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1. Introduction

We are concerned with the following nonlinear complementarity problem (NCP(A, φ)),

zTw = 0, z ≥ 0, w = Az + φ(z) ≥ 0, (1.1)

here, z ∈ Rn is to be found, and A = (ai j) ∈ Rn×n is given with φ(z) = (φ1(z1), φ2(z2), . . . , φn(zn))T

satisfying |dφi
dzi
| ≤ ψ̄i, where ψ̄i is the upper boundary of | dφi

dzi
|, for i = 1, 2, ..., n. For such a problem

and its general cases, some researchers have studied this (see [1–8] and the cited references). Other
types of complementary problems (CP) have also been explored, such as, the linear complementarity
problem (LCP), the implicit complementarity problem (ICP), the horizontal linear complementarity
problem (HLCP), the vertical linear complementarity problems (VLCP), and the horizontal nonlinear
complementarity problem (HNCP), etc. (see [9–16] for details).

To calculate the numerical solution of the NCP, many researchers have proposed many practical
methods, such as, the projection-filter method [17], the interior proximal point algorithm [18], and the
smoothing least square method [19]. If φ(z) = q ∈ Rn in (1.1), the NCP(A, φ) is transformed into the
simplest form, i.e., the linear complementarity problem LCP(A, q), which has attracted many
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researchers to study this numerically, and various kinds of popular numerical solving approaches have
been proposed in recent decades ( [20–22]). Among these numerical approaches, the modulus-based
type matrix splitting iteration methods are very effective for solving the LCP with some particular
system matrices (see [9, 23–26]). For the high effectiveness of such modulus-based type iteration
methods, some researchers have generalized these methods to deal with other complementarity
problems, such as, the nonlinear complementarity problems [3, 4, 6–8], the implicit complementarity
problems [5, 10, 27], the horizontal complementarity problems [11, 28], and the vertical linear
complementarity problems [12, 14, 15].

Motivated by the recent works in the LCPs and the developments of the NCPs, we continue to
study the modulus-based type iteration methods for the NCP in this paper. Wu and Li proposed a
new modulus-based matrix splitting iteration method to solve the LCP in [22], which differs to the
existing modulus-based type matrix splitting iteration methods, appears simple in form, and shows
high efficiency in the given experiments. We extend such methods to solve a kind of NCP and further
discuss the convergence. In our discussion, the general convergence conditions of this method are first
presented. Then, in order to facilitate practical applications, for the special matrix splitting of A and the
special parameter matrix Φ, we propose some concrete convergence regions under certain conditions.
Moreover, the quasi-optimal parameter matrix of the method is discussed and provided with respect to
the spectral radius. The major results are shown in Section 3. Besides, some numerical examples are
given to verify the effectiveness and the convergence of the method.

2. The SMMS iteration method

Initially, we propose the simplified modulus-based matrix splitting (SMMS) iteration method for
solving (1.1), and then give some preliminaries for later discussion. Some related definitions and
notations, such as, M-matrix, H+-matrix, the comparison matrix ⟨A⟩, and H-splitting, readers refer
to [9, 23] and the cited references.

For a positive diagonal matrix Φ, the NCP (1.1) is equivalent to

(Φz)Tw = 0, z ≥ 0, w = Az + φ(z) ≥ 0, (2.1)

thus, based on Lemma 3.1 in [22], the NCP (1.1) can be reformulated as an equivalent fixed-point
equation

Φz + (Az + φ(z)) = |(Az + φ(z)) − Φz|. (2.2)

It follows that if A = F −G is a splitting of A, Eq (2.2) becomes

(Φ + F)z = Gz + |(A − Φ)z + φ(z)| − φ(z). (2.3)

So, if Φ + F is invertible, we obtain the SMMS iteration method below for solving the NCP (1.1).

The simplified modulus-based matrix splitting (SMMS) iteration method
• Given any initial victor z(0) ∈ Rn, for k=0,1,2,..., compute z(k+1) by solving

(Φ + F)z(k+1) = Gz(k) + |(A − Φ)z(k) + φ(z(k))| − φ(z(k)). (2.4)

• If ∥min(z(k), Az(k) + φ(z(k)))∥2 < ε, the iteration stops, where ∥ · ∥2 denotes the 2-norm of vectors
and ε is a given positive constant.
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The SMMS iteration method differs from the modulus-based matrix splitting (MMS) iteration
method [3, 4], and one difference is that the former does not involve new vector x. Obviously, the
iterative form of the SMMS iteration method is relatively simple. For the SMMS iteration method
dealing with the linear complementarity problem (LCP), as well as the numerical experiments
compared with other methods, readers refer to [22] for details.

