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1. Introduction

Consider the following unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f (x): Rn→R is a continuous differentiable function. The problem has penetrated deeply into
various fields, such as aerospace, engineering technology, economics and finance, etc [1–3]. The trust
region method is an important method for solving (1.1) and it has attracted the attention of many
researchers [4–6]. The trust region methods usually compute a trial step sk by solving the following
quadratic subproblem

min q(k) (xk + s) = fk + gT
k s +

1
2

sT Bks, (1.2)

s.t. ∥s∥ ≤ ∆k,
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where
fk = f (xk), gk = ∇ f (xk),

Bk ∈ R
n×n is the Hessian matrix of the function at the current iteration point xk or its symmetric

approximation, s is the trial step, ∆k > 0 is the trust region radius, and ∥ · ∥ stands for the Euclidean
norm. The trust region methods take the ratio of the actual reduction to the predicted reduction

rk =
f (xk) − f (xk + sk)

q(k)(xk) − q(k)(xk + sk)

to decide whether to accept the trial step and how to adjust the trust region radius. If rk is close to 1,
the trial step sk should be accepted and ∆k can be increased. If rk is too small, the trial step sk should be
rejected, ∆k should be decreased, and the subproblem (1.2) should be resolved. If rk is much larger than
1, the case of ‘too successful iteration’ might occur. In addition, the trust region methods have always
been accepted as effective methods for dealing with small and medium scale optimization problems
due to the cost of computation and storage on the matrix B−1

k at each iteration. Many researchers [7–16]
considered the modification of the trust region methods to adapt large scale optimization. We devote
to the construction of subproblem and the adjustment of the trust region radius.

In recent years, some trust region methods [11–15] based on simple models for solving large-scale
optimization problems were proposed. For example, Sun et al. [13] developed a nonmonotone trust
region algorithm with simple quadratic models, in which Hessian matrix in the subproblem is a
diagonal positive definite matrix. Li et al. [14] proposed a simulated annealing-based trust region
Bazilai-Borwein (BB) method and [15] proposed nonmonotone trust region BB methods. They all
used scalar matrix with the reciprocal of the BB-stepsize to approximate the Hessian matrix of the
objective function f (x). In the above methods, the amount of computation and storage is greatly
reduced.

The matrix Bk in subproblem (1.2) usually satisfies the classic secant equation (see [17])

Bk+1sk = yk, (1.3)

where
sk = xk+1 − xk, yk = gk+1 − gk.

Ebadi et al. [18] provided two new secant equations

Bk+1sk = yk, sk =
3
2

sk −
1
2

sk−1, yk = yk −
1
3

yk−1 +
νk

∥sk∥
2 sk, (1.4)

where

νk = 2 ( fk − fk+1) + sT
k

(
4
3

gk −
1
3

gk−1

)
+

1
2

(sk + sk−1)T gk+1,

so
Bk+1sk = zk, zk = yk −

1
3

yk−1 +
ηk

∥sk∥
2 sk, (1.5)

where
ηk = 2 fk −

1
2

fk−1 −
3
2

fk+1 + νk.
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Constructing the approximation of the Hessian matrix based on the formulas (1.4) and (1.5) can make
the algorithm maintain the third order curvature information of the objective function at the current
iteration point, and it can make use of both gradient and function values and information from the
three most recent points. It would improve the efficiency of the algorithm, which has attracted our
attention. We try to introduce these two secant equations into the trust region algorithm.

It is usually difficult to satisfy the secant Eq (1.3) with a nonsingular scalar matrix. Many
researchers [16, 19, 20] considered some alternative conditions that could maintain the accumulated
curvature information along the negative gradient. For example, Dennis and Wolkowicz [20]
introduced a weaker form by projecting the secant Eq (1.3) in the direction sk as follows

sT
k Bk+1sk = sT

k yk. (1.6)

Zhou et al. [16] considered some generalization of the weak secant Eq (1.6) and proposed a new
simple model trust region method with generalized BB parameter. Inspired by the above work, we try
to introduce two new weak secant equations with more information.

