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Abstract: In this paper, we developed a nonlinear mathematical model for the transmission of the
monkeypox virus among populations of humans and rodents under the fractal-fractional operators
in the context of Atangana-Baleanu. For the theoretical analysis, the renowned theorems of fixed
points, like Banach’s and Krasnoselskii’s types, were used to prove the existence and uniqueness of
the solutions. Additionally, some results regarding the stability of the equilibrium points and the basic
reproduction number were provided. In addition, the numerical schemes of the considered model
were established using the Adams-Bashforth method. Our analytical findings were supported by the
numerical simulations to explain the effects of changing a few sets of fractional orders and fractal
dimensions. Some graphic simulations were displayed with some parameters calculated from real data
to understand the behavior of the model.
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1. Introduction

Although monkeypox has been extinct for a long while, it has been rediscovered recently. The
disease has returned and is spreading to numerous nations worldwide. The WHO (World Health
Organization) recently announced that the monkeypox (IMIPX) epidemiological situation outbreak
has returned in many countries. There have been numerous cases of monkeypox and clusters
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reported concurrently in nonendemic and endemic states in a variety of geographical locations at this
moment [1]. Retrace the history of IMIPX to about 60 years ago, when laboratory monkeys were
first exposed to it as a viral zoonotic disease in 1958, and illnesses in humans were discovered in
1970 [2]. Many more MIPX cases in Central and Western Africa have been revealed [3]. MIPX is
an infectious disease caused by the IMIPX virus within the Poxviridae family, which belongs to the
class Orthopoxvirus [4—6]. The incubation period for MIPX is typically 7-14 days but it can vary
from 5-21 days. Transmission of the MIPX virus emerges when an individual comes into contact with
the virus from infected animals such as primates and rodents through bites or scratches, from humans
by respiratory droplets, and contact with bodily fluids from a skin lesion on an infected individual,
or from contaminated material with the virus. The symptoms of the MIPX virus infection in humans
are the same to the symptoms of smallpox, which usually include fever, headache, muscle aches,
chills, weariness, and exhaustion, but monkeypox causes swollen lymph nodes while smallpox does
not [7-9]. Presently, no standardized treatment is available for MIPX infection but vaccination against
smallpox can be used to reduce the risk of infection and provides approximately 85% protection against
monkeypox. To prevent virus transmission, people with IMIPX should remain isolated for the duration
of the illness [10-12].

In many branches of natural and applied sciences, scientists and researchers employ dynamical
systems, which utilizes an important role in comprehending the dynamic behavior of real-world
problems. Many researchers have areas of interest in modeling the diffuse of infectious diseases and
the analysis of different factors related to the diffuse of disease, especially a current outbreak in which
emergence and re-emergence of the crisis health like COVID-19 and MIPX, respectively. In this
study, some mathematical models related to MIPX transmission have been created using a differential
system. In 2011, Bhunu et al. [13] established the stability of the transmission dynamics of the MIPX
model. In 2017, They [14] provided a system of IMIPX viral infection transmission dynamics, together
with a combined vaccine and treatment as control measures. Equilibrium points were establishedfor
asymptote stability using the basic reproduction number. In 2019, Somma et al. [15] developed
the model presented in [13] by including a quarantine group and a necessary factor in the human
compartment to manage the transmission of the disease in the population. In 2020, Bankuru et al. [16]
extended the work of [14] and evaluated individual and population-wide vaccination options in terms of
cost and probabilistic disease acquisition using a game theoretical approach. In 2022, Peter et al. [17]
discussed a system of the IMIPX virus. They proved asymptotic stability property for endemic and
disease-free equilibriums on both local and global scales. For more examples, see [18-20].

Fractional calculus, which uses noninteger order instead of integer order, has been invented and
developed to describe various complex model problems. It is commonly recognized that compared
to traditional integer-order systems, noninteger-order systems give more accurate and reliable data
since they have hereditary properties and a description of memory regarding the dynamics of many
diseases. It is also a significant knowledge resource that has attracted the intention of many academics
and researchers in solving the problems arising within the global environment. Some mathematicians
have already introduced the various fractional derivatives offered in fractional calculus. The fractional
operators are proposed according to the different kernels: The power kernel in the Liouville-Caputo
operator, the exponential kernel in the Caputo-Fabrizio derivative, and the Mittag-Leffler kernel in the
Atangana-Baleanu (AIB) derivative operator [21-23]. Recently, Atangana [24] introduced differential
and integral operators called fractal-fractional (IFIF) operators, which merges two orders of fractal
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dimensions and fractional order of some kernels such as the power kernel, the exponential kernel, and
the Mittag-Lefller kernel. In addition to fractional-order integration and differentiation, the advantage
of using the IFIF operator is that it characterizes the current difficulties and challenges that arise in
many problems that cannot be examined with classical operators. Some studies demonstrate that the
IFFF operator is more realistic and helpful in utilizing mathematical model for real-world problems with
real data than integer-order and fractional-order operators [25-27]. Many researchers study dynamical
models related to the said operator, such as the epidemiology of HIV/AIDS model, the pandemic
COVID-19 model, the spreading of malaria disease, the dynamics of the age-structure smoking model,
etc.; the details can be found in [28-32].

According to the review of several articles on IMIPX virus infection, there is not much research
on the spread of MIPX virus with fractional-order operators. However, since the IMIPX returned
in 2022, some researchers have given attention to studying and analyzing the IMIPX problems
for controlling the IMIPX epidemic. For example, in 2022, Mesady et al. [38] formulated the
fractional IMIPX model based on the Caputo’s type derivative. The equilibrium points, the basic
reproduction number, and the stability analysis were investigated in their work. Qurashi et al. [39]
presented a fractional mathematical model within the AIB’s type derivative that depends on the Mittag-
Leffler kernel. The stability of equilibria was examined. Peter et al. [40] studied and investigated
the transmission dynamics and control of the fractional MIPX infection model under the Caputo-
Fabrizio’s type derivative. For more works, see [33, 34]. Even though various researchers widely
use fractional differential systems to solve real-world problems, it is pretty challenging to solve the
exact solutions practically and solve the system of fractional derivatives analytically. Therefore,
various famous and efficient techniques such as the Adams-Bashforth method [35, 36], the Newton
polynomial approach [35,36], and the predictor-corrector technique [36,37] are usually used to solve
the approximated solutions of the fractional differential systems. After composing all the stories and
being inspired by the above discussions, the IFIF operator is very novel in this regard since it is the most
recent operator, and there have not been a lot of literature-based studies on their usage. Additionally,
in the sense of [FIF derivatives, it can explain the memory effect and fractal properties such as the
fractional-order () and fractal-dimension (8), which are essential for explaining phenomena that
occur in the real world. Fractals occur spontaneously in the majority of biological objects. As a
consequence, two-dimensional epidemiological modeling accurately reflects the study’s projections.
The motivation for dealing with fractional systems in our proposed model is to address memory and
hereditary criteria, which are complicated behavioral formats of biological systems. This allows us to
construct a more realistic approach to biological systems. The memory function enables the proposed
models with fractional order to integrate previously acquired information, resulting in more accurate
predictions and translations. Therefore, we aim to study and analyze a model attended by fractional
differential systems to establish memory’s effect on the MIPX model. To set our work apart from that
of others, the [FIF operators in the AB’ type will be utilized in the classical model of IMIPX virus
transmission among five groups of humans and three groups of rodents, which is formulated in [17]
(we call this new model the FIF-IMIPX model). Here, the equilibrium points and their stability for
the proposed model are established with the help of the basic reproduction number. The existence
and uniqueness of the solutions are proven using many kinds of fixed-point theory, such as Banach’s
and Krasnoselskii’s types. Finally, we use the fractional Adams-Bashforth method to obtain the
approximated solutions to the proposed model. The numerical simulations are graphically shown to
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study the evolution of the FIF-IMIPX model against different fractional-orders and fractal-dimensions.
We provide critical qualitative data that will assist the government in establishing control actions for
monkeypox caused by the monkeypox virus.

An overview of the major objectives explained in this paper is declared in the sections as follows:
Section 2 presents some basic concepts of the IFIF operator in the AB’s type, gives details of fixed-point
theory and formulates the fractional IMIPX model via the Mittag-Leffler kernel. Section 3 discusses
the positivity and equilibrium analysis of the [FIF-IMIPX model. The fundamental properties and
qualitative analysis of the proposed model is also discussed. The uniqueness result for the proposed
model is demonstrated by applying Banach’s fixed-point theorem. The existence result is established
by employing Krasnoselskii’s fixed-point theorem in Section 4. The numerical schemes using the
Adams-Bashforth method for the FIF-IMIPX model are presented in Section 5. Moreover, Section 6
offers a discussion of some graphical illustrations to support the major results. The conclusion of the
study is provided in the last section.