Suppose that z(∗) is the solution of the NCP (1.1), then from (2.3) and (2.4), there is a relationship if
φi(zi) is differentiable for i = 1, 2, ..., n, that is,

(Φ + F)(z(k+1) − z(∗))
=G(z(k) − z(∗)) + |(A − Φ)z(k) + φ(z(k))| − |(A − Φ)z(∗) + φ(z(∗))| − φ(z(k)) + φ(z(∗))
=(G − Ψ(k))(z(k) − z(∗)) + |(A − Φ)z(k) + φ(z(k))| − |(A − Φ)z(∗) + φ(z(∗))|,

(2.5)

where Ψ(k) = diag((dφ1
dz1
|ξ(k)

1
, dφ2

dz2
|ξ(k)

2
, . . . , dφn

dzn
|ξ(k)

n
)) is a diagonal matrix, and ξ(k) = (ξ(k)

1 , ξ(k)
2 , . . . , ξ(k)

n )T with

ξ(k)
i ∈ [z(k)

i , z
(∗)
i ] or ξ(k)

i ∈ [z(∗)
i , z

(k)
i ] for i = 1, 2, . . . , n. In our later discussion, without special statements,

we always assume that

|Ψ(k)| ≤ Ψ̄ = diag((ψ̄1, ψ̄2, . . . , ψ̄n)) with k = 1, 2, .... (2.6)

3. Convergence analysis

We discuss the convergence of the SMMS iteration method (2.4) for solving the NCP (1.1) with
φ(z) satisfying (2.6). In our discussion, we assume that the NCP (1.1) has a unique solution. We first
give the convergence conclusions based on (2.5) from the spectral radius and the matrix norm, and then
study some concrete convergence conditions in terms of the special matrix splittings.

Theorem 3.1. Let A = F−G be a splitting of A withΦ+F being nonsingular. If either of the conditions
below holds:

δ1 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|)

})
< 1 and

δ2 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|Φ + F)−1| (|F − Φ| + 2|G − Ψ(k)|)

})
< 1,

(3.1)

then {z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn.

Proof. Let z(∗) be the unique solution of (1.1), for Φ + F is invertible, from Eq (2.5),

z(k+1) − z(∗) = (Φ + F)−1((G − Ψ(k))(z(k) − z(∗)) + |(A − Φ)z(k) + φ(z(k))| − |(A − Φ)z(∗) + φ(z(∗))|). (3.2)

We take the absolute value function on both sides of Eq (3.2), then

|z(k+1) − z(∗)| ≤|(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|) |z(k) − z(∗)|

≤|(Φ + F)−1| (|F − Φ| + 2|G − Ψ(k)|) |z(k) − z(∗)|.
(3.3)

Since Ψ(k) is a diagonal matrix and satisfies |Ψ(k)| ≤ Ψ̄, we know that both sup|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|G −

Ψ(k)| + |A − Φ + Ψ(k)|)
}

and sup|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|F − Φ| + 2|G − Ψ(k)|)

}
exist. Thus, if either of the
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inequalities

δ1 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|)

})
< 1 and

δ2 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|F − Φ| + 2|G − Ψ(k)|)

})
< 1

holds, from (3.3), it is easy to know that {z(k)}+∞k=0 produced by the SMMS iteration method (2.4)
converges for any z(0) ∈ Rn. □

Similarly, if we take the 2-norm ∥ · ∥2 on both sides of Eq (3.2) in Theorem 3.1, the relationship
below holds,

∥z(k+1) − z(∗)∥2 ≤∥(Φ + F)−1∥2 (∥G − Ψ(k)∥2 + ∥A − Φ + Ψ(k)∥2) ∥z(k) − z(∗)∥2

≤∥(Φ + F)−1∥2 (∥F − Φ∥2 + 2∥G − Ψ(k)∥2) ∥z(k) − z(∗)∥2.
(3.4)

Based on (3.4), we obtain the convergence conclusion below from the 2-norm ∥ · ∥2.

Theorem 3.2. Let A = F−G be a splitting of A withΦ+F being nonsingular. If either of the conditions
below holds:

σ1 = sup
|Ψ(k) |≤Ψ̄

{
∥(Φ + F)−1∥2 (∥G − Ψ(k)∥2 + ∥A − Φ + Ψ(k)∥2)

}
< 1 and

σ2 = sup
|Ψ(k) |≤Ψ̄

{
∥(Φ + F)−1∥2 (∥F − Φ∥2 + 2∥G − Ψ(k)∥2)

}
< 1,

(3.5)

then {z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn.

We remark here that for δ1, δ2 in Theorem 3.1, and σ1, σ2 in Theorem 3.2, the symbol ‘sup|Ψ(k) |≤Ψ̄’
can be put inside, that is

δ1 = ρ
(
|(Φ + F)−1| sup

|Ψ(k) |≤Ψ̄

{|G − Ψ(k)| + |A − Φ + Ψ(k)|}
)
< 1,

δ2 = ρ
(
|(Φ + F)−1| (|F − Φ| + 2 sup

|Ψ(k) |≤Ψ̄

{|G − Ψ(k)|})
)
< 1,

σ1 = ∥(Φ + F)−1∥2 sup
|Ψ(k) |≤Ψ̄

{∥G − Ψ(k)∥2 + ∥A − Φ + Ψ(k)∥2} < 1,

σ2 = ∥(Φ + F)−1∥2 (∥F − Φ∥2 + 2 sup
|Ψ(k) |≤Ψ̄

{∥G − Ψ(k)∥2}) < 1.