Updating strategy of the trust region radius may significantly affect the number of iterations. Many
researchers proposed adaptive trust region methods [21–26] to adjust the trust region radius. For
example, Zhang et al. [24] proposed an adaptive trust region radius

∆k = cp
∥∥∥∥B̂−1

k

∥∥∥∥ ∥gk∥ ,

where c ∈ (0, 1), p is a nonnegative integer, and

B̂k = Bk + iI

is a positive definite matrix, for some i ∈ N. Under the same parameters, Shi et al. [25] proposed
another adaptive trust region radius

∆k = −cp gT
k qk

qT
k B̂kqk

∥qk∥ ,

with the vector parameter qk ∈ R
n satisfying the angle condition

−
gT

k qk

∥gk∥ · ∥qk∥
≥ o,

where o ∈ (0, 1). Rezaee and Babaie-Kafaki [26] proposed an adaptive choice for the trust region
radius based on an eigenvalue analysis conducted on the scaled memoryless quasi-Newton updating
formulas

∆k = 2cp ∥gk∥

 1, if k = 0,
∥sk−1∥

2

|sT
k−1yk−1|

, if k > 0, (1.7)

where
sk−1 = xk − xk−1 and yk−1 = gk − gk−1.
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The adaptive trust region radius does not use the Hessian matrix explicitly, and comparing the trust
region method with the adaptive radius to some adaptive trust region methods, this method is low-cost
to update the trust region radius.

Note that some trust region methods require monotone reduction of the objective function, which
may slow the convergence rate in the presence of a narrow curved valley. Nonmonotone trust region
methods [14, 27–30] were proposed. Li et al. [14] proposed a simulated annealing-based trust region
BB method. Their nonmonotone strategy was defined by a modified Metropolis criterion, which can
dynamically control the acceptance probability of the solution of the subproblem by introducing
adaptive parameters (such as temperature parameters) into the accept-reject strategy. In the early stage
of iteration, a higher acceptance probability can help the algorithm jump out of the local optimal
solution by a larger extent, while in the later stage of iteration, the acceptance probability was
gradually reduced to converge to a better solution.

Our research aims to propose an adaptive simple model trust region algorithm based on new weak
secant equations for solving large-scale optimization problems. The contributions of our work are
listed as follows:
• Two new weak secant equations are introduced, which make use of both gradient and function

values and utilize information from the three most recent points. A simple trust region subproblem is
also constructed.
• In order to enable the algorithm to accept more trial steps, the nonmonotone strategy is defined

by a modified Metropolis criterion.
• To overcome the case of “too successful iteration”, adaptive strategy is introduced to adjust the

trust region radius.
The rest of this paper is organized as follows. An adaptive simple trust region algorithm based

on new weak secant equations is proposed in the next section. In Section 3, the global convergence
and locally superlinearly convergence of the new algorithm are established under mild assumptions.
Section 4 introduces numerical experiments to prove the effectiveness of the algorithm. Conclusions
are made in the last section.

2. The proposed method

In this section, two new weak secant equations are introduced based on the formulas (1.4) and (1.5).
On this basis, a simple trust region subproblem is constructed and a new trust region method for solving
large-scale optimization problems is proposed.

Based on the formulas (1.4) and (1.5), we introduce the following new weak secant equations

sT
k Bk+1sk = sT

k yk, (2.1)

sT
k Bk+1sk = sT

k zk, (2.2)

where sk, yk, and zk are the same as formulas (1.4) and (1.5). Let the matrix Bk in subproblem (1.2) be
a scalar matrix γkI satisfying (2.1) or (2.2), then we get

γk =
sT

k−1yk−1

∥sk−1∥
2 (2.3)
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or

γk =
sT

k−1zk−1

∥sk−1∥
2 . (2.4)

A simple trust region subproblem could be constructed as follows

min m(k) (xk + s) = fk + gT
k s +

1
2

sTγkIs, (2.5)

s.t. ∥s∥ ≤ ∆k.

Suppose ∥gk∥ , 0. The solution of subproblem (2.5) is given by:

(i) If ∥∥∥∥∥−gk

γk

∥∥∥∥∥ ≤ ∆k,

then
sk = −

gk

γk
.

(ii) If ∥∥∥∥∥−gk

γk

∥∥∥∥∥ > ∆k,

then
sk = −

∆k

∥gk∥
gk.