2. Preliminaries

2.1. Background materials

Now, we will introduce the foundational definitions of the IFIF operators that are used in this paper.
Assume « is the fractional-order and S is the fractal-dimension. Suppose y(z) is a continuous and
fractal differentiable on (a, b) with S, then we have the following definitions defined as in [24,41].

Definition 2.1. [24] The FF derivative of the function y(t) of order a and dimension 3 in the sense of
Caputo with the Mittag-Leffler kernel is given by

AB(a) (! @ dy(s)
FFM e _ B e
bO,t y(t) T 1_a L ]Ea[ —1 — a(t S) —dsﬁ ds, t>a>0, 2.1)

where a, B € (0,1], AB(a) = 1-a + a/T (@) is the normalization function with AB(0) =

AB(1) = 1, and dy(t)/dP = lin}(y(s) —y(1))/ (5P = ). Moreover, the Mittag-Leffler function is
Nd

defined by B (z) = X2 2 /T(ak + 1), z, @ € C, @ > 0, with C is the complex number set.

Definition 2.2. [24,41] The FTF integral of y(t) of order @ and dimension B in the sense of Caputo
with the Mittag-Leffler kernel is given by

FEM a8 B(1 =) 'y(1) af L a1 gl
IOJY(I)— AB(@) +AIB(a)fa(t $) 1Py (s)ds, t=a>0. (2.2)

Definition 2.3. [24] Let y € C((a,b),R), the fractal-Laplace transform of order B > 0 is given by
Fry(r) = fo 3(¢) exp (=pt) £\ dt. 23)

Lemma 2.4. [41] Consider the following FF initial value problem as follows:

{ FEMp0Py(1) = G(t.y(1)), 1€[0.T], a.Be(0.1]

2.4
¥(0) = yo. 24
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The problem (2.4) can be written as [42]

{ ]F]FMDg:tﬁy(l) :ﬁ;ﬁ-lﬁ(t,y(t)), te€[0,T], apBe(0,1], (2.5)

¥(0) = yo.

Hence, the solution of the problem (2.5) is corresponding to the following integral equation

B (1 - a)G(r.y(1))
AB(a)

af s _
1) = y(0 Pt - 5)" G (s, y(s))ds. 2.6
Y1) = ¥(0) + BT, TG )s 26
The following lemmas are used to analyze the existence and uniqueness results of the proposed
model.

Lemma 2.5. (Banach’s Fixed Point Theorem [43]) Assume X is a Banach space, and D C X, D # ()
is a closed subset. If the operator Q : D — D holds the contraction condition, then Q has a unique
fixed point in D.

Lemma 2.6. (Krasnoselskii’s Fixed Point Theorem [44]) Assume D is a closed convex nonempty subset
of a Banach space X. Assume Q and P are two operators such that (i). Qu+ Pv € D, whenever u,
v € Dy (ii). P is compact and continuous; (iii). Q is contraction mapping. Then, there exists w € D
such that z = Qw + Pw.

2.2. The FF-Order Extension of the MIPX Model

In this subsection, we first refer to the integer-order of the IMIPX model presented in [17], which
studied the transmission dynamics of IMIPX consisting of five classes of humans and three classes of
rodents, as shown in Figure 1.
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They discussed the transmission dynamics of MIPX in five classes of humans: Susceptible S,

exposed Ey, infected I, isolated Qj, recovered Rj;, and three classes of rodents:

exposed E,, and infected /,. The IMIPX model is shown as the following

;lSCz;t(t) = Ap— (b1 (1) + bzlg(f))i,zgg — kS (1) +60n(1),
E;t(t) — (b (1) + bzlh(t))Nzgg — (a1 + a2 + pn) En(2),
dQ;t(f) = aEp(t) = (0 + 7+ 6 + un) On(1),

dR;t(t) = vI(t) + 7Qn(t) — R (1),

dSc;t(t) A %{t)@) 1S (1),

dI;Et) = a3E,(t) = (ur + 6,) (1),

Susceptible S,

2.7)

where the human class, N, = Sy + Ej + I, + Oy, + Ry, and the rodent class N, = S, + E, + I, with
the positive initial conditions S, (0) = Sp, = 0, E;(0) = Ej, > 0, I,(0) = I, > 0, 04(0) = Qp, = 0,
Ry(0) = Ry, 2 0,5,(0) =S,, =20, E.(0) = E;, >0, 1,(0) = I, > 0. The descriptions of all
parameters are shown in Table 1.

Table 1. The descriptions of all parameters for the MIPX model (2.7).

Parameters | Descriptions

Ap, Ay The recruitment rate for susceptible humans and rodents, respectively.
b1, b3 The rate of rodent contact with humans and rodents, respectively.
by The rate of human contact with humans.

ap The proportion of exposed humans to infected humans.

a Proportion identified as the suspected case.

0 Proportion not detected after diagnosis.

T Progression from isolated to recovered class.

v The rate of recovery for humans.

Hps Uy Natural death rate of humans and rodents, respectively.

on, O Disease induced death rate for humans and rodents, respectively.

Now, we further develop the IMIPX model (2.7) utilizing the IFIF derivative operator in the context
of the Mittag-Leffler kernel of order @ € (0, 1] and 8 € [0, 1], ]F]F]MDS’? , as follows:

AIMS Mathematics
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FEMDOLS (1) = G (1.8 n(2). En(t). In(1). Ru (1), Qu(1). S 1 (1), Er (1) 1,(1)).
FEMDOEER(1) = Ga(t, Su(1), En(t), In(1), Ru(2), Qn(1), S 1 (1), Ex (1), 1,(1)),
FEM B (1) = G (1, Sp(2), En(2), 1 (£), Ru (1), O (), S 1 (2), E (1), 1.(1))

(2.8)

]F]FMDg:’,ﬁRh(I) = Gs(t,Sn(t), En(t), In(2), Ru(2), On(1), S (1), E (1), I:(2)),
FEMDOS (1) = Go(t. S (1), En(1), In(t), Ra(t), Qn(t), S 1(t), Ex(t), I (1)),
FEMSIEE, (1) = Gt $ (1) En(1), 1n(0) Ral0), Qa(1), 8, (0), Er (1), (1)),
]F]FMDMI (1) = Gs(t.Su(1), En(), In(), Ri(t), Qn(2), S r (1), Er(2), I;(1)),

where G; = G;(t,Sn(1), En(t), In(1), Ru(2), Qu(t), S (1), E/(2), I,

functions G; for the developed model is defined as below:

1)), fori = 1,2,...,8 and the

G = ANy — (b11:(t) + oIy (2 );:Eg — upS (1) +600n(1),

Ga = (011 1) + Bal ()30 - (01 + 2+ m)EA(D),

Gs = alEh(l‘) (,uh + o, + V)Ih(l)

Ga = aEp(t) — (04 7+ 61 + ) On(2), 2.9
Gs = vIp(t) + 70n(t) — nRn(1), '
Ge = A, _b3% _,urSr(t),

Gr = b3%(ltr)(t) - (/Jr + a3)Er(t)’

G8 = a3Er(t) - (:ur + é‘r)Ir(l‘)’

with S, >0, Epy 2 0, Iy, 2 0, Qpy 2 0, Ry, >20,5,, 20, E,) >0, and I, > 0. The model (2.8) is
called the FIF-IMIPX model. Notice that if we set @« = 1 in the IFIF-IMIPX model, then it reduces to
the MIPX model (2.7), which provides the integer-order model. Furthermore, it can be reduced to the
fractional MIPX model by setting 5 = 1.

3. Model analysis
This section highlights the positiveness and equilibrium analysis of I[FIF-IMIPX model (2.8).

3.1. Positiveness of the model
For the positiveness and boundedness of the [FIF-IMIPX model, we set ]RS ={GeR¥:G>0and
T
G= (Sh, En, I, On, Ry, S, Er, I,) }, where (-)7 is the vector transpose.

Theorem 3.1. The solution G for the FIF-MIPX model (2.8) is unique and bounded in IRi. Moreover,
the solution will be non-negative.

Proof. For t € (0,0), we obtain its existence and uniqueness of the FFIF-IMIPX model (2.8).
Subsequently, we will present that the non-negative region ]Ri is a positive invariant region. Using
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the FIF-IMPX model (2.8), we get

FEMDOES (1) = Ap+004(r) 2 0
bi1(t boly(1))Sp(t
IFIFIMDg,fEh(t) (b11:(1) + b2ly(t))Sn(1)

Ni(1)
IFIF]MQQ’B]},(I) = alEh( ) >0,

>0,

IFIF]MDaﬁ h(t) =a ( ) >0, (3 1)
]FIF]M@aﬁRh(t) — ] ( )+TQh( = |
]F]FM@Q'ﬁS (l‘) = A,

]FIF]M;DaﬁE (1) = %&)() > 0,

FEMOO1, (1) = asEr(1) 2 0.