Obviously, these formulas are more convenient in practice. In addition, if the detailed range of Ψ(k)

is known, these convergence conditions in these two theorems can be more refined. For example, if
we know that Ψ̄1 ≤ Ψ

(k) ≤ Ψ̄2 for k = 1, 2, ..., n, and both bounds Ψ̄1 and Ψ̄2 can be reached, then the
symbol ‘sup|Ψ(k) |≤Ψ̄’ can be replaced by ‘supΨ̄1≤Ψ(k)≤Ψ̄2

’ in the formulas. Moreover, for this case, δ1 can
be refined as

ι = ρ
(
|(Φ + F)−1| max(|G − Ψ̄1| + |A − Φ + Ψ̄1|, |G − Ψ̄2| + |A − Φ + Ψ̄2|)

)
< 1,

where ‘max’ is a function in matlab software. In addition, we can see that all the conditions are only
sufficient conditions to ensure that the SMMS iteration method converges, not necessary conditions.

AIMS Mathematics Volume 9, Issue 4, 8594–8609.



8598

When these conditions are not satisfied, the iteration method may also converge. It is apparent that
convergence conditions δ1 < 1 and σ1 < 1 are more precise than the other two convergence conditions.

Next, we consider some special convergence conditions. We assume that F is symmetric positive
definite in the matrix splitting A = F−G, and Φ = ϕI is a given positive scalar matrix. Then, we obtain
the convergence conclusion.

Theorem 3.3. Let A = F−G be a matrix splitting of A with F being symmetric positive definite. Denote
the smallest and the largest eigenvalues of F by λ1 and λn, respectively, and τ = sup|Ψ(k) |≤Ψ̄{∥G−Ψ

(k)∥2}.
Set Φ = ϕI(ϕ > 0), if τ < λ1, then when

ϕ ∈ (
λn − λ1

2
+ τ,+∞), (3.6)

{z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn. In addition, ϕ =
λ1 + λn

2
is a quasi-optimal parameter.

Proof. Since F is symmetric positive definite, the expression of σ2 in Theorem 3.2 can be refined as

σ2 = sup
|Ψ(k) |≤Ψ̄

{
∥(Φ + F)−1∥2 (∥F − Φ∥2 + 2∥G − Ψ(k)∥2)

}
= sup
|Ψ(k) |≤Ψ̄

{
∥(ϕI +G)−1∥2 (∥F − ϕI∥2 + 2∥G − Ψ(k)∥2)

}

=
maxλ

{
|ϕ − λ|

}
+ 2τ

ϕ + λ1
=


λn − ϕ + 2τ
ϕ + λ1

, if ϕ ≤
λ1 + λn

2
,

ϕ − λ1 + 2τ
ϕ + λ1

, if ϕ >
λ1 + λn

2
,

(3.7)

where λ represents the eigenvalue of F. Therefor, based on (ii) in Theorem 3.2, solving

(I)


λn − ϕ + 2τ
ϕ + λ1

< 1,

ϕ ≤
λ1 + λn

2
,

and (II)


ϕ − λ1 + 2τ
ϕ + λ1

< 1,

ϕ >
λ1 + λn

2
,

(3.8)

in turn, we obtain the convergence region of parameter ϕ as follows.
From (I), if τ < λ1, the parameter ϕ satisfies

ϕ ∈ (
λn − λ1

2
+ τ,

λ1 + λn

2
].

From (II), if τ < λ1, the parameter ϕ satisfies

ϕ ∈ (
λ1 + λn

2
,+∞).

Combining (I) with (II), the convergence region of ϕ is

ϕ ∈ (
λn − λ1

2
+ τ,+∞).

Then, the first part of this theorem is proved.
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For the second part of Theorem 3.3, we consider the functions appeared in (3.8), that is

f1(ϕ) =
λn − ϕ + 2τ
ϕ + λ1

and f2(ϕ) =
ϕ − λ1 + 2τ
ϕ + λ1

,

respectively. It is easy to know that if τ < λ1, f1(ϕ) is decreasing when

ϕ ∈ (
λn − λ1

2
+ τ,

λ1 + λn

2
],

and f2(ϕ) is increasing when

ϕ ∈ [
λ1 + λn

2
,+∞).