The ratio rk can be rewritten as

rk =
f (xk) − f (xk + sk)

m(k)(xk) − m(k)(xk + sk)
. (2.6)

In our algorithm, the following modified Metropolis criterion is used to determine whether to accept
the trial step

pk =

 1, if rk > τ,

exp
{
−
τ−rk
Tk

}
, otherwise,

(2.7)

where Tk is the temperature at the k-iteration, 0 < τ < 1 is a sufficiently small real number, and the
temperature Tk decreases to 0 as k → ∞. The modified Metropolis criterion is embedded into the trust
region methods. Combine pk and rk to determine whether the algorithm is iterative. Different from
the traditional trust region algorithm, when rk ≤ τ, the modified Metropolis criterion is used to accept
more iterations with a certain probability, thereby reducing the amount of computation and improving
the convergence rate of the algorithm.

Based on the above analysis, we propose an adaptive simple model trust region algorithm (ASMTR)
with new weak secant equations.
ASMTR algorithm

Step 0. Set ε > 0, β ∈ (0, 1), u ∈ (0, 1), 0 < τ < u < 1, v > 1, c ∈ (0, 1), p = 0, 0 < κ1 ≤ κ2. Give
x0 ∈ R

n, compute g0, and set s0 = −g0, x1 = x0 + s0. T1 > 0, ∆1 > 0, γ1 = 1, and k := 1.
Step 1. Compute gk. If ∥gk∥ < ε, then stop.
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Step 2. If ∥∥∥∥∥−gk

γk

∥∥∥∥∥ > ∆k,

then
sk = −

∆k

∥gk∥
gk,

otherwise
sk = −

gk

γk
.

Step 3. Compute rk and pk by (2.6) and (2.7), respectively, and let

lk := e−v + (e−1/v − e−v) × rand(1).

If pk > lk, then
xk+1 = xk + sk, (2.8)

otherwise
xk+1 = xk. (2.9)

Step 4. Compute γk+1 by (2.3) or (2.4). If γk+1 ≤ κ1, set γk+1 = κ1. If γk+1 ≥ κ2, set γk+1 = κ2.

Step 5. If rk > u, set p = 0; Otherwise, set p = p + 1. Compute ∆k+1 by (1.7).
Step 6. Set Tk+1 = βTk, k := k + 1, and go to Step 1.

Remark 2.1. The formula (1.7) is used to update the trust region radius, i.e.,

∆k+1 = 2cp ∥gk+1∥

 1, if k = 0,
∥sk∥

2

|sT
k yk|

, if k > 0.

Remark 2.2. From Step 4 of the ASMTR algorithm, we know that the sequence {γk} is uniformly
bounded, i.e.,

0 < κ1 ≤ γk ≤ κ2, ∀k. (2.10)

3. Convergence analysis

In this section, we will discuss the convergence of the ASMTR algorithm. We would like to make
the following assumptions:
Assumption (i) Let f : Rn → R be twice continuously differentiable and bounded below on the level
set

L (x0) = { x| f (x) ≤ f (x0)}

for ∀x0 ∈ R
n.

(ii) Let the gradient g(x) be uniformly continuous on a compact convex set so that Ω contains the level
set L (x0).

Assumptions (i) and (ii) mean that
∥∥∥∇2 f (x)

∥∥∥ is continuous and uniformly bounded on Ω, so there
exists a positive constant L such that ∥∥∥∇2 f (x)

∥∥∥ ≤ L, ∀x ∈ Ω.
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Therefore, from the mean value theorem, we have

∥g(x) − g(y)∥ ≤ L ∥x − y∥ , ∀x, y ∈ Ω,

which ensures that g(x) is Lipschitz continuous on Ω.

Lemma 1. Suppose that sk is the solution of subproblem (2.5) and the sequence {xk} is generated by
the ASMTR algorithm. If ∥gk∥ , 0, then

pred (sk) = m(k) (xk) − m(k) (xk + sk) ≥
1
2
δ1 ∥gk∥min

{
∆k,
∥gk∥

γk

}
,

where δ1 ∈ (0, 1].