If (S 1y, Engs Ing> Qhgs Rigs S ro» Ergs Iry) € lRi, then according to (3.1) the solution G cannot escape
from the hyperplanes. Consequently, ]Ri is a positive invariant set. Since the total population of
humans and rodents are N, = Sy + Ep + I+ On + Ry, and N, = S, + E, + I,. So, from the FIF-
MIPX model (2.8), we can obtain that

{ ]F]FMTDaﬁNh( 1) < Ap— upNp(t),

(3.2)
]F]FMDngr( ) < Ay — ptrNi(1).

Utilizing the fractal Laplace transform (2.3), leads to the conclusion that N, < Ap/uy, and N, <
A/, as t — oo. Therefore, we obtain the biologically feasible region of the FIF-IMIPX model (2.8)
as follows:

A
Ay = {(Sh,Eth, OnRy) €R Sy, Ep 1, O R, 20 and Ny < —h}
HMh
3 A,
W = {(SHE.I,)eR’:S,,E, [, >0 and N,<—}.
Mr
The proof is completed. O

3.2. Equilibrium points and their stability

The [FIF-MIPX model (2.8) has two steady states that will be obtained by taking the right side

of (2.8) equal to zero. Then we get
o The disease-free equilibrium € = (S . Ej . I, Qp Ry 3o, Eny 1) = (52,0,0,0,0, ££,0,0).

e The endemic equilibrium €} = (SZ,E* I, 00 R, S E* I*) where

rody
g* — K1 K3Np\p o K,
" (KiK3 = 6az) (b1l + bol}) + K1 KaupNy' =gy
o ¢+ o + 4K (K K3 — 6az) (a1b1br K3 ALT) 0 — ar Kol
h 2b2K2(K1 K5 — Haz) ’ h a1K;z '’
(VK3 +tKoar)l . N.KuiKs . Kul; . asbsA,— KuKsNu,
h a1 Kspp T asby T as T K4Ksbs ’
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where K| = a1 +ax +un. Ko = upn +0n+v, Kz = 0+ 17+, + un, Ka = pup + 65, Ks = pur + az
and ¢ = a1 K3Apby — b1 Ko I (K1 K3 — 0ay) — K1 Ko K3, Njy. To examine the stability of the equilibrium
points, we first apply the next-generation matrix method [45] for the I[FIF-IMIPX model (2.8) to find the
basic reproduction number (Rg). For this purpose, we will focus solely on the infectious populations
of the proposed model, i.e., Ej, I, Qj, and I,.. So, the transmission matrix (F') and the transitions matrix
(V) can be determined as:

0 by 0 b Ki 0 0 0
oo o - k2 0 0
F=lo 0 0 ol ™ V=1_0, 0 K& 0

000 0 0 0 0 K,

This yields the next-generation matrix as below:

aby b b
KK, K Ky

Fvl=| 0 0 004 (3.3)
0 0 0 O
0 0 0 0

Hence, the spectral radius of (3.3) represented by Rg = p(FV~!) can be obtained as
b b
Ry = 72 _ a2 (3.4)

KKy (a1 +a ) (un+on+v)
Next, we establish the assumptions for the stability of the disease-free equilibrium.
Theorem 3.2. The disease-free equilibrium € of the FIF-MIPX model (2.8) is locally asymptotically

stable whenever K4K5 > azbz and Ry < 1, with the necessary and sufficient conditions:

larg ()| > %T i=12,..,8. (3.5)

Proof. To discuss the stability criterion of €, the general Jacobian matrix of the FIF-IMIPX model (2.8)
at €; has been obtained as follows

-u, 0 —-by 60 0 0 0 -b;
0 -Ki b 0 0 0 0 by
0 a -K» O 0 0 0 0
«~ | O ar 0 -Kz3 O 0 0 0
(&) = 0 0 v T —u, 0 0 0

0 0 0 0 0 —-u 0 -—b3
0 0 0 0 0 0 —-K5 b3

0 0 0 0 0 0 ay; —-Ky

The eigenvalues A;, i = 1,2, ..., 8 can be calculated by solving the characteristic equation |J (@’6) —

All = 0 where [ is an identity matrix. So, we get
(A4 1n)* (A4 K3) (A + ) [(1+ Ka) (A + Ks) = azbs] [(A+ K1) (A + K2) —a1by] = 0. (3.6)
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Thus, the eigenvalues of J(€) are given by

Al = -y, A=-pp, A3 =-K3, A4 = -y,

1 B —(K4+K5)i \/(K4—|—K5)2—4(K4K5—a3b3)
5,6 - ’
’ 2

1 —(Kl-l-Kz)i \/(K1+K2)2—4K1K2(1—5R)
78 — .
’ 2

It is easy to see that A5 < 0 1f K4Ks5 > azbz and 478 < 0if R < 1. Hence, all roots of (3.6) have
negative real parts, which guarantees the inequality of (3.5) for all @ € (0, 1]. Hence, the point €, is
locally asymptotically stable. The proof is done. O

Now, we will analyze the stability of the endemic equilibrium (€}) by employing the Routh-Hurwitz
criterion to demonstrate the locally asymptotically stable. The general Jacobian matrix of the [FIF-
IMIPX model (2.8) at €] is provided as follows

_ bl[r;hbzlh — 1 0 —I;\Q%Sh 0 0 0 0 _?\II§SI1
0 a -K» O 0 0 0 0
£ 0 a 0 -Kz3 O 0 0 0
/(&) = 0 0 % T —up 0 0 0
_b Ir —b Sr
0 0 0 0 0 N3rb 1 w0 bA3’§
0 0 0 0 0 lfl—r’ Ks ?Vr’
0 0 0 0 0 0 a3 —-Ku
It is easy to see that one eigenvalue obtained from the characteristic equation of J ((E’f) s w; = —up,

which is a negative value. Therefore, the local stability of €] demands the negative real parts of all
roots of the equation

w4+ A1’ + Aow® + Azw* + Agw® + Asw? + Agw + A7 = 0, (3.7)
where A; are the coefficients of w’~/, j = 1,2,...,7, after rearranging the polynomial equation in
standard form. Afterwards, to achieve the €] stability, we present the parameters below:

A1 A, — A3 AL Ay — As A1 Aq — Ay AzB| — A1 By
B = —, By = ——, By = ————, Ci=————7,
! A 2 A : Ay ! B
AsB| — A1B3 BrC1 —B1Ca B3C; — B1C3
C, = ———, C3= Ay, D=—-—17-—7-— DH=——-
2 B 3 7 1 Ch 2 Ch
CrD1-C1D D6 — D&
& = le’ & =Cs, ﬁ:M,
D &1

Hence, the Routh-Hurwitz conditions for confirming the negative real parts of all roots of (3.7) are
presented, and the local stability of €7 is concluded in the following theorem:

Theorem 3.3. The endemic equilibrium €] of the FIF-MIPX model (2.8) is locally asymptotically
stable whenever the necessary and sufficient conditions below are satisfied: (i) A; > 0; (ii) A7 > 0,
(iii) Ay Ay > A3z, (iv) Ay A, A3 + A A5 > ﬂ%?h + A2, (v) BoC1 > B1Cy, (vi) C2aDy > C1Da, (vii)
@281 > Dlaz.

AIMS Mathematics Volume 9, Issue 4, 8516-8563.



8526

4. Qualitative analysis of the [FIF-MIPX model

To demonstrate the qualitative results of the FIF-IMIPX model (2.8), we give a Banach space on

= [0, T] of all continuous real-valued functions denoted as X = C(J x IR®,R) equipped with the
norms |Y1| = (S n, Ens In, Q> Ris S s Er, 1)l = IS wll + ERI + 1l + 1Qnll + IR+ IS AL+ NEA +
WAL ISHll = supeqr ISh(2)l = By, |Ewll = supeq |ER(t)] = By, Mall = sup,eq Un(1)] = By,
10l = sup,eq 104(1)] = By, IRl = sup,eq IRA(2)] = B, IS/l = sup,es IS,(¢)] = By, IEA =
sup,e 7 |E- (1) = By, I]| = sup,e g 1(t)] = B,,, where Sy, Ep, I, Q. Rp. S . E, I € X.

