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1. Introduction

The investigation of periodic solutions in DDEs(Delay Differential Equations) with discrete delay
can be traced back to 1962 [1], when Jones explored the existence of periodic solutions in a delayed
Wright equation by using fixed-point theorems. Over the years, a multitude of methodologies have
been adopted to analyze periodic solutions in DDEs with discrete delay, including fixed-point theory,
Kaplan-Yorke’s method [2], the center manifold theorem [3, 4], variational theory [5–10], coincidence
degree theory [11], Hopf bifurcation methods [12–14], analysis techniques [15, 16], and equivariant
degree theory [17–20].

More recently, DDEs with distributed delay have found extensive applications in population models,
industrial models, and economic models [21, 22]. Various methods have been developed to explore
periodic solutions in DDEs with distributed delay, including fixed-point theory [23], the ejective fixed-
point principle [24], Jacobi elliptic functions [25, 26], and the variational method [27–29].
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In this paper, we address the problem of the existence of periodic solutions in DDEs with distributed
delays by introducing a novel approach rooted in the Brouwer equivariant degree theory.

We commence our study by considering a system of autonomous DDEs with distributed delays and
no friction term. The absence of a friction term enables the application of the Nagumo condition to
obtain an a priori bound. Additionally, the commensurability of delays, combined with the autonomous
nature of the systems, leads to the emergence of the symmetry group O(2).

To be more precise, let a be such that π > a > 0, and define b := 2π − a. Assume f : V2 → V to be
a continuous function, where V := RN . We study the following periodic problem for DDEs:

ẍ(t) = f
(
x(t),

∫ b

a
x(t − s)ds

)
,

x(t) = x(t + 2π), ẋ(t) = ẋ(t + 2π).
(1.1)

Here, t ∈ R, x(t) ∈ V, and a and b are given numbers.
We introduce the notation x := (x, y) ∈ V2 and

xt := (x(t),
∫ b

a
x(t − s)ds) ∈ V2, t ∈ R.

Then, problem (1.1) can be rewritten as follows: ẍ(t) = f (xt),

x(t) = x(t + 2π), ẋ(t) = ẋ(t + 2π).
(1.2)

We make the following assumptions:
(A1) f is odd, i.e., f (−x) = − f (x), for all x ∈ V2.
(A2) There exists R ≥ 0 such that for all x = (x, y) ∈ V2, the following holds:

|x| > R and |y| ≤ (b − a)|x| ⇒ x · f (x, y) > 0.

(A3) f is differentiable at 0 ∈ V2, and A := D f (0) = [A0, A1].
Notice that system (1.2) is autonomous, so it automatically exhibits S O(2)-symmetries (where

the group S O(2) acts by shifting the argument of the functions denoted by x(t)). In addition, by
the assumption that 2π − a = b, with the time inversion acting as reflection, (1.2) becomes O(2)-
symmetric. By assumption (A1), one can leverage the oddness property of the function f (i.e., Z2-
equivariance) to distinguish constant solutions from non-constant periodic solutions. A modified
Nagumo condition (A2) lead to a priori bounds for (1.2). Notice that problem (1.2) lacks a variational
structure. In fact f is not even required to be differentiable except at zero (see condition (A3)).

Our primary objective is to study the existence of periodic solutions to (1.1) under the
aforementioned conditions. To address this problem, we employ the equivariant Brouwer/Leray-
Schauder degree method. Notice that (1.2), in conjunction with the reversibility and oddness properties,
leads to an O(2) × Z2-equivariant operator equation in the appropriate functional space. Our goal is
to demonstrate how the O(2) × Z2-equivariant degree can be applied to establish the existence and
multiplicity of periodic solutions for (1.2).
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The remainder of this paper is organized as follows: In Section 2, we establish a priori bounds for
periodic solutions of (1.1). In Section 3, we reformulate the problem (1.1) as a non-linear O(2) × Z2-
equivariant equation in appropriate functional spaces (see Section 3). In Sections 4 and 5, we recall
some basic properties of the equivariant degree and use them to compute O(2) × Z2-deg(A , B(E )) for
the linear isomorphism A . In Section 6, we state our main results and give an example to illustrate
how the abstract results can be applied to the concrete system (1.1).

2. A priori bound

In order to establish the a priori bounds that are used later to construct admissible homotopies,
consider the following modification of problem (1.2): ẍ(t) = λ( f (xt) − x(t)) + x(t), t ∈ R, x(t) ∈ V, λ ∈ [0, 1],

x(t) = x(t + 2π), ẋ(t) = ẋ(t + 2π).
(2.1)

One has the following lemma:

Lemma 2.1. Assume that f : V2 → V satisfies (A2). If a C2-differentiable 2π-periodic function
x : R→ V such that maxt∈R |x(t)| ≥ R, then x(t) is not a solution to (2.1) for λ ∈ [0, 1].

Proof. Let us argue by contradiction: Assume that x(t) is a solution to (2.1) with |x(to)| :=
maxt∈R |x(t)| ≥ R, and consider the function φ(t) := 1

2 |x(t)|2. Then, φ(t0) = maxt∈R φ(t), φ′(t0) =

x(t0) • ẋ(t0) = 0 and φ′′(t0) = ẋ(t0) • ẋ(t0) + ẍ(t0) • x(t0) ≤ 0. However, by condition (A2), one has the
following for 1 ≥ λ > 0:

φ′′(t0) = ẋ(t0) • ẋ(t0) + ẍ(t0) • x(t0)

≥ x(t0) • f
(
x(t0),

∫ b

a
x(t − s)ds

)
> 0,

which contradicts the assumption that φ(t0) is the maximum of φ(t), i.e., φ′′(t0) ≤ 0. The lemma
follows immediately.