So, ϕ =
λ1 + λn

2
is the minimum value point of the above two functions. According to that σ2 < 1

is a convergence condition of the SMMS iteration method (2.4), and the smaller the value of σ2,

the better the convergence in general, we know that ϕ =
λ1 + λn

2
is a quasi-optimal parameter when

Φ = ϕI (ϕ > 0). Then the second part of this theorem is verified. □

Corollary 3.1. Let A = F − G be a matrix splitting with F satisfying F = tI (t > 0). Denote
τ = sup|Ψ(k) |≤Ψ̄{∥N − Ψ

(k)∥2}. Set Φ = ϕI(ϕ > 0), if τ < t, then when

ϕ ∈ (τ,+∞), (3.9)

{z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn. In addition, ϕ = t is
a quasi-optimal parameter.

Proof. Based on (ii) in Theorem 3.2, by the similar proof way of Theorem 3.3, we can have

σ2 = sup
|Ψ(k) |≤Ψ̄

{
∥(Φ + F)−1∥2 (∥F − Φ∥2 + 2∥G − Ψ(k)∥2)

}
= sup
|Ψ(k) |≤Ψ̄

{
∥(ϕI + tI)−1∥2 (∥tI − ϕI∥2 + 2∥G − Ψ(k)∥2)

}
=
|ϕ − t| + 2τ
ϕ + t

=


t − ϕ + 2τ
ϕ + t

, if ϕ ≤ t,

ϕ − t + 2τ
ϕ + t

, if ϕ > t.

(3.10)

Then, solving

(I)


t − ϕ + 2τ
ϕ + t

< 1,

ϕ ≤ t,
and (II)


2τ + ϕ − t
ϕ + t

< 1,

ϕ > t,
(3.11)

in turn, for (I), if τ < t, ϕ satisfies ϕ ∈ (τ, t], and for (II), if τ < t, ϕ satisfies ϕ ∈ (t,+∞). So, combining
these two cases, the convergence region of ϕ is (τ,+∞) if τ < t. Then, the first part of Corollary 3.1 is
verified.
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Similar to the proof of Theorem 3.3, for the function f1(ϕ) =
t − ϕ + 2τ
ϕ + t

in (3.11) is decreasing

when ϕ ∈ (τ, t], and the function f2(ϕ) =
2τ + ϕ − t
ϕ + t

in (3.11) is increasing when ϕ ∈ [t,+∞), we know

that ϕ = t is a quasi-optimal parameter when Φ = ϕI with ϕ ∈ (τ,+∞). Therefore, the second part of
Corollary 3.1 is proved. □

Next, we assume that the system matrix A is an H+-matrix, and consider the convergence region of
Φ in the SMMS iteration method when the matrix splitting A = F −G satisfies certain conditions.

Theorem 3.4. Assume that A is an H+-matrix and A = F −G is a splitting of A with

⟨F⟩ − |G| − |Ψ(k)| + Ψ(k)

being an M-matrix for any |Ψ(k)| ≤ Ψ̄. If Φ satisfies

Φ ≥ D + Ψ̄, (3.12)

then {z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn, where D
represents the diagonal part of A.

Proof. From the first relationship of (3.3) in the proof of Theorem 3.1, that is

|z(k+1) − z(∗)| ≤ |(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|) |z(k) − z(∗)|,

we will verify that

ρ
(
|(Φ + F)−1|

(
|G − J(k)| + |Φ − A − Ψ(k)|

))
< 1 (3.13)

for any |Ψ(k)| ≤ Ψ̄ under the conditions given in this theorem.
Since ⟨F⟩ − |G| +Ψ(k) − |Ψ(k)| is an F-matrix for any |Ψ(k)| ≤ Ψ̄, according to ⟨F⟩ − |G| ≥ ⟨F⟩ − |G| +

Ψ(k) − |Ψ(k)| and ⟨F⟩ ≥ ⟨F⟩ − |G|, we know that both ⟨F⟩ − |G| and ⟨F⟩ are M-matrices. Thus Φ+ ⟨F⟩ is
an M-matrix. Then, these two inequalities

|(Φ + F)−1| ≤ (Φ + ⟨F⟩)−1 and
|(Φ + F)−1|

(
|G − Ψ(k)| + |Φ − A − Ψ(k)|

)
≤ (Φ + ⟨F⟩)−1 (|G − Ψ(k)| + |Φ − A − Ψ(k)|

) (3.14)

hold. For the nonnegative matrix (Φ + ⟨F⟩)−1 (|G − Ψ(k)| + |Φ − A − Ψ(k)|
)

in the second inequality
of (3.14), we consider the matrix splitting

(Φ + ⟨F⟩) −
(
|G − Ψ(k)| + |Φ − A − Ψ(k)|

)
=(Φ + ⟨F⟩) −

(
|G − Ψ(k)| + |Φ − D − Ψ(k)| + |B|

)
≥(Φ + ⟨F⟩) −

(
|G| + 2|J(k)| + Φ − D − 2Ψ(k) + |B|

)
≥2(⟨F⟩ − |G| − |Ψ(k)| + Ψ(k)),

(3.15)

here, we use the inequality relationship D − |B| ≥ ⟨F⟩ − |G| appeared in [8]. Therefor, according to the
condition that ⟨F⟩ − |G| − |Ψ(k)|+Ψ(k) is an M-matrix for any |Ψ(k)| ≤ Ψ̄, we know that (Φ+ ⟨F⟩)−