Lemma 4.1. Let G € X and Y € C(J,R), then the FIE-MIPPX model (2.8) which can be written as

{IFIFM@gfy(t):G@,y(t)), te[0,7], a,Be€(0,1], wn
Y(0) = Yo, '
where $(1) $4(0) Gi (1,5 (1))
Eh(( f)) E h(( 0)) %2 ((t E h(( l))))
I (t I,(0 t, I (t
() = 0 (0) = Ri(0) G(1.Y(1)) = G (:Ry(1) (42)
15 .
rl r Lo,
E,(1) E-(0) Gj(t’Er(f))
1(t) 1(0) Gs(t,1:(1))

when G;, i = 1,2,...,8, are given by (2.9). By applying (2.5), the solution of the problem (4.1) is
corresponding to the following integral equation

y(e) :y(o)+ﬁzﬂ—1(lé;;)£§t,y(t)) fsﬂ Ui $)™ G (s, (s))ds.  (4.3)
For ease of calculation throughout this work, we pr0V1de the symbols
Gi(1,54(1)) = Gu(1, (1), En(t), 11 (1), Qi (1), R (2), S (1), E, (1), I(1) )
Ga (1. En(1)) = Galt. S (). En(r), (1), Qu(r), Ri(0). S (1) E(1). 1 (1)),
Gs(1.14(1)) = Ga(t. S 4(0), En(r), (1), O (1), Ru(0). (). Ex(1). (1)),
Ga(t, On(t)) = Ga(t, Su(t), En(1), In(2), On(t), Rn(t), S (1), Ex(1), (1)), 44)
Gs (1, Ru(2)) = Gs (8, S (1), En(2), In(1), Qn(2), Ru(2), S (1), Er(2), I(2)),
Go(1,5,(1)) = G (2,5 1(2), En(2), In(2), On(2), Ru(2), S (1), Er(2), 1:(2)),
Gy (1, Ex(1)) = Gr(t, Su(t), En(1), In(1), Qn (), Ru(2), S (1), Er(1), 1:(1)),
Gs(1,1:(1)) = Gs(£:51(2), En(t), In(1), On(2), R (1), S (1), E, (1), I(1) )

From Lemma 4.1, the [FIF-IMIPX model (2.8) is corresponding the following Volterra integral
equations as

ﬂl‘ﬁ_l(l —a’)Gl(l‘,Sh(l‘))
AB(a)

Sh(t) = Sh(O) +
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+—M<Z-’§-r<a> fo (1= 5)"Gu (s, Sn(s))ds, (4.5)
B (1 -a)Ga(t, Exn(2))
Eh(l‘) Eh(0)+ AIB( )
TAB Zlir(a) fo St =9)"7'Ga(s, En(s))ds, (4.6)
R
+W§r@ j(: Pt = 5)" 1G5 (s, I(5) )ds, 4.7)
1 _a
On(t) Qh(0)+ﬁlﬁ ( A]]);(;;)(I’Qh(t))
+W§r(a) fo (1= ) 1Ga (s, On(5))ds, “38)
Ri(t) = Ry(0)+ 20 X]]);(Ss)(t, Ri(1))
g [P oo, o
5.0 Sr(oHﬁl’B (BLER)
fsﬁ Yt —5)""'Ge(s, S (s))ds, (4.10)
£ (1) Er(O)Jr'BPB it “)“(3‘7)(’ £ (0)
+W§F®v)fo Pt = 5) G (s, Er(s))ds, (4.11)
1,(1) 1,(0) +ﬁtﬁ_1(1 —@)Gs(t. (1))
+W[;T@ fotsﬂ_l(t—s)“_ng(s,I,(s))ds. (4.12)
In view of (4.5)—(4.12), we define an operator 7 : X — X, where 7 =
(71,7273, T4, T5.T6: T7. T3).
—1 —a
s = si0) #0510
+Mf—'g)f0t Pt - 5)"'Gi (5, Su(s))ds, (4.13)
(F2ER)(t) = Eh(O)+ﬂtﬁ_l(1_a)G2(t’Eh(t))

AIMS Mathematics
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fsﬂ H(r=5)""'Ga(s, En(s))ds, (4.14)
(Fln)(1) = 1h<o>+’3fﬁ (oo Ié‘(ﬂs)@ (1))
ap ro .

TAB()(a) fosﬁ‘v—s) 'Gs (5. 1n(5))ds, (4.15)

(F20)(1) = Qh(0)+ﬁtﬁ_'(1‘ et

(@)

fsB Yt —5)71Gy (s, Qn(s))ds, (4.16)

(FsRu)(1) = Rh(0)+ﬁpg 1(1—[/\]])3?;)(@&())

af T o
+Wfosﬁ Ut 5)"1Gs (5, Ra(s))ds, @.17)

-1

(FaS,)(0) = sr<o>+’”ﬁ TR

fsﬁ Yt = 5)""'Gg(s, S ,(s))ds, (4.18)

(FE) (1) = Er(0)+ﬁ’ﬁl“‘ )‘87( (1))

fyB Yt = 5)"'G7 (s, E,(5))ds, (4.19)

(Fsl,) (1) = Ir(0)+ﬁlﬂl(1_ )Gg(”())

fsﬁ Y- 5)""'Gg(s,1,(s5))ds. (4.20)

To investigate fixed point theory, we transform the considered model to the fixed point problem
(Y = TY), which will apply to create a fixed point theory. Next, we will show that the IFIF-IMIPX
model (2.8) has a unique solution.
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Theorem 4.2. Assume that G € X satisfies the following assumption

(A1) There exists a constant Lyax > 0, where Liax = max{ Ly, L, L3, L4, Ls, Le, L7, Lg}, such that

(G (1. S (1) En(0): 1n(1). Qn (1), Ri(1). S 1(1). En(1). 1,(1))
~G(1.5,(0) E} (1) 1;(1), Q4 (1), Ry, (1), S (1) E (1) I (1))

< Lmax(|5h = SH(O|+ [En(t) - E;(1)| + |In(2) - L:(2)] + |Qn(2) - 0 (2)] (4.21)
+[Ru(r) = Ry (1)] + 18 4(6) = S ()] + |Ex(1) = Ex (0)] + |1:(1) —1,(r>|)
forany Sy, Ep, I, Ry, On, Sy, Er, I, € X, and t € 7.
If
(B(l )T+ aTa;fZ:i(ﬁ;r 1)) ALH‘;E‘;) <1, (4.22)

then, the FIE-IMIPX model (2.8) has a unique solution.

Proof. Now, let D, be a bounded, closed, and convex subset, where D, =
{(Sh’ Eha I/’la QhaRha Sr’ Er, Ir) € x . ”(ShaEh’ Iha Q/19Rh9 Sr’ Er7 Ir)” S rl} Wlth aradius

B-1 | aT"PIT(B+1)\ Giax
Prmax + (:8(1 - )Tmm + I'(e+p) ) AB(a)

ry =

ﬁ 1 anHﬁ—ll"w—H) Lmax '
1- (ﬂ(l )T + W) AB(e)

where Prax = max{S ;. Engs Ings Ong> Rigs S rgs Ergs Iro} Ghax = max{G], G}, G}, G, G2, Gg, G5, Gg)
and let sup,c 7 |G;(s,0)| = G} < +o0, fori = 1,2,...,8.
Step I. We show ¥ D,, C D,,.

For any (Sh, En I, On Ry, S, Er, Ir) € D,,, t € J, we obtain that

BE (1= )Gy (1,54(1))]

(T3S w) (1)1

IA

1S 1(0)] +

AB(a)
fs‘“ )G (s, S1(s))lds
< ISh(O)IJr%—(_))[IGI(LSh(f))—Gl(l70)|+|¢31(l’0)l]
fsﬁ (1= ) [1G1(5,54(5)) = Gi (5. 0)1 + G (5,0) |15
< sho+%—(;))[a(|sh<z>|+|Eh<r>|+|1h<z>|+|Qh<r>|+|Rh<r>|
IS O+ 1E- (O] + (1)) + G | + M—fsﬁ =) La(1Sa(9)

HIER ()] + n () +1Qn () + IR () + 1S - (5)] + |E,(5)] + |1r(s)|) + GT]ds
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< Spyt

pl1-a)Th

aTPIT(B+ 1)

AB(a)

AB(a)T(a +p)

IR+ 1S 1+ I+ 17,1) + c;].

This yields that

71 all

< Spyt

B(1-a)T%!

min

aT*PIT(B+ 1)

AB(a)

In the same process, it follows that

1T2Epl|

VYA

1740l

|75 Rl

76S |l

I77E

(VEYE

IA

IA

IA

IA

IA

IA

Ry, +

Ey +

I, +

AB(a)(a +f)

Bl-a)Th | aT**'T(8+1)
AB(«) AB(a)T(a+p)
B(1-a)T2 ! qretsIT(5 4 1)
AB(a) AB(a)T(a+p)
BU-0)Tpy  oT*'T(B+ 1)
AB(«) AB(a)T(a+p)
Bl-a)Thy  aT*F-'T(5+ 1)
AB(a) AB(a)T(a+p)
B(1-a)TP Tt (5 + 1)
AB(a) AB(a)T (a+p)
B(1-a)TE ! qretsIT( 4 1)
AB(a) AB(a)T'(a+p)
Bl-a)Tp  aT*FIT(p+1)
AB(a) AB(a)T(a+p)

From (4.23)—(4.30), implies that 7 D,, C D,,.
Step II. We show 7 is a contraction.