The required priori bound is provided by the following lemma.

Lemma 2.2. Assume that f : V2 → V is continuous and satisfies (A2). Then, there exists a constant
C>0 such that for every solution x(t) to (2.1) (for some λ ∈ [0, 1]), one has:

∀t∈R |x(t)| < C, |ẋ(t)| < C, |ẍ(t)| < C.

Proof. By Lemma 2.1, there exists R>0 such that any 2π-periodic solution x(t) to (2.1) satisfies the
|x(t)| < R.

Put
KR :=

{
(λ, x); ∈ [0, 1] × V2 : x = (x, y), |x| ≤ R, |y| ≤ (b − a)R

}
.

Clearly, the set KR is compact. Since the map

f̃ (λ, x) := λ( f (x) − x(t)) + x(t), x := (x, y), λ ∈ [0, 1],
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is continuous, it follows that f̃ (KR) is bounded, i.e., there exists M1 ≥ 0 such that
∣∣∣ f̃ (λ, x)

∣∣∣ ≤ M1 for all
(λ, x) ∈ KR. Therefore, every solution x(t) to (2.1) satisfies |ẍ(t)| ≤ M1.

Take v ∈ V with |v| = 1 and consider the scalar function ψv(t) := ẋ(t) • v. Since x(t) is 2π-periodic,
there exists t0 such that ψv(t0) = 0 for some t0 ∈ R, and for t0 + 2π ≥ t ≥ t0 one has:

|ẋ(t) • v| = |ψv(t)| =

∣∣∣∣∣∣ψv(t0) +

∫ t

t0
ψ′v(s)ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ t

t0
ψ′(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

t0
ẍ(s) • vds

∣∣∣∣∣∣ ≤
∫ t

t0
|ẍ(s) • v| ds ≤

∫ t

t0
|ẍ(s)| |v| ds

=

∫ t

t0
|ẍ(s)| ds ≤

∫ 2π

0
|ẍ(s)| ds ≤ 2πM1 =: M2.

Therefore,
|ẋ(t)| = sup

|v|≤1
|ẋ(t) • v| ≤ M2.

Summing up, C := max{R,M1,M2} + 1 is as required.

3. Operator reformulation in functional spaces

Let us introduce the spaces of interest. First, consider the space C2π(R; V) of continuous 2π-periodic
functions equipped with the norm

‖x‖∞ = sup
t∈R
|x(t)| , x ∈ C2π(R; V). (3.1)

Then, the space E from R to V is denoted by C2
2π(R,V) for twice continuously differentiable 2π-

periodic functions equipped with the norm

‖x‖ := max {‖x‖∞ , ‖ẋ‖∞ , ‖ẍ‖∞} . (3.2)

Put G := O(2) × Z2 with the G-action on E defined by

(eiθ,±1)x(t) := ±x(t + θ), (3.3)

(eiθκ,±1)x(t) := ±x(−t + θ), (3.4)

where x ∈ E , κ ∈ O(2). Clearly, E is an isometric Banach G-representation. According to
formulas (3.3) and (3.4), the isometric G-representations are defined on the space of periodic functions
C2π(R,V) and C2π(R,V2). The G-isotypic decomposition of E is simple to define. Consider the
subspaces of E corresponding to its Fourier models as G-subrepresentations

E =

∞⊕
k=0

Ek, Ek := {cos(kt)u + sin(kt)v : u, v ∈ V} . (3.5)

Clearly, each Ek, for k=1,2,· · · , identifies with the complexification Vc := V⊕iV (as a real O(2)×Z2-
representation) of V, where the rotation eiθ ∈ S O(2) acts on vectors z ∈ Vc by eiθ(z) := e−ikθ · z
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and κz := z̄ a space (here ‘·’ stands for complex multiplication). In fact, the linear isomorphism
ϕk : Vc → Ek given by

ϕk(u + iv) := cos(kt)u + sin(kt)v, u, v ∈ V, (3.6)

is O(2) × Z2-equivariant. Also, with the trivial action of O(2) and the antipodal action of Z2, E0 and V
can be identified, while Ek, k = 1, 2, ..., is modeled on the irreducible O(2)-representation Wk ' R

2N

with the antipodal Z2-action.

Let us introduce the subsequent operators:

L : E → C2π(R,V), Lx := ẍ − x,

j : E → C2π(R,V2), j(x)(t) := (x(t),
∫ b

a
x(t − s)ds),

and N : C2π(R,V2)→ C2π(R,V) , which is defined by

N(x, y) := f (x(t), y(t)) − x(t), (x, y) ∈ C2π(R,V2),

and which the following (non-commutative) figure serves to illustrate:

E C2π(R,V)

C2π(R,V2)

L

j N

Problem (2.1) is equivalent to the following:

Lx = λ(N(jx)), x ∈ E , λ ∈ [0, 1], (3.7)

which, for λ = 1, is equivalent to (1.2). Equation (3.7) can be recast as follows since L is
an isomorphism:

Fλ(x) := x − λL−1N(j(x)) = 0, x ∈ E , λ ∈ [0, 1]. (3.8)

Proposition 3.1. Assume that f satisfies assumptions (A1) − (A3) and (3.8) provides the nonlinear
operator Fλ : E → E . Then, Fλ is a G-equivariant completely continuous field for every λ ∈ [