Proof. The proof is similar to the proof of Lemma 4.1 in [16]. □

Lemma 2. Suppose that Assumptions (i) and (ii) hold. The solution sk of the simple model (2.5)
satisfies ∣∣∣ f (xk + sk) − m(k)(xk + sk)

∣∣∣ ≤ 1
2

(κ2 + L)∥sk∥
2.

Proof. According to the second-order Taylor expansion, we have

f (xk + sk) = fk + sT
k gk +

∫ 1

0
sT

k
[
g(xk + tsk) − g(xk)

]
dt.

By the definition of m(k)(xk + s) in (2.5), we get

∣∣∣ f (xk + sk) − m(k)(xk + sk)
∣∣∣ = ∣∣∣∣∣∣ fk + sT

k gk +

∫ 1

0
sT

k
[
g(xk + tsk) − g(xk)

]
dt − fk − gT

k sk −
1
2

sT
k γksk

∣∣∣∣∣∣
=

∣∣∣∣∣∣12 sT
k γksk −

∫ 1

0
sT

k
[
g(xk + tsk) − g(xk)

]
dt

∣∣∣∣∣∣
≤

1
2
κ2∥sk∥

2 +

∣∣∣∣∣∣
∫ 1

0
sT

k
[
g(xk + tsk) − g(xk)

]
dt

∣∣∣∣∣∣
≤

1
2
κ2∥sk∥

2 +
1
2

L∥sk∥
2 =

1
2

(κ2 + L)∥sk∥
2.

We complete the proof. □

Lemma 3. Suppose that Assumption (i) holds. Let the sequence {xk} be generated by the ASMTR
algorithm, then there exists a sufficiently large N > 0 such that

fk+1 ≤ fk −
τ

4
δ1 ∥ gk ∥ max

{
∆k,
∥ gk ∥

γk

}
holds for all k > N.
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Proof. If rk ≥ τ > 0, then pk = 1 > lk holds. By Lemma 1, we have

m(k) (xk) − m(k) (xk + sk) ≥
1
2
δ1 ∥gk∥min

{
∆k,
∥gk∥

γk

}
and

f (xk+1) = f (xk + sk) ≤ fk + τ
(
m(k) (xk + sk) − m(k) (sk)

)
≤ fk −

τ

2
δ1 ∥ gk ∥ max

{
∆k,
∥ gk ∥

γk

}
.

If rk < τ, then we accept xk + sk as the new iterate point when

pk = exp
{
−
τ − rk

Tk

}
> lk. (3.1)

By Step 6 of the ASMTR algorithm, it can be deduced that

lim
k→∞

Tk = 0.

Combining with lk ∈
[
e−v, e−1/v

]
, we have

−v ≤ ln lk ≤ −
1
v
,

then, for a given ∀ε1 > 0, there exists N > 0 such that

0 < −Tk ln lk < ε1

holds for all k > N. By a simple manipulation on (3.1), we get

rk > τ + Tk ln lk > τ − ε1,

then by the definition of rk, there is

fk+1 < fk + (τ − ε1)
(
m(k) (xk + sk) − m(k) (xk)

)
.

Set ε1 =
τ
2 . According to Lemma 1, we have

fk+1 ≤ fk −
τ

4
δ1 ∥ gk ∥ max

{
∆k,
∥ gk ∥

γk

}
.

We complete the proof. □

Lemma 4. Suppose that Assumptions (i) and (ii) hold. Let the sequence {xk} be generated by the
ASMTR algorithm. If xk is not the solution of the problem, i.e., ∥gk∥ , 0, then the iteration (2.9) will be
terminated at a finite step.
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Proof. By contradiction that there is K1 > 0 such that the iteration (2.9) will cycle infinitely for k ≥ K1,
then ∥gk∥ ≥ ε. Thus, by Step 3 of the ASMTR algorithm, we have pk < lk for all k > K1, so

rk < τ + Tk ln lk < τ −
Tk

v
< τ < u. (3.2)

By Step 5 of the ASMTR algorithm, we have

lim
k→∞
∆k = 0. (3.3)

From Lemmas 1 and 2, we get

∣∣∣∣∣ f (xk) − f (xk + sk)
pred(sk)

− 1
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
[
f (xk) − f (xk + sk)

]
−

[
m(k)(xk) − m(k)(xk + sk)

]
pred(sk)

∣∣∣∣∣∣∣∣
≤

(κ2 + L)∥sk∥
2/2

δ1εmin {∆k, ε/κ2} /2
=

(κ2 + L)∥∆k∥
2

δ1εmin {∆k, ε/κ2}
. (3.4)

Combining (3.3) and (3.4), we obtain
lim
k→∞

rk = 1.

