1. A function υ ∈ E is a strong generalized solution to equation (HV), if there exists a
sequence {υn}n∈N ⊆ E satisfying the following statements
(i) υn ⇀ υ in E, as n→ ∞;
(ii) −∆V

λυn − h(·, υn(·),∇υn(·)) ⇀ 0 in E∗, as n→ ∞;
(iii) limn→∞⟨−∆

V
λυn, υn − υ⟩ = 0.

Lemma 5.1. Assume that assumption (H) holds. One has the inequality∣∣∣∣∣∫
RN

h(x, υ,∇υ)ξdx
∣∣∣∣∣ ≤ (

2|γ|p′(x) +C1 +C2

)
|ξ|p(x),

for any υ, ξ ∈ E, where C1,C2 is shown below.

Proof. Using condition (H), we obtain∣∣∣∣∣∫
RN

h(x, υ,∇υ)ξdx
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

RN

(
γ(x) + d1|υ|

p(x)−1 + d2|∇υ|
p(x)−1

)
ξdx

∣∣∣∣∣
≤

∫
RN
|γ||ξ|dx + d1

∫
RN
|υ|p(x)−1|ξ|dx + d2

∫
RN
|∇υ|p(x)−1|ξ|dx

≤2|γ|p′(x)|ξ|p(x) + 2d1|υ|
p(x)−1
p(x) |ξ|p(x) + 2d2|∇υ|

p(x)−1
p(x) |ξ|p(x)

≤2|γ|p′(x))|ξ|p(x) +C1|ξ|p(x) +C2|ξ|p(x),

where
C1 = 2d1

(
|υ|

p+−1
p(x) + |υ|

p−−1
p(x)

)
, C2 = 2d2

(
|∇υ|

p+−1
p(x) + |∇υ|

p−−1
p(x)

)
.

Lemma 5.2. Let (E, ∥ · ∥) be a normed finite dimensional space and B : E → E∗ be a continuous map.
Suppose that there exists some δ > 0, which satisfies

⟨B(υ), υ⟩ ≥ 0, for any υ ∈ E with ∥υ∥ = δ,

then B(υ) = 0 has a solution υ ∈ E with ∥υ∥ ≤ δ.
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Theorem 5.1. Suppose that condition (H) is satisfied, then for all n ∈ N and ψ ∈ En, there exists
υn ∈ En such that

⟨−∆V
λυn, ψ⟩ =

∫
RN

h(x, υn(x),∇υn(x))ψ(x)dx. (5.1)

Proof. For every n ∈ N, we define the operator Bn : En → E∗n by

⟨Bn(υ), ψ⟩ = ⟨−∆V
λυ, ψ⟩ −

∫
RN

h(x, υ(x),∇υ(x))ψ(x)dx,

for every υ, ψ ∈ En. From (H) and (4.6), we have the following estimate

⟨Bn(υ), υ⟩ =
∫
RN

(
|∇υ|p(x) + λ(x)|∇υ|q(x)

)
dx +

∫
RN

V(x)
(
|υ|p(x) + λ(x)|υ|q(x)

)
dx −

∫
RN

h(x, υ,∇υ)υdx

≥ϱ(υ) −
∫
RN
|γ(x)|dx − d1

∫
RN
|υ|p(x)dx − d2

∫
RN
|∇υ|p(x)−1|υ|dx

≥

(
1 −max

{
d2 −

d2

p+
,

d1 p− + d2

V0 p−

})
ϱ(υ) −

∫
RN
|γ(x)|dx.

If ∥υ∥ > 1, then there exists δ > 0 large enough. Whenever υ ∈ En with ∥υ∥ = δ, such that

⟨Bn(υ), υ⟩ ≥ ς∥υ∥p
−

− |γ|L1(RN ) ≥ 0,

since p− > 1 and ς > 0. In view of Lemma 5.2, the equation Bn(υ) = 0 has an approximate solution
υn ∈ En, which is (5.1). The proof is complete.

Lemma 5.3. If condition (H) holds, then the sequence {υn}n∈N with υn ∈ En constructed in Theorem 5.1
is bounded in E.

Proof. If ∥υn∥ ≤ 1 for any n ∈ N, then {υn}n∈N is bounded in E. So, when ∥υn∥ > 1 for any n ∈ N,
insert ψ = υn in (5.1), then we have

⟨−∆V
λυn, υn⟩ =

∫
RN

h(x, υn(x),∇υn(x))υndx.

Based on hypotheses (H) and (4.6), we obtain

∥υn∥
p− ≤ϱ(υn) =

∫
RN

h(x, υn,∇υn)υndx

≤

∫
RN
|γ(x)|dx + d1

∫
RN
|υn|

p(x)dx + d2

∫
RN
|∇υn|

p(x)−1|υn|dx

≤max
{

d2 −
d2

p+
,

d1 p− + d2

V0 p−

}
ϱ(υn) + |γ|L1(RN ).