Assume that (S, Ep, In, On, Ry, Sy, Er, 1) € Dy and (S5, E}, I}, Q). R}, S}, E

have

(718 1) (1) = (T2S ) (D)l

L B(-a)
AB(a)
af

G (1, 8n(1)) = Gi(2, 8, (1))l

[L1(||Sh|| FNEM + all + 1104

[Llrl —I—GT].

[Lzrl + G;]
L3r) + G;]

[£4r1 + GZ],

Lsr + G

)

Lo + Gg

-

Lrr + G5

Lyri + Gy,

+Wfo L7t = 5) NG (s, S p(s)) ~Gi(s,85(s))lds

AB(a
pr'(1-a)
AB(a)

AIMS Mathematics

[£1(1540) = S50+ 1E(0) = B0+ 1 (0) = (0 + 104 (0) = €30

*I*

rofr

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

) € Dy, we
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0 —R*<r>| 18,(6) = S 1)1+ B (1) = 201+ 11,(6) = 1 (1))
fsﬁ L(r=s)o 1 ~£I(|5h( ) =S5 () +|En(s) = E; ()| + In(s) = I; (s)]

—HQh(S) - Qh(s)l + IR () = RE ()1 + 15, (5) = S2()] + 1E/(5) = EZ ()] + 1, (5) Ij(s)|)]ds

aTPIT (B + 1)) L
T(a+p) AB(a)

1O = Opll + IR, = Ryl + IS » = SN+ NE- — EXI + 11y - Ifll),

< (/3(1— o) T2 + (||Sh—s;;||+||Eh—E;;||+||1h—1;||

then,

st = fpmarty  TTEED) 8
VAR Tlsh” < (ﬁ(l )Tmm+ I‘(Cy-|-ﬁ) A]B(a/)

HIOn — Qpll + IRy = RN+ IS » = SEI + I1E, — EXIN + I — Ifll). (4.31)

(||Sh — S+ IER - EXll + 1 - 2]

Similarly procedure, which implies that

Tot+B-1T 1
||72Eh—TzEZ|| < (ﬁ(l )Tﬁ 1+CY B+ )) L

(||Sh —SH A+ B - EX + 1l - L]

min I'(a+p) AB(a)

‘HlQh_QZ”+”Rh_RZ”+||Sr_Sj||+||Er_Ej||+||Ir_I;k”)’ (4.32)

aT*PIT(B+1)\ L3
T -TE < (B(1=a) TP (S _SH+IE, - EN + I, - I
T30, - T3] (ﬂ( N Tt )A]B(a) 1S5 = S5l + 1Es — Ejll + I - I}
+||Qh—QZII+IIRh—RZII+||Sr—Sf||+|IEr—EﬁII+||Ir—1f||), (4.33)

aT*PIT(B+1)\ L4
T40, — T20%| < 1—a)77! (S—S* Ey—EX|+ I, - I
T40n — T4 Ol (ﬁ( )T + T(a+4) )A]B(a) IS n =Sl + 1Er — El + 1n — LI
+||Qh_QZ”"‘”Rh_RZ”+||Sr_5j”+||Er_E;k||+||Ir_I:”)’ (4.34)

-1

* B-1 aTOH_ F<ﬁ+1) ‘£5 ( * * *
TR, — TsRY|| < 1—a)T S,—S E,—E I, -1
I 50h 5 h” (ﬁ( ) min + T(a+ﬁ) A]B(a’) IS 7 h”+” h h||+|| h h”
‘HlQh_QZ”+”Rh_RZ”+||Sr_Sj”+||Er_Ej||+||Ir_I;k”)’ (4.35)

TP+ 1)\ L
TS, - TS < [B(1=a)T? (S — S+ By = EX + Iy — I
1768, — T6S (ﬁ( N Tt )AB(Q) 1S5 = SEl + 1Es - Efll + U - I
+||Qh—QZII+IIRh—RZII+||Sr—Sﬁ||+|IEr—EjII+||Ir—1f||), (4.36)

-1

. s, T PIT(B+1)) Ly ( \ . .
THE, - THE*|| < 1—a)T S,—S E,—E I, -1
1T7E, - T7EZ| (ﬁ( ot = Tazp ) AB(a)ISh~Sil+IEx= Efll+ W= 5]
‘HlQh_QZ”"‘”Rh_RZ”“'”Sr_Sj”"’||Er_E;k||‘|’||Ir_I:”)’ 4.37)
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o s aT“*ﬁ‘IF(,B—i—l)) Ly
T8I, — TSI < (ﬁ(l )T, + T(a+p) AB(a)

H1Qn = Opll + IR, = Ryl + IS » = SN+ NE- — EXI + 1y — Ifll)- (4.38)

(”Sh =S+ I1ER = ERll+ ln = L

Since, T = (71,72, 73, T4, T5,T6,T7, T3) and Liax > 0 with the results (4.31)—(4.38), we obtain

||7-(Sh7 Eh9 Ih’ Qh’Rh’S}’a E}"7 I}") - T(SZ’ E;,IZ’ QZaR]i’Sj’E:9I;k)”

~ 51 aTa/-‘rﬁ—ll"(ﬁ + 1)) ~£max
o L T

Hilzn = LI+ 11Qn = Qpll + IRy = Ryl + IS » = Sl + NI, — EZNl + |1 - Ifll)-

(||Sh S+ 1E - EJI

By the condition (4.22), then, 7 is a contraction. Therefore, by Lemma 2.5, the FIF-IMIPX model (2.8)
has a solution. O

Theorem 4.3. Assume that G € X satisfies the assumptions (Ay) in Theorem 4.2, and

(Az) There exist constants g;j > 0,i=0,1,...,8, j=1,2,...,8, such that

(G (2. S (1), En(t), In(1), R (1), Qn(2), S (1), Er (1), 1,(1))]
< g0j + 81 S (1)| + &2, |En(1)| + &35 [Tn(1)| + gaj|Rn(1)] (4.39)
+57|Qu(0)| + 26 |S ()] + &7, |E-(1)| + g8 |1-(1)] -
If
B(1—a)TP ! Lrax < AB(a), (4.40)
then, the FIE-IMIPX model (2.8) has at least one solution.

PrOOf: Deﬁne a set Dr2 = {(Sh’Eh’ Iha Qh’Rh’S}’? Era Ir) € x : ||(Sh’ El’h Iha QhaRho Sra Er’ Ir)” S r2}~

By applying (4.5)—(4.12), we can be defined two operators Q,# : D,, — X where Q =
(Ql,Qz,Q3,Q4,Q5,Q6,Q7,Q3) and P = (Pl,Pz,P3,P4,P5,7)6,P7,5Dg). The operator Q is defined
by
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@) (1) = s4(0) + 2! Xﬁ?ift $4(1))
(@) (1) = Ex(0) + 21 Gl
(@) (0) = 1y(0) + 2 Cg‘(fj) 210),
(@:01)(1) = 04(0) + B~ _1(1&?2)0 04(1)) »
(@sR) (1) = Raf0) + P — a}é?;)v Ri(1)) -
(@58,)(1) = 5,(0) + EL= “]%Ef)(t’s’(’”
(QE) (1) = E,(0) + B (1 — ozﬂ);(scz)(r, E/(1))
(@s1,) (1) = 1,(0) _I_ﬁp3‘1(1 Xgis)(t, L,(1))
and the operator P is defined by
PS0 = apariay [, £ 0=9 GsSu(s))as,
PaEn)le) = A]BL f 1= 5 NG By (9)ds.
PO = R [ 97 = 91l (s))s
(@4Qh><>=m—fsﬁ (1= )5 1Ga(s. 04(5))ds N
(PsRw) (1) = A]B—fsﬂ (= )1 Gs (5. Ry(s))ds.
(PeS 1) (t) = A]B—fsﬂlt $1Ge(5.51(5))ds.
(P1E,) (1) = /A]B—fsﬁlt 1G5, Ev(5))ds,
P00 = wpigray J, Gl L)

Using (A;) in Theorem 4.2, for any (S, Ep, In, On, Ry, Sr, Er, 1) € D, and (SZ, E, I, Q). R},
S E; I) € Dy, we have

1—a)7%!
U= i 05000) G 0550

_ BU-oT L
- AB(«)

lQ1SL-Q1S,]l <

(”Sh =S+ IER = EQl + 11 = LI+ 11Qn — Oy
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IR = R+ 1S = S+ 1Er — XN + 111y I:‘u). (4.43)