This implies that, for arbitrarily given ε2 > 0, there exists K2 > 0 such that rk > 1 − ε2 holds for
∀k > K2. Since 0 < τ < u < 1, by letting 0 < ε2 < 1 − u, we get

rk > u > τ −
Tk

v
. (3.5)

Taking K = max {K1,K2}, we have that (3.2) and (3.5) simultaneously hold for ∀k > K, leading to a
contradiction. □

Theorem 1. Let the sequence {xk} be generated by the ASMTR algorithm, then we have

lim
k→∞
∥gk∥ = 0.

Proof. If the ASMTR algorithm terminates in a finite step, then the conclusion is obviously valid.
Consider an infinite number of successful iterations. According to Assumption (i), it is known that the
sequence { f (xk)} is bounded, i.e., there is an a ∈ R such that f (xk) ≥ a holds for all k.

It is obtained from Lemma 3 that

fk+1 ≤ fk −
τ

4
δ1 ∥gk∥max

{
∆k,
∥gk∥

γk

}
.

By (2.10), we have

max
{
∆k,
∥gk∥

γk

}
≥
∥gk∥

κ2
,

so
fk+1 ≤ fk −

τδ1

4κ2
∥gk∥

2. (3.6)
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Adding (3.6) with respect to k yields

τδ1

4κ2

N+K∑
k=N

∥gk∥
2
≤ fN − fN+K+1. (3.7)

Noting that fN+K+1 > a for any K > 0 and taking limit on both sides of (3.7) as K → ∞, we have

lim
K→∞

N+K∑
k=N

∥gk∥
2 < ∞,

which deduces
lim
k→∞
∥gk∥ = 0.

We complete the proof. □

Theorem 2. Suppose that Assumptions (i) and (ii) hold. Also, assume the ASMTR algorithm generates
an infinite sequence {xk} converging to the optimal solution x∗, where the matrix ∇2 f (x∗) is positive
definite and ∇2 f (x) is Lipschitz continuous in a neighborhood of x∗. If the following condition holds

lim
k→∞

∥∥∥gk + ∇
2 f (x∗)sk

∥∥∥
∥sk∥

= 0, (3.8)

then the sequence {xk} converges to x∗ superlinearly.

Proof. Since ∇2 f (x∗) is positive definite and ∇2 f (x) is continuous in a neighborhood of x∗, there exist
positive scalars h and ψ such that

sT∇2 f (x)s ≥ h∥s∥2, ∀s ∈ Rn, (3.9)

for all
x ∈ Ω̃ = { x| ∥x − x∗∥ ≤ ψ}.

Also, there exists positive integer k such that xk ∈ Ω̃, for all k ≥ k.
From the Taylor expansion and inequality (3.9), for sufficiently large indices k, we have

sT
k yk = sT

k (gk+1 − gk) = sT
k∇

2 f (xk + ζksk)sk ≥ h∥sk∥
2,

for some ζk ∈ (0, 1). So, from (1.7), we get

∥sk∥ ≤ 2cp ∥sk−1∥
2∣∣∣sT

k−1yk−1

∣∣∣ ∥gk∥ ≤
2cp

h
∥gk∥ , (3.10)

where c ∈ (0, 1). Considering Lemma 4, p is finite in each iteration.
On the other hand, from the Taylor expansion, we have

gk+1 = gk + ∇
2 f (xk + ςksk)sk

= gk + ∇
2 f (x∗)sk + (∇2 f (xk + ςksk) − ∇2 f (x∗))sk,
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for some ςk ∈ (0, 1). Thus,

∥gk+1∥ ≤
∥∥∥gk + ∇

2 f (x∗)sk

∥∥∥ + ∥∥∥∇2 f (xk + ςksk) − ∇2 f (x∗)
∥∥∥ · ∥sk∥ .