Recalling that p− > 1 and ς > 0, we conclude that the desired conclusion.

Theorem 5.2. If conditions (H) holds, then equation (HV) has a strong generalized solution in E.
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Proof. We know that {υn} is bounded in E by Lemma 5.2. Since E is reflexive, then

υn ⇀ υ in E, for some υ ∈ E. (5.2)

Lemma 5.1 indicates that the Nemytskii operator Nh : E → E∗ given by

Nh(υ) = h(x, υ,∇υ), for any υ ∈ E,

is well defined, and we can find that constants C1,C2 > 0 satisfy

∥Nh(υn)∥E∗ ≤
(
|γ|p′(x) +C1 +C2

)
, υn ∈ E.

Thus, the Nemytskii operator Nh is bounded. In association with (5.2), then

{Nh(υn)}n∈N is bounded in E∗. (5.3)

The boundedness of the operator −∆V
λ : E → E∗ implies that

{−∆V
λυn − Nh(υn)}n∈N is also bounded in E∗. (5.4)

Again, by the reflexivity of E∗, we obtain

−∆V
λυn − Nh(υn) ⇀ κ in E∗, (5.5)

for some κ ∈ E∗.
Let ζ ∈ ∪∞i=1En, then we can find m ∈ N such that ζ ∈ Em. So, Theorem 5.1 implies that equality (5.1)

is ture for any n ≥ m. As n→ ∞ in (5.1), then

⟨κ, ζ⟩ = 0 for each ζ ∈ ∪∞i=1En.

Since ζ ∈ ∪∞i=1En is dense in E∗, then we deduce that κ = 0. Therefore, (5.5) becomes

−∆V
λυn − Nh(υn) ⇀ 0 in E∗. (5.6)

Next, choose ψ = υn in (5.1), that is,

⟨−∆V
λυn, υn⟩ = h(x, υn,∇υn), for any n ∈ N. (5.7)

In addition to this, from (5.6) we have

⟨−∆V
λυn − Nh(υn), υ⟩ → 0, as n→ ∞. (5.8)

Combining (5.7) and (5.8), we get

lim
n→∞
⟨−∆V

λυn − Nh(υn), υn − υ⟩ = 0. (5.9)

From Lemma 5.1, choosing the test function ξ = υn − υ, we get∣∣∣∣∣∫
RN

h(x, υ,∇υ)(υn − υ)dx
∣∣∣∣∣ ≤ (

2|γ|p′(x) +C1 +C2

)
|υn − υ|p(x),
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Due to the compact embeddings E ↪→↪→ Lp(x)(RN), we deduct that υn → υ in Lp(x)(RN). The {υn}n∈N is
bounded in E and, hence, in Lp(x)(RN). Also, {∇υn}n∈N is bounded in Lp(x)(RN). This implies that∫

RN
h(x, υn,∇υn)(υn − υ)dx→ 0 as n→ ∞. (5.10)

Consequently, (5.4) gives us
lim
n→∞
⟨−∆V

λυn, υn − υ⟩ = 0 (5.11)

Obviously, (5.2), (5.6) and (5.11) show that υ ∈ E is a strong generalized solution to equation (HV).
This completes the proof.

Corollary 5.1. Assume that the equation (HV) has a strong generalized solution υ ∈ E stated in
Theorem 5.2, then υ ∈ E is a weak solution to equation (HV). The same holds in the opposite sense.

Proof. If ω ∈ E is a strong generalized solution to equation (HV), then

lim
n→∞
⟨−∆V

λυn, υn − υ⟩ = 0,

which means υn → υ in E, since −∆V
λ fulfills the (S +)-property. Using again Definition 5.1, we have

−∆V
λυn − h(·, υn(·),∇υn(·)) ⇀ 0 in E∗ as n→ ∞,

and it follows that
−∆V

λυ − h(·, υ(·),∇υ(·)) = 0.

Thus, υ ∈ E is a weak solution of equation (HV) (see (2.3)). If posing υ = υn, it is clear that any weak
solution is a strong generalized solution for equation (HV).

Remark 5.1. Note that for the problem (HV), each weak solution is a generalized solution. However,
a generalized solution does not necessarily derive the notion of weak solution. For the definition of a
generalized solution, one can refer to [16].

6. Conclusions

In this article, we study a class of Schrödinger equations inRN . One of the main features of the paper
is the presence of a new double phase operator with variable exponents. We give the corresponding
Musielak-Orlicz Sobolev spaces and compact embedding result. Another significant characteristic of
the paper is the presence of convection term. Based on the topological degree theory and Galerkin
method, we not only obtain the existence of strong generalized solutions, but also the existence of
weak solutions.
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