In the same process, we obtain that the following results

-1

B(1 —a)Tﬁinl:z(

IQE, - QE,|l < ISh =Syl +1Er = EQl+ n = LIl +110n — O}

AB(a)
IR = R+ 1S, = S 211+ 1Ey — XNl + 11, 1:||), (4.44)
. BU—a)Th Ly \ . * .
L N (||sh—sh||+||Eh—Eh||+||1h—1h||+||Qh—Qh||
IRy = R+ 1S - = SE + 1By — EXN + 11, — 1:||), (4.45)
1Q:01- @0} < = (||Sh—sh||+||Eh—Eh||+||1h—1;l||+||Qh—Qh||
IRy = I+ 1S » = ST+ 1By — EXNl + 11, — 1;*||), (4.46)
IQsky - Q5K < = (||Sh—sh||+||Eh—Eh||+||1h—1h||+||Qh—Qh||
IR = R+ 1S, = ST+ 1Ey — XNl + 11, 1:||), (4.47)
L1
% ﬁ(l_a)T i '£6 * * % *
1908 -~ Qe8I < e (||Sh—sh||+||Eh—Eh||+||1h—1h||+||Qh—Q,,||
IRy = R+ 1S - = SE + 1By — EXN + 11, — 1:||), (4.48)
—1
||Q E Q E* ’8(1_(1/)Tﬁin'£7 * * * *
= QUE;l S = S S+ 1y = Bl W = -+ 112 - €1
IRy = A+ 1S — ST+ 1By — EXN + 1L, — 1f||), (4.49)
IQstr - Qulfll < =g (||Sh—sh||+||Eh—Eh||+||1h—1,,||+||Qh—Qh||
IRy = R+ 1S - = SE + By — EXN + 11, 1;"||). (4.50)

From (4.43)—(4.50) with L.x, it follows that

IQ(S s Ens Ins O Ris S 1o Ev ) — QS Ej I}, O RS, S 1, ELL )
ﬁ(l - Q)Tﬁi_nl-ﬁmax

<
B AB(a)

||(Sha El’l’ I/’l? Ql’l’ Rh’Sra EV’ Ir) - (S;:’ E;» IZ’ QZ’RZ’ S;’ E;kaI:)

Therefore, Q is a contraction.
Next, we prove that # is continuous and compact, which yields that # is completely continuous.
Then, it is sufficient condition to prove that # is bounded and equicontinuous. Using (A,), it is
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obviously that ¥ is continuous as Q is also continuous. Hence, for any 7 € J, we get

1P1S pll

IA

IA

IA

sup

N TR f (1= )27 1Gy (5, S () )ds

fsﬁ_l(t—s“ sup|G1 (s,8n(s |ds
a’) 0 teg

aT*IT(B+1)
AB(a)T(a+p)

+85111Onll + 86111S /Il + g71IIE/ll 4 831 ”Ir”]-

[801 +anlISHll + g2t llEnll + g1l + gatllRal

Then, #1 is bounded. In the same ways, we have

1P2E|

1P3 14|

P2 Ol

1P5 Rl

1P6S I

1P7 Ex|

P 1|

IA

IA

IA

IA

IA

IA

IA

“Tw_lr(ﬂ“)[ 4 guallSll + g2l Eall + gaalllall + gaallRal
AB(@)T(a 1 p) 802 + g12lIS ull + g22llEnll 4 g32llIxll 4 ga2lIRn
+85210nll + g62llS /Il + g720lEFl + gszlllrll],

aTPIT(B+ 1)
AB(a)T(a + )
+853110nll + g63lIS /Il + g7l EA + g83||1r||],
aT*PIT(B+ 1)
AB(a)T (a+p)
+854110nll + geallS /Il + g7allEA + g84||1r||],
aT“*ﬁ‘lr(ﬁ+ 1)
AB(a)T(a+p)
+8551Onll + g6s5lIS Al + g7511E | + gsslllrll],
aTPPIT(B+ 1)
AB(a)T(a +p)
+85611Onll + ge6llS Il + g76llEA + 886||1r||],
aT*PIT(B+ 1)
AB(a)T (a+p)
+gsllOull + 867l Il + gl + gl
aTPIT(B+ 1)
AB(a)T(a+p)
+85811Onll + gesllS Il + g7sllE + 888||Ir||]-

[803 + g13lIS nll + g23llEnll + g33llall + ga3lIRnll

[804 + g14lIS nll + g2allEnll + g3alllnll + gaallRnl|

[gos + 8158 nll + g2sl|Enll + g35l1nll + gaslIRxl

[806 + 8161 nll + g26llEnll + g36lMnll + gaslIRnll

[g07 + g171IS nll + 271l Enll + g371lAll + ga7lIRnl|

[808 + g18lIS nll + g2sllEnll + g38llull + gaslIRxll

4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

By applying (4.51)—~(4.58) and setting ||P|| = max{[|P]l + [IP2ll + [IP3]l + P4l + [IP5l + [Psll +
P71l + [IPsll} with g5 = max{go;}, g7 = max{gy;}, g5 = max{ga;}, g5 = max{gs;}, g; = max{gs;},
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gz = max{gs;}, g6 = max{ge;}, g = max{g7;}, and g8 = max{gg;} for j = 1,2,...,8, it follows that

aT*PIT(B+1)
AB(a)T(a+pB)

+85l1Qnll + g6lIS +ll + g3I1E | + g§||1r||]-

1P (S s Ens Ins Ons Ris S 1, Ers )| < g5+ IS Hll + GNEM + XTI+ g2IRAI

This implies that # is bounded. Next, we prove that # is equicontinuity. Suppose that #{, t, € J with
0<1t <t <T, we obtain that

(P1Sw)(2) = (P1Sh) (11))|

< A]B—f Nt —s)*ds - f P71y — 5)%71ds|1G1 (s, S (s))]
al (B+1) atp-1 a+ﬁ | )
< { 2t a+p-1 [ S .
AB(a)T (e +8) I 2(2 = 1) 7! | o1 + g1alSall + g2ullEl
+g31llnll + garllRull + g5111Qnll + g61llS Al + g7l EA + gSIHIr”]
al' (B+1) arp-1 a+ﬁ . » 8
. : +2(n-n)" [ +r ] 4.59
AB(a)T(a+p) ‘ 1 (2—1) ‘ 801 z;gll (4.59)

Notice that, the right side of (4.59) is independent of (Sy, En, Iy, Qp, Ry, Sy, Er 1) and
|(PlS n) () = (P1S h)(t1)| — 0 as rp, — 11, which implies that $; is bounded, uniformly continuous
and compact that is $; is completely continuous.

In the same ways, we have the following inequality

|(P2E1) (12) = (P2Ep) (11))]

ar(ﬁ + 1) a+p-1 a’"‘ﬁ 1 a+p-1 .
A]B(a)l"(a +ﬁ) 4 + 2( ) ‘ [802 + ; glz], (4.60)
|(P31h)(l2) - (Palh)(t1)|

al'(B+1) a+B-1 _ a+p-1 el 8 |
AB(a)T(a +p) f t +2(ta—1) \ [g03 +r ; gl3], (4.61)

|(Pa0n) (12) = (PaQn) (11)]

ol (B+1) +p-1 +,8 1 - :
© “ 2ty — 1)+ [ i], 4.62
AB(@)(a+p) I +2(n-1) ‘ g04+r2;g4 (4.62)

|(PsRy) (22) = (PsRw) (11))]
al (B+1)
AB(a)T(a +5)
|(P6S ) (12) = (P6S ) (11))|

ar(ﬂ—i- 1) a+p-1 a/—i-,B 1 a-+p-1 .
A]B(a)l"(a +ﬁ) tl + 2( ) ‘ [g06 +r ; g,a], (4.64)

8
tclx+ﬁ—] _ tg+ﬁ—] + 2(t2 _ tl)d"‘ﬁ—l‘ [gOS + r Z giS:I’ (463)
i=1
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|(P1E,) (12) = (P1E,) (11))|

ol (B+1) wtpol  atpel e 8
G (=) g al o @es
AB(a)T(a+p) ' 2 (2 -11) ‘ go7 +r2 i:1g7 (4.65)
(Ps1,) (12) = (PsI,) (11)]
al’ + 1 @B B i 8
/A]B(a(ﬁﬂ(aiﬁ) (7 1_t2+ﬁ "2(n - )t 1‘[g08+r2 gig], (4.66)

i=1

Similarly, the above inequality (4.60)—(4.66), that is
|Pi(5h’ Eh, Ih7 Ql’th’ Sra Era Ir) (tz) - Pi(Sh, Eh’ Iha Qh9 Rh’ Sr’ Eh Ir) (t1)| - O as t2 - tla

fori = 2,3,...,8, this yields that ;, i = 2,3,...,8, is bounded, uniformly continuous and compact.
This means P; is completely continuous, fori = 2,3,...,8.
By utilizing (4.59)—(4.66) and taking ||| with g;‘. for j =0,1,...,8, we have

|P(Sh, En, In, On, R, S v, Er, 1) (22) = P(Sh, Eny In, Qns Ry, S, Ery 1) (11 )|

al (B+1)
AB()T(a +p)