Dividing both sides by ∥sk∥, we get

∥gk+1∥

∥sk∥
≤

∥∥∥gk + ∇
2 f (x∗)sk

∥∥∥
∥sk∥

+
∥∥∥∇2 f (xk + ςksk) − ∇2 f (x∗)

∥∥∥ .
So, from Lipschitz continuity of ∇2 f (x) on Ω̃ and (3.8), we have

lim
k→∞

∥gk+1∥

∥sk∥
= 0,

which, from (3.10), yields

lim
k→∞

∥gk+1∥

∥gk∥
= 0,

implying that the sequence {xk} converges to x∗ superlinearly. □

4. Numerical experiments

In the current section, we show the numerical performance of the ASMTR algorithm. The test
problems are unconstrained problems from CUTEr (a widely used testing environment for optimization
software) library [31] and Andrei [32, 33]. All codes are written on MATLAB R2015b and run on PC
with a 1.19 GHz central processing unit (CPU) processor with 8.00 GB RAM memory. We write two
new algorithms as

(1) ASMTR1: the ASMTR algorithm with

γk+1 =
sT

k yk

∥sk∥
2 .

(2) ASMTR2: the ASMTR algorithm with

γk+1 =
sT

k zk

∥sk∥
2 .

Two new algorithms are compared with the following two algorithms. The first is the simulated
annealing-based trust region BB method (SATRBB) [14], whose nonmonotone technique is defined
by the modified Metropolis criterion; the second is the nonmonotone trust region BB methods
(NTBB) [15]. The parameters are given by: T1 = 200, v = 10, β = 0.99, τ = 0.1, c1 = 0.25, c2 = 0.75,
∆1 = 1, and ε = 10−4 for the SATRBB algorithm, γ = 0.1, η1 = 0.25, η2 = 0.75, and M = 5 for the
NTBB algorithm, and u = 0.15, c = 0.5, κ1 = 2, κ2 = 100, and γ1 = 1 for the ASMTR algorithm.

All test algorithms are terminated when satisfying condition

∥gk∥ ≤ 10−4.

In addition, the algorithm is stopped if the number of iterations exceeds 500. In such a case, we claim
fail of this algorithm. The values x0, x1

0, x2
0, x3

0, x4
0, and x5

0 in the second column associate with starting
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points with x0, 10x0, −10x0, 100x0, −100x0, and −x0, where x0 is the same as [32, 33]. The notations
used in numerical results include the dimension of the problem (n), the initial point of the problem
(x0), the number of iterations (k), the CPU time cost in seconds, the number of function evaluations
(n f ), and the number of gradient evaluations (ng). The sign “−” means the algorithm fails because the
number of iterations exceeds 500. Next, we present some of the numerical results in Examples 4.1–4.4.

Example 4.1. Consider the Broyden banded function

f (x) =
n∑

i=1

(2xi + 5x3
i + 1)2

−
∑
j∈Ji

(x j + x2
j)

2
,

where n is the variable,

Ji = { j : j , i,max(1, i − ml) ≤ j ≤ min(n, i + mu)} ,

ml = 5, and mu = 1. The initial point of this function is x0 = (−1, · · · ,−1)T , and the results are listed
in Table 1.

Perform numerical experiments on the Broyden banded function for different initial points. Table 1
shows that ASMTR2 needs fewer iterations, function, and gradient evaluations. ASMTR1 and
ASMTR2 are superior to SATRBB and NTBB.

Table 1. Numerical result of the Broyden banded function.

SATRBB NTBB ASMTR1 ASMTR2
n x0 k CPU n f ng k CPU n f ng k CPU n f ng k CPU n f ng

10 x0 142 0.0010 282 143 131 0.0156 260 126 161 0.0010 320 162 111 0.0010 221 112
x1

0 237 0.0010 472 238 242 0.0156 482 233 208 0.0156 414 209 149 0.0010 297 150
x2

0 146 0.0010 290 147 145 0.0156 288 146 84 0.0156 166 85 82 0.0010 163 83
x3

0 328 0.0156 654 328 333 0.0156 664 324 242 0.0469 464 243 228 0.0156 453 229
x4

0 237 0.0156 472 238 236 0.0156 470 237 129 0.0313 256 130 127 0.0156 253 128

Example 4.2. Consider the Penalty function I

f (x) = 10−5
n∑

i=1

(xi − 1)2 + (
n∑

i=1

xi
2 − 0.25)2,

where n is the variable. The initial point of this function is x0 = (1, 2, · · · , n)T , and the results are listed
in Table 2.