(
|G−
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Ψ(k)|+ |Φ−A−Ψ(k)|
)

is an M-matrix too. Thus, the matrix splitting (Φ+⟨F⟩)−
(
|G−Ψ(k)|+ |Φ−A−Ψ(k)|

)
in (3.15) is an M-splitting, so

ρ((Φ + ⟨F⟩)−1(|G − Ψ(k)| + |Φ − A − Ψ(k)|
)
) < 1

(see [9, 29]). Thus, based on the spectral theories of nonnegative matrices (see [30]) and (3.14), we
obtain that

ρ
(
|(Φ + F)−1|

(
|G − Ψ(k)| + |Φ − A − Ψ(k)|

))
≤ ρ
(
(Φ + ⟨F⟩)−1(|G − Ψ(k)| + |Φ − A − Ψ(k)|

))
< 1

for any |Ψ(k)| ≤ Ψ̄. So, the inequality

δ1 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|)

})
< 1

holds. Therefor, from (i) of Theorem 3.1, this theorem is established. □

Next, a special matrix splitting of A is considered for the SMMS iteration method (2.4), that is, the
accelerated overrelaxation (AOR) splitting, which is defined as

A = Fνω −Gνω, Fνω =
1
ν

(D − ωL), Gνω =
1
ν

[(1 − ν)D + (ν − ω)L + νU], ν > 0, ω ≥ 0, (3.16)

and has been studied by many researchers in the complementarity literatures [3, 9, 21], where D is
the the diagonal part of A, −L and −U are the strictly lower triangular and strictly upper triangular
parts of A, respectively. For such matrix splitting, the iteration method (2.4) is accordingly called the
simplified modulus-based accelerated overrelaxation (SMAOR) iteration method. When we let ν, ω be
some special values in (3.16), the SMAOR iteration method turns to be some special cases, i.e., the
simplified modulus-based successive overrelaxation (SMSOR) iteration method (ν = ω), the simplified
modulus-based Gauss Seidel (SMGS) iteration method (ν = ω = 1), and the simplified modulus-based
Jacobian (SMJ) iteration method (ν = 1, ω = 0). We have the following conclusion for the SMAOR
iteration method.

Theorem 3.5. Assume that A is an H+-matrix and A = F − G is the AOR splitting with Φ satisfying
Φ ≥ D + Ψ̄. If any of the conditions below holds:

(i) D > Ψ̄, ρ((D − Ψ̄)−1(|L| + |U |)) < 1, 0 < ν ≤ 1, ω ≤ ν,

(ii) D > Ψ̄, ρ((D − Ψ̄)−1(
ω

ν
|L| + |U |)) < 1, 0 < ν ≤ 1, ω ≥ ν,

(iii)
1
ν

D > Ψ̄, ρ((
1
ν

D − Ψ̄)−1(|L| + |U |)) < 1, ν > 1, ω ≤ ν,

(iv)
1
ν

D > Ψ̄, ρ((
1
ν

D − Ψ̄)−1(
ω

ν
|L| + |U |)) < 1, ν > 1, ω ≥ ν,

(3.17)

then {z(k)}+∞k=0 produced by the SMAOR iteration method converges for any z(0) ∈ Rn.

Proof. Since A = F −G is the AOR splitting and A is an H+ matrix, we know that ⟨F⟩ is an M-matrix
and ⟨F⟩ + Φ is an M-matrix for any nonnegative diagonal matrix Φ. For Φ ≥ D + Ψ̄, just as the proof
of Theorem 3.4, for the expression (3.15), we have
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(Φ + ⟨F⟩) −
(
|G − Ψ(k)| + |Φ − A − Ψ(k)|

)
=(Φ + ⟨F⟩) −

(
|G − Ψ(k)| + (Φ − D − Ψ(k)) + |B|

)
≥⟨F⟩ − |G| − |Ψ(k)| + Ψ(k) + D − |B|

=
1 + ν − |1 − ν|

ν
D − |Ψ(k)| + Ψ(k) −

ν + ω + |ν − ω|

ν
|L| − 2|U |

=
2 min{1, ν}

ν
D − |Ψ(k)| + Ψ(k) −

2 max{ν, ω}
ν

|L| − 2|U |

=


2D − |Ψ(k)| + Ψ(k) −

2 max{ν, ω}
ν

|L| − 2|U | when 0 < ν ≤ 1,
2
ν

D − |Ψ(k)| + Ψ(k) −
2 max{ν, ω}

ν
|L| − 2|U | when ν > 1,

≥



2D − 2Ψ̄ − 2|L| − 2|U | when 0 < ν ≤ 1 and ω ≤ ν,

2D − 2Ψ̄ −
2ω
ν
|L| − 2|U | when 0 < ν ≤ 1 and ω ≥ ν,

2
ν

D − 2Ψ̄ − 2|L| − 2|U | when ν > 1 and ω ≤ ν,
2
ν

D − 2Ψ̄ −
2ω
ν
|L| − 2|U | when ν > 1 and ω ≥ ν.