8

i=1

Then, # is bounded, uniformly continuous and compact that is ¥ is completely continuous. Therefore,
by Lemma 2.6, the I[FIF-IMIPX model (2.8) has at least one solution. O

5. Numerical schemes for the FIF-IMIPX model
This section uses the Adams-Bashforth method based on two steps of Lagrange polynomials

to generate the numerical schemes for the FIF-MPX model (2.8). We re-write these integral
equations (4.5)—(4.12) at t = t,,41, this yields

Sati) = Sag+ B CUS) o0l [ 0ot 06 536,
Ey(ey) = Ehﬁﬁ(l—a)ti:u;G(Z()tn,Eh(tn))+A]B(Z/)3F(a) j;ln+1(tn+l_S)a—lSB—IGZ(S’Eh(S))dS’
Inltn) = Ih°+ﬁ(1_a)lZB%z()tn’lh(ln))+AB(Z/§F(a) fow(t”“_S)Q_ISB_I&(S’Ih(S))dS’

) = 0+ AL G Q) P 1G04,
Rili) = oy + 2R OowRln)) b 1y 9
Srltas1) = S’°+ﬁ(1_a)illl;6(6a(;msr(tn))+AJB(ZF;F(a) fotnﬂ(t"“_S)a_lsﬁ_IGG(s’Sr(s))ds’
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B(1 _a)lg_]G7(tn’Er(tn)) + af
AB(a) AB(a)

ﬁ(l—a)lg—ng(tn,I,(tn)) ap fu 1 e
AB(a) +A13(6¥)F(a)fo (twi1 = 5) PGy (s, 1.(5) )ds.

Etni) = En+ o fo s = )7 BTG (5, B (s))ds,

Ir(tn—l-l) = Ir0+

So, the numerical approximation of the above integrals is formulated by

B(1 - @)ty Gu (i, Sh(tn))
AB(a)

af 1 {jt1 | e '
*sz (111 = )" 1Ga (555 (5)) ds,

Sn(tat1) = Sn+

B(1 - )ty ' Go(tn, En(1))
AB(a)

af nli | s .
—I—W;L (tjr1—9) 5P GZ(S,E;I(S))ds,

Ep(thy1) = Ep+

,3(1 - a)frgz_lG3(tna Ih(tn))
AB(«)

o o[ o a-1 -1 '
+W;L (tjr1-) P G3(S,IZ(S))ds,

In(tay1) = Iny+

B(1 - a)lg_l(ﬁ(tn, On(tn))
AB(«)

op \ Ca el -1 j
R &, (oG gl

B = )ty ' Gs (t, R(tn))
AB(«)

a/ﬁ ; b . a-1 p-1 j
+W;L (1711 = 5)" 771 Gs (5. Ry (5))ds,

B(1 - a)£_166(tn»sr(tn))
AB(a)

af 1 fjt1 | . .
FRBT &, =9 Gl s

,3(1 - “)15_167(% Er(tn))
AB(a)

B o[ R '
+W;L (tir1 =) 5P G7(s, El(s))ds,

On(tar1) = Ono+

Ry(ta1) = Rpy+

Sr(tn—l—l) = Sro +

Er(thrl) = Er0+
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,8(1 - “)Zg_lGS(tn’Ir(tn))

Ir(tn-i-l) = I+

AB(a)
ap o a-1 B j
+W;L (141 — )% PGy (5. Ei(s))ds.

Next, we use two-step Lagrange interpolation polynomials with At = t;, —¢; to estimate the
integrand functions on [¢;,¢j41]. Thus, we have

Sylier) = Shﬁﬁ(l_a)iﬁ;n,sh(rn))+AB(Z) ,; f (1301 = )W ),
Enlinin) = Eho+ﬁ(1“")iﬁ(ﬁ)’"’Eh(”” AB(‘" ]; I 1= )T W (s)s,
Itn) = zh0+ﬁ“‘“)’ZB‘[Z%’"”’““"” : g - 9 LW (5)ds
Ouln) = On +ﬁ(1_a)z€;§€0§;n, On(tn)) *m(fgr(a) ,:ZI ftj’f“(tﬁl_S)a_lsﬂ_l(wjgh(s) ds.
Raltnir) = R”°+ﬁ(1_a)l€:11;‘3(l()[mRh(tn)) A]B(le“(a) ,-:fz;jﬁ(tjﬂ_s)a_lsﬁ_lwfh(s)ds’
S, (tns) = smﬁ“‘“)’iﬁj{"’s’(”” A]B(Z’;F(Q)JZ; t:jﬂ(fjﬂ—S)“_lsﬁ‘lﬂA/f’(S)ds,
E(tny1) = Ero+ﬁ(l_a)i§g”’E’(t”))+A]B(f£r(a) j: t:jﬂ(tm—s)“‘lsB—lwf’(S)ds,
L)) = 1,0+ﬁ“‘a>’f;];‘fjf;"”’(’"))+ AT _: f - ) W (5)as,
where

W) = oGS0~ G5 ()

Wis) = o G B - T G B (),

W) = o G 0) ~ G 1 9,

W) = o G R~ A Gl ) )

W) = o Gsls.0)(0) = G507 (9)
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WS (s) = ZELAG(s,54(s)) - LB G (5,57 (s)),

J tj—tj-1 / tj—tj—y /71
E, _ STl e STl gl j-1
(Wj (S) — PRSPPI G ( ( ))_tj_tj | j-1 7(S,Er (S))a
J J= -
; S—1ti—1 1 ; S—1ti—1 -1 i—1
Wh(s) = —T—£7'Gg(s,1}(5)) - — =1 |G (s, 1]\ (5)).

Finally, we achieve schemes that yleld the numerical results to the IFIF-MIPX model (2.8)
B =)ty Gi(tn Sa(ta))

AB(a)
B(AL)”

TRAB@)T(at2) £ 2 71615 S5V () = A1 (128 () Yaln. )

Sn(tar1) = Spo+

B0 - a)tﬂ Gz(f n(t))

AB(a)
A2 s / = 5] j-1 .
+ AT ()rt()a+2)z[l§ 'Ga(s, E)(5))Yi(n, j) - 7| Ga(1}, Ef (s))Yz(n’])]’

Ep(tay1) = Ep+

Bl - a)lﬁ G (tn, (1))
AB(a)

+ a+2 Z[ 1G3 (s, I] N)Y1(n, j) _lf__:G3(tj,Ihj— 1(s))Y2(n,j)],
]

I(tas1) = Iny +

AIB

On(tar1) = Ono+ )

AB a—|—2 Z[ TGa(s QY1 (1) )Gl 0] (5))Yalm ),
J

(1 a)zﬂ Gs (tn, Ri(10))

AB()
+ p(an® Z [zﬁ_le(s, Ri(s))Yl(n,j) - l?:llGS(Ij’Ri;_l(s))Yﬂ”’ j)]’

AB(a)T (@ +2) =
B(1 - a)"g_lGdtn’Sr(tn))

AB(a)
B(Ar)® O [ 5o j N - e .
* AT 77 & |71 Gos. () Y1 n.4) = £/ Gty 877 (5)) Yol )|
,3(1 - 0)15_167(% Er(tn))

AB(a)
B(A)*

Y RBoT(a 2 X |47 G (s, EL()) Y (1) = )G (15 L () Ya (. )|

1
/5(1 a)lﬁ Ga(tn, On(tn))
AB(a

Ri(thr1) = Ry +

Sr(tn—H) - Sro +

Er(tn+1) - Erg"’
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B(AN)” \

AB(a)T (a+2) =

7G5, (5)) Y, (0. ) = £ G117 () Yaln )|

where Yi(n,j) = (n+1-j)*(n—j+2+a)—(n—j)*(n—-j+2+42a)and Ya(n,j) = (n+1-
D= (=) (n=j+1+a).

6. Results and discussions

This section shows some simulation results of the FIF-IMIPX model (2.8) at different parameters
to illustrate our results. Various models have been extended to simulate infectious diseases caused
by the MIPX virus. A fractional differential system is utilized to describe the dynamic behavior in
these models. To provide greater precision and accuracy than previous results, this work represents
the considered model with a system of fractional differential equations. The fractional differential
equations allow us to change the order of the fractional derivative to better match the real data. This
paper will be shown graphically simulations separated by considering two equilibrium points, namely
€, and €], separately to observe the impacts of variables on the dynamics of the IFIF-IMIPX model.
We achieve the results shown in Figures 2—17 by performing the stated procedure with the indicated
parameters’ values as in Table 2. Figures 2-9 show the results for the point €}, while the results for
the point €] are shown in Figures 10-17.