Table 2. Numerical result of the Penalty function I.

SATRBB NTBB ASMTR1 ASMTR2
n x0 k CPU n f ng k CPU n f ng k CPU n f ng k CPU n f ng

10 x0 57 0.0010 112 58 57 0.0010 112 58 30 0.0010 58 31 27 0.0010 53 28
20 72 0.0781 142 73 72 0.0156 142 73 37 0.0010 72 38 32 0.0010 63 33
50 92 0.0010 182 93 92 0.0156 182 93 45 0.0010 88 46 41 0.0010 81 42

100 108 0.0010 214 109 108 0.0010 214 109 52 0.0010 102 53 48 0.0010 95 49
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In the case of four dimensions, numerical experiments are performed from the same initial point. We
find that ASMTR1 uses less iterations, function, and gradient evaluations than SATRBB and NTBB,
and ASMTR2 is better than ASMTR1.

Example 4.3. Consider the Broyden tridiagonal function

f (x) = (3x1 − 2x2
1)2 +

n−1∑
i=2

(3xi − 2x2
i − xi−1 − 2xi+1 + 1)2

+ (3xn − 2x2
n − xn−1 + 1)2

,

where n is the variable. The initial point of function is x0 = (−1, · · · ,−1)T , and the results are listed in
Table 3.

Table 3. Numerical result of the Broyden tridiagonal function.

SATRBB NTBB ASMTR1 ASMTR2
n x0 k CPU n f ng k CPU n f ng k CPU n f ng k CPU n f ng

10000 x0 50 0.1094 98 51 48 0.0625 94 49 40 0.0625 78 41 37 0.0625 73 38
x1

0 86 0.2813 170 87 85 0.2656 168 85 56 0.1406 110 57 58 0.1719 115 59
x2

0 75 0.1719 148 76 75 0.1406 148 76 63 0.1563 124 64 68 0.1563 135 69
x3

0 116 0.2344 230 117 121 0.1563 240 122 70 0.1406 138 71 66 0.1563 131 67
x4

0 111 0.3281 220 112 110 0.2188 218 111 76 0.1563 150 77 70 0.1250 139 71
20000 x0 49 0.1875 96 50 48 0.2344 94 49 51 0.1250 100 49 91 0.3125 181 89

x1
0 83 0.2969 164 84 87 0.4063 172 87 51 0.1563 100 52 54 0.2656 107 55

x2
0 77 0.3281 152 78 76 0.2500 150 77 69 0.2031 136 70 66 0.2344 131 67

x3
0 123 0.4063 244 124 121 0.2969 240 122 76 0.2031 150 77 66 0.2656 131 67

x4
0 110 0.5000 218 111 110 0.500 218 111 72 0.1719 142 73 79 0.1719 157 80

50000 x0 44 0.3906 86 45 47 0.3750 92 48 58 0.3438 114 55 58 0.4844 115 56
x1

0 88 0.7500 174 89 87 0.7031 172 88 57 0.5469 112 58 52 0.4375 103 53
x2

0 78 0.6875 154 79 78 0.7031 154 79 99 0.7500 196 100 64 0.6719 127 65
x3

0 122 0.9531 242 123 121 0.9531 240 122 71 0.5938 140 72 70 0.6563 139 71
x4

0 112 1.3281 222 113 111 0.9219 220 112 71 0.5000 140 72 78 0.5625 155 79

For 10000, 20000, and 50000 dimensions, respectively, five initial points are selected to test the
numerical results. SATRBB and NTBB win in approximately 13.4% of performed testing problems
concerning the number of iterations, and ASMTR1 and ASMTR2 win in nearly 86.6% of performed
testing problems. In addition, ASMTR1 and ASMTR2 need shorter CPU time for most problems. This
means the new algorithm is very effective for large-scale optimization problems.