(3.18)

Under the conditions (3.17), we know that each of four matrices in the last inequality of (3.18) is an
M-matrix. Then, the splitting (Φ+⟨F⟩)−

(
|G−Ψ(k)|+ |Φ−A−Ψ(k)|

)
appeared in (3.18) is an M-splitting.

Then

ρ
(
|(Φ + F)−1|

(
|G − Ψ(k)| + |Φ − A − Ψ(k)|

))
≤ ρ
(
(Φ + ⟨F⟩)−1(|G − Ψ(k)| + |Φ − A − Ψ(k)|

))
< 1

for any |Ψ(k)| ≤ Ψ̄. So the convergence condition

δ1 = ρ
(

sup
|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|)

})
< 1

holds. Therefor, from Theorem 3.1, the theorem is established. □

According to the proofs of Theorems 3.4 and 3.5, we can find that if Ψ(k) ≥ O for any nonnegative
integer k, and then −|Ψ(k)| + Ψ(k) = O holds. Thus, −|Ψ(k)| + Ψ(k) appeared in (3.15) and (3.18) can
be deleted. Thus, we can obtain the following two corollaries derived from these two Theorems,
respectively, and the proofs are omitted.

Corollary 3.2. Assume that A is an H+-matrix and A = F −G is an H-splitting with O ≤ Ψ(k) ≤ Ψ̄ for
any k = 1, 2, · · · . If Φ satisfies

Φ ≥ D + Ψ̄, (3.19)

then {z(k)}+∞k=0 produced by the SMMS iteration method (2.4) converges for any z(0) ∈ Rn.

Corollary 3.3. Assume that A is an H+-matrix and A = F −G is the AOR splitting with O ≤ Ψ(k) ≤ Ψ̄

for any k = 1, 2, · · · . If Φ satisfies Φ ≥ D + Ψ̄ and any of the following conditions holds:

(i) ρ
(
D−1(|L| + |U |)

)
< 1, 0 < ν ≤ 1, ω ≤ ν, (ii) ρ

(
D−1(

ω

ν
|L| + |U |)

)
< 1, 0 < ν ≤ 1, ω ≥ ν,

(iii) ρ
(
D−1(|L| + |U |)

)
<

1
ν
, ν > 1, ω ≤ ν, (iv) ρ

(
D−1(ω|L| + ν|U |)

)
< 1, ν > 1, ω ≥ ν,
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then {z(k)}+∞k=0 produced by the SMAOR iteration method converges for any z(0) ∈ Rn.

We remark here that for an H+-matrix A, the inequality ρ
(
D−1(|L| + |U |)

)
< 1 holds, and it follows

that the SMAOR iteration method always converges for any z(0) ∈ Rn when 0 < ν ≤ 1 and ω ≤ ν

according to (i) of Corollary 3.3. In addition, although some proposed convergence conditions are
similar to that of [8], the SMMS iteration method discussed here differs to the MMS iteration method
involved in [3, 4, 8].

4. Numerical examples

We illustrate some numerical examples in this section. We denote the number of iteration steps and
the elapsed time by IT and CPU, respectively. The norm of residual vector of the NCP is denoted by
RES(z), which is defined as follows

RES(z) = ||min(z, Az + φ(z))||2.

z(k) represents the kth numerical solution, and we set the iteration to cease if IT reaches 1000 or
RES(z(k)) < 1.0e − 5. In the first two experiments, we use A(η, µ) = M + ηN + µS to generate the
matrix A in the NCP (1.1), where η and µ are two constants, M,N and S are three given matrices.
M = Tridiag(−I,T,−I) ∈ Rn×n is a block-tridiagonal matrix, where S is a diagonal matrix,
N = tridiag(0, 0, 1) ∈ Rn×n and T = tridiag(−1, 4,−1) ∈ Rm×m are two tridiagonal matrix with n = m2.
We set z(∗) = (0, 1, 0, 1, . . .)T ∈ Rn and z(0) = (0, 0, 0, 0, . . .)T ∈ Rn to be the solution of (1.1) and the
initial vector, respectively.

Example 4.1. We test the convergence conditions given in Theorem 3.1 and compare the simplified
modulus-based Gauss-Seidel(SMGS) iteration method with the modulus-based Gauss-Seidel(MGS)
iteration method [3]. We set φ(z) in the NCP (1.1) to be

φ(z) = (z1 − 2 sin(z1) + q1, z2 − 2 sin(z2) + q2, . . . , zn − 2 sin(zn) + qn)T ∈ Rn

with q = −(Az(∗) + φ(z(∗))), then
dφi

dzi
= 1 − 2 cos(zi) ∈ [−1, 3], for i = 1, 2, . . . , n.

We set S = diag((1, 2, 3, 1, 2, 3, . . .)) ∈ Rn×n, and consider cases A(0, 2) and A(1, 1), which are a
symmetric positive definite matrix and a nonsymmetric P-matrix, respectively. Let Φ be the diagonal
part of A, i.e., Φ = D in both the SMGS iteration method (2.4) and the MGS iteration method [3]. Then
for A(0, 2), δ1 = 0.9080 when n = 2500 and δ1 = 0.9609 when n = 3600, and for A(1, 1), δ1 = 0.7024
when n = 2500 and δ1 = 0.8218 when n = 3600. So the the SMGS is convergent for any z(0) ∈ Rn

based on Theorem 3.1. Table 1 below shows the numerical comparison.

Table 1. Comparison of the SMGS iteration method and the MGS iteration method.

A(0, 2) A(1, 1)
n IT CPU RES IT CPU RES

SMGS 2500 11 0.001986 2.6220e-06 11 0.002040 8.4601e-06
3600 13 0.002779 4.1634e-06 14 0.003468 6.8549e-06

MGS 2500 11 0.025748 3.6082e-06 13 0.031206 4.7946e-06
3600 13 0.060169 9.7871e-06 14 0.062419 4.7127e-06
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From Table 1, for cases A(0, 2) and A(1, 1), although the ITs are similar for the two iteration
methods, the elapsed time is significantly different, i.e., the former SMGS iteration method costs less
time than the latter MGS iteration method. This example shows that the SMMS iteration method (2.4)
is usually more efficient than the MMS iteration method.

Example 4.2. We test the convergence conditions given in Theorem 3.3. We set φ(z) in (1.1) the
NCP (1.1) to be

φ(z) = (z1 − 2 cos(z1) + q1, z2 − 2 cos(z2) + q2, . . . , zn − 2 cos(zn) + qn)T ∈ Rn

with q = −(Az(∗) + φ(z(∗))), then

dφi

dzi
= 1 + 2 sin(zi) ∈ [−1, 3], for i = 1, 2, . . . , n.

Four cases are considered for A in the NCP (1.1), that is A(0, 4), A(0, 6), A(2, 3) and A(1, 3) with

S 1 = diag((3, 5, 5, 3, 5, 5, . . .)), S 2 = diag((2, 3, 4, 2, 3, 4, . . .)),
S 3 = diag((4, 3, 5, 4, 3, 5, . . .)), S 4 = diag((4, 5, 4, 4, 5, 4, . . .)),

respectively. Set F = triu(A,−1) − triu(A, 2) in A = F − G for the first two cases, and set F =
triu(A) − triu(A, 1) + triu(A,−1) − triu(A) + (triu(A,−1) − triu(A))T for the other two cases. We set
n = 1600, then all cases satisfy the condition τ < λ1 given Theorem 3.3, and the SMMS iteration

method converges for any z(0) ∈ Rn if we set Φ = ϕI with ϕ ∈ (
λn − λ1

2
+ τ,+∞). In order to see the

numerical results clearly, we set

ϕ =
λn − λ1

2
+ τ : δ :

λn + λ1

2
+ 5δ

where δ =
λ1 − τ

5
. Then

λn + λ1

2
is the fourth point in the 11 points. We test the convergence condition

σ2 < 1 given in Theorem 3.2. Table 2, Figures 1 and 2 below show the numerical results.

From Table 2, Figures 1 and 2, when Φ =
λn + λ1

2
, that is, the quasi-optimal parameter given

in Theorem 3.3, IT is not very large, and the best parameter is sometimes near the quasi-optimal
parameter in this example. In addition, we also can see that though the convergence condition is
obtained by inequality reduction, the size of the boundary value is not exactly consistent with IT.
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Figure 1. The numerical results for A(0, 3), A(0, 6).
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Figure 2. The numerical results for A(2, 3), A(1, 3).

Table 2. The numerical results of the SMMS iteration method when Φ = ϕI.
A(0, 4), τ = 4.9941, λ1 = 15.7258

ϕ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9
σ2 1.0000 0.7536 0.5613 0.4070 0.4604 0.5049 0.5426 0.5750 0.6031
IT 35 21 15 11 9 10 12 14 16

A(0, 6), τ = 4.9941, λ1 = 15.7302
ϕ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9
σ2 1.0000 0.7659 0.5808 0.4309 0.4802 0.5216 0.5570 0.5874 0.6140
IT 33 22 16 13 10 11 13 15 17

A(2, 3), τ = 6.9897, λ1 = 12.4574
ϕ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9
σ2 1.0000 0.8531 0.7263 0.6157 0.6389 0.6594 0.6777 0.6941 0.7089
IT 25 19 15 12 10 10 12 13 14

A(1, 3), τ = 5.9916, λ1 = 14.5548
ϕ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9
σ2 1.0000 0.7803 0.6041 0.4597 0.5043 0.5421 0.5746 0.6028 0.6274
IT 37 22 16 12 9 9 11 13 14

Example 4.3. We test the SMAOR iteration method for solving (1.1). We let A be the block
tridialgonal matrix in [4], i.e., A = Tridiag(T,K,T ) ∈ Rn×n with K = tridiag(−4, 20,−4) ∈ Rns×ns and
T = tridiag(−1, 4,−1) ∈ Rns×ns being two tridiagonal matrices with n = nt × ns, nt = 3 · 2t − 1 and
ns = 2 · 2t − 1, where t is a positive integer. We let φ(z) ∈ Rn in (1.1) be

φ(z) = (2z1 + sin(z1) − cos(z1) + q1, 2z2 + sin(z2) − cos(z2) + q2, . . . , 2zn + sin(zn) − cos(zn) + qn)T.

Then,

dφi

dzi
= 2 + cos(zi) + sin(zi) ∈ [2 −

√
2, 2 +

√
2] for i = 1, 2, . . . , n.

We let t = 4 and Φ be Φ = D + Ψ̄ in the SMAOR iteration method. Then, A is an H+-matrix and 0 ≤
Ψ(k) ≤ Ψ̄ for any k = 1, 2, . . .. According to (i) in Corollary 3.3, we know that when 0 < ν ≤ 1 and ω ≤
ν, the SMAOR iteration method is convergent. In our experiment, we set the discrete values of ν and ω
to be

ν =
1
7

:
1
7

: 1 +
2
7

and ω =
1
7

:
1
7

: 1 +
2
7
.
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Table 3 and Figure 3 below show the numerical results.

Table 3. The numerical results of the SMAOR iteration method.
A = Tridiag(T,K,T ), t = 4, n = 1457, ρ(D−1(|L| + |U |)) = 0.9958 < 1

ρsup ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9
ω1 0.9882 0.9825 0.9781 0.9746 0.9717 0.9693 0.9952 1.1210 1.2295
ω2 1.0970 0.9741 0.9713 0.9689 0.9669 0.9651 0.9923 1.1223 1.2340
ω3 1.1875 1.0781 0.9599 0.9596 0.9591 0.9585 0.9875 1.1221 1.2371
ω4 1.2714 1.1712 1.0562 0.9463 0.9482 0.9493 0.9806 1.1202 1.2388
ω5 1.3577 1.2574 1.1453 1.0352 0.9337 0.9373 0.9715 1.1165 1.2391
ω6 1.4529 1.3388 1.2294 1.1190 1.0159 0.9220 0.9598 1.1110 1.2379
ω7 1.5551 1.4204 1.3101 1.1990 1.0944 0.9984 0.9453 1.1034 1.2351
ω8 1.6570 1.5059 1.3927 1.2777 1.1700 1.0720 1.0171 1.0935 1.2306
ω9 1.7724 1.5953 1.4732 1.3576 1.2458 1.1431 1.0865 1.1628 1.2242
IT ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9
ω1 72 38 27 21 18 26 39 63 99
ω2 70 37 26 20 17 23 32 49 82
ω3 68 36 25 20 16 20 28 40 61
ω4 66 35 25 19 16 18 25 34 49
ω5 65 34 24 19 15 16 22 30 41
ω6 63 33 23 18 15 15 20 26 35
ω7 62 33 23 18 15 14 18 24 31
ω8 60 32 22 17 14 13 17 21 28
ω9 59 31 22 17 14 12 15 20 25
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Figure 3. δ1 and IT for the SMAOR iteration method.

From Table 3 and Figure 2, we can see that this example mainly verifies the first conclusion (i)
given in Corollary 3.3, i.e., when 0 < ν ≤ 1 and ω ≤ ν. For other conclusions given in Corollary 3.3,
such as, ω > ν, ν > 1, ω > 1, the numerical results are not obvious, and only when ω7 > ν6,
δ1 = ρ

(
sup|Ψ(k) |≤Ψ̄

{
|(Φ + F)−1| (|G − Ψ(k)| + |A − Φ + Ψ(k)|)

})
= 0.9984 < 1, which can ensure the

convergence of the SMAOR iteration method (see Theorem 3.1). However, if we decrease the order of
A, for instance, let t = 2, then the cases related to (ii)–(iv) given in Corollary 3.3 will be more, and the
corresponding numerical results are omitted here. In addition, we can also see that the convergence
conditions given in this paper are only sufficient, not necessary, and when ν = ω, i.e., the SMSOR
iteration method is relatively better. Specially, the case ν = ω = 1, i.e., the SMGS iteration method is
good although IT is not the smallest in this example.
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5. Concluding remarks

The SMMS iteration method was extended to solve a kind of nonlinear complementarity problem
in this paper. Both the general convergence conditions and the concrete convergence conditions were
proposed. By comparing the SMGS iteration method with the MGS iteration method, the high
efficiency of the SMMS iteration method was shown. The quasi-optimal parameter conclusion for the
SMMS iteration method was also illustrated by the numerical experiments.
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