Table 2. Parameter values utilized of the MIPX model (2.7) for (ﬁ(’; and C7.

& | ¢ |
Parameter | Value, Year—' | Source Parameter | Value, Year—' | Source
Ay 0.029 [46] Ay 0.029 [46]
A, 0.2 [46] A, 0.9 [48]
by 0.00025 [13] by 0.000009 [48]
b 0.00006 [13] by 0.99 Assumed
bs 0.027 [13] bs 0.0057 [48]
ay 0.2 Assumed ay 0.007 [48]
a 2.0 Estimated a 0.0081 [48]
as 0.007 Estimated as 0.007 [48]
6 2.0 Estimated 6 0.029 [48]
T 0.52 Assumed T 0.012 [48]
v 0.83 [46] v 0.056 [48]
Un 1.5 [13] Un 0.05 [49]
Ur 0.002 [13] Uy 0.002 [40]
on 0.2 [47] oy, 0.00008 [48]
o, 0.5 Assumed o, 0.0001 [48]
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Case 1. We apply all parameter values presented in Table 2 for €;. This case obtains the values
Ro = 1.2819 x 1076 < 1 and the condition K4Ks — a3b; = 0.0043 > 0, which satisfy all assumptions
of Theorem 3.2. Therefore, the equilibrium (E(’; = (0.0193,0,0,0,0, 100, 0,0) is locally asymptotically
stable. In addition, we apply the numerical schemes from Section 5 to show the numerical simulations.
This yields the approximate solutions of the [FIF-IMIPX model (2.8) for various values of @ and 8 with
the initial condition is (800, 5,5,5,0,500, 125,20) as in the distinguished consideration. Figures 2
and 3 show the behaviors of each group in the [FIF-MIPX model (2.8) when @ = 1 is fixed and S is
varied where S € {1.00,0.96,0.92,0.88,0.84}. Figures 4 and 5 describe the behaviors of all groups
for the proposed model when « is varied where @ € {1.00,0.96,0.92,0.88,0.84} and § = 1 is fixed.
The behaviors of each group when @ and g are varied equally that is a € {0.84,0.88,0.92,0.96, 1.00}
and B € {0.84,0.88,0.92,0.96, 1.00} are shown in Figures 6 and 7. At last of subcase, when « and 8
are varied differently, that is, @ € {0.84,0.88,0.92,0.96, 1.00} and g € {1.00,0.96,0.92,0.88,0.84} are
presented in Figures 8 and 9. From each variety of subcases, it can be seen from Figures 2-9 that all
the graphs of each group show the same trend. The behaviors of human groups such as susceptible,
exposed, infected, isolated, and the behaviors of rodent groups such as susceptible, exposed, and
infected gradually decrease from the start day and then steadily reach the steady state €. Furthermore,
the behavior of the recovered humans quickly increases from the start day and then suddenly decreases
until it approaches zero in the disease-free situation. Moreover, in the last subcase, when « and 8 vary
reversely, the graph shows that the stability-reaching time is used over a longer length if compared with
the previous cases.
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Figure 2. Numerical results of S (1), E,(¢), I(2), Qn(t), and Ry(¢) of the IFIF-IMIPX model
(2.8) when @ = 1.00 and g € {0.84,0.88,0.92,0.96, 1.00} in case of €.
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Figure 5. Numerical results of S,(¢), E,(¢), and I,(¢) of the FIF-IMIPX model (2.8) when
@ € {0.84,0.88,0.92,0.96,1.00} and 8 = 1.00 in case of €.
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Figure 6. Numerical results of S, (), En(t), Iy(t), On(t), and R,(z) of the FE-MPX
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Figure 7. Numerical results of S.(¢), E-(¢), and I,(¢) of the IFIF-MIPX model (2.8) when
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Figure 9. Numerical results of S,(7), En(r), In(t), On(t), Ru(t), S,(¢t), E,(t), and
I,(t) of the FF-MIPX model (2.8) when @ € {0.84,0.88,0.92,0.96,1.00} and B €
{1.00,0.96,0.92, 0.88,0.84} in case of €.
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Case 2. We apply all parameter values presented in Table 2 for €]. This case obtains the
values Ro = 1.0035 > 1, A = 34125x 107!, A, = 3874x 1072, A3 = 1.82x 1073,
Ay = 35977 x 107, As = 2.87971 x 1077, Ag = 7.54937 x 10719, A; = 6.37675 x 10713,
By = 3342x 1072, B, = 351331 x 107, B3 = 7.53069 x 10710, C¢; = 1.46 x 1073,
C, = 2.80283x 1077, C3 = 6.37675x 10713, ©; = 2.8701 x 107>, D, = 7.38435x 10717,
E = 24281 x 1077, & = 637675 x 10713, and Fi = 6.6306 x 1071, The conditions
A > 0, Ay > 0, AAA, > Az, AiAA A3 + A1A; > ﬂ%?& + ﬂ%, BrC1 > BiCo,
C2Dy > C1Ds, and DrE; > D1E, are satisfied all all assumptions of Theorem 3.3. Hence, the
point € = (0.46001,0.09596, 0.00633,0.00853,0.00914,208.92857, 53.57143, 178.57143) is locally
asymptotically stable. Furthermore, we apply the numerical schemes in Section 5 to show the
numerical simulations, which implies that the approximate solutions of the I[FIF-IMIPX model (2.8) for
various values of @ and 8 with the initial condition (800, 5,5,5,0,500, 125, 20) as in the distinguished
consideration. In this case, we consider the same subcase as Case 1. When @ = 1 and 8 is varied where
B € {1.00,0.96,0.92,0.88,0.84}, Figures 10 and 11 show the behaviors of each group in the I[FIF-IMIPX
model (2.8). When « is varied where a € {1.00,0.96,0.92,0.88,0.84} and 8 = 1 is fixed, the graph
showing the behaviors of the considered model is shown in Figures 12 and 13. The varied equally of
both @ and g as @ € {0.84,0.88,0.92,0.96, 1.00} and B € {0.84,0.88,0.92,0.96, 1.00} are discussed
as seen in Figures 14 and 15, while the varied differently that is @ € {0.84,0.88,0.92,0.96, 1.00} and
B € {1.00,0.96,0.92,0.88,0.84} are also considered as seen in Figures 16—17. Figures 10—-17 show the
behavior of the five groups of humans and three groups of rodents, and it is noticeable that they have
pretty similar patterns for each subcase. All reach the equilibrium point €] when the time approaches
infinity but spend different time points, where the last subcase spends the longest time compared to the
others. Besides, it can be seen from the graphs that the behavior of the susceptible human, the infected
human, the isolated human, the susceptible rodent, and the exposed rodent rapidly decreased from the
beginning. Moreover, the behavior of the exposed humans, the recovered humans, and the infected
rodents suddenly increased and decreased before reaching the referred steady state as time passed.
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Figure 10. Numerical results of S, (), Ex(2), In(t), Qn(t), and Ry(z) of the FE-IMPX
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Figure 16. Numerical results of S (¢), Ex(2), Ix(t), Qn(t), and Ry(z) of the FF-MIPX
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Figure 17. Numerical results of S ,(¢), E.(¢), and I,(¢) of the IFIF-IMIPX model (2.8) when
@ € {0.84,0.88,0.92,0.96, 1.00} and g € {1.00,0.96, 0.92, 0.88,0.84} in case of €7.

7. Conclusions

In this paper, we analyzed the transmission dynamics of a deterministic mathematical model for the
MIPX virus with five human groups and three rodent groups using the IFIF operator in the context of
Mittag-Leffler kernel. First, the positiveness and boundedness of the proposed model are investigated,
and the equilibrium points, as well as their stability, are established. Second, the fixed point theory in
the framework of Banach’s and Krasnoselskii’s types are used to verify the existence and uniqueness
results. Third, the numerical algorithm is derived applying the Adams-Bashforth technique based on
two steps of Lagrange polynomials. The numerical simulation is presented for two different cases of
equilibrium points €, and €] with a variety of values @ and g for some data referred to in Table 2.
Finally, it can be found that the curves of the approximated solution converge to the steady state of the
proposed model, which guarantees the accuracy of the results from Theorems 3.2 and 3.3. In summary,
we found that the variation values of the fractal dimension and fractional order between zero and one
cause a tiny effect on the dynamics of the different groups of the proposed model. The considerable
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benefit of our FIF-IMIPX pandemic model is that it is more practical, efficient, and realistic than
the classical model since it allows for greater flexibility, which increases precision and helps us get
better results. In future research, we can consider using other fractional operators, such as piece-wise
operators, stochastic operators, and so on, and apply them to the system of differential equations to
analyze real-world phenomena.
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