Example 4.4. Consider the nearly separable function

f (x) =
n∑

i=1

x2
i +

n∑
j=1

x6
j + cos2 x2 +

n−1∑
i=2

cos2 (xi−1 + xi+1) + cos2 xn−1,

where n is the variable and 1 ≤ j ≤ n. The initial point of this function is

x0 =

(
n

2(n + 1)
,

n − 1
2(n + 1)

, ...,
1

2(n + 1)

)T

,

AIMS Mathematics Volume 9, Issue 4, 8497–8515.



8510

and the results are listed in Table 4.

Table 4. Numerical result of the Nearly separable function.

SATRBB NTBB ASMTR1 ASMTR2
n x0 k CPU n f ng k CPU n f ng k CPU n f ng k CPU n f ng

5000 x0 − − − − − − − − 147 30.2656 292 132 127 26.5000 364 114
10000 − − − − − − − − 130 27.5781 258 116 180 118.3750 525 169
20000 − − − − − − − − 134 103.4375 266 123 142 329.2190 409 129

Table 4 shows the numerical results of the function under different dimensions of the same initial
point. SATRBB and NTBB do not run results within 500 iterations, and ASMTR1 and ASMTR2
effectively solved within 180 iterations.

For more insight, we use the performance profiles introduced by Dolan and Moré [34] to illustrate
the numerical performance of the four algorithms based on the testing functions in Table 5. The 20
test functions are listed in Table 5, in which the dimensions vary from 2 to 50000. In Table 5, “No.”
represents the number of the functions. Here, we also add the nonmonotone adaptive trust region
method based on the simple conic model nonmonotone adaptive conic trust region (NACTR)
method [7] to compare. This method needs less memory and computational efforts.

Table 5. The test functions.

No. Functions

1 Brown badly scaled function
2 Generalized tridiagonal 1 function
3 Allgower function
4 Brown and Dennis function
5 Boundary value function
6 Staircase S1 function
7 Chebyquad function
8 Staircase S2 function
9 Broyden banded function
10 Broyden tridiagonal function
11 Penalty function I
12 Nearly separable function
13 Schittkowski function 302
14 Variable dimension function
15 Yang tridiagonal function
16 Generalized Rosebrock function
17 Diagonal full Border function
18 DIAG-AUP1 function
19 Separable cubic function
20 LIARWHD function

Based on the numerical results of all the test problems, we present the performance profiles
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(including the number of iterations, the CPU time, the number of function evaluations, and the
number of gradient evaluations). In a performance profile plot, the horizontal axis gives the
percentage (τ) of the test problems for which a method is the fastest (efficiency), while the vertical
side gives the percentage (ψ) of the test problems that are successfully solved by each of the methods.

Figures 1–4 plot the performance profiles for the number of iterations, the CPU time, the number
of function evaluations, and the number of gradient evaluations, respectively. It can be observed that
ASMTR1 and ASMTR2 grow up faster than the other algorithms. In a word, they show that the
performance of ASMTR1 and ASMTR2 is superior to SATRBB, NACTR, and NTBB in all aspects.
In the overall trend, the performance of ASMTR2 is slightly better than ASMTR1. We believe that
ASMTR2 is more competitive. Specifically for large-scale problems, the ASMTR algorithm has a
strong numerical stability. From above analysis, we can conclude that the algorithm proposed in our
work turns out to be quite competitive.

Figure 1. Performance profile of the number of iterations.

Figure 2. Performance profile of the CPU time.
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Figure 3. Performance profile of the number of function evaluations.

Figure 4. Performance profile of the number of gradient evaluations.

5. Conclusions

In this paper, we propose an adaptive simple model trust region algorithm based on new weak
secant equations. It is worth noting that the trust region subproblem of the algorithm is solved more
simply in contrast to the many other trust region methods proposed in the literature. We discuss the
benefits of constructing a simple model using the last three points of information, and the algorithm
combines the nonmonotone strategy defined by a modified Metropolis criterion and adaptive strategy.
The global convergence and locally superlinearly convergence of the new algorithm are established
under appropriate conditions. Numerical experiments show that the proposed algorithm is effective.
There are still many deficiencies in our research; For example, the more efficient and widely used
adaptive trust region radius is not taken into account. Therefore, we will explore a new adaptive trust
region radius in the future and obtain a more effective and robust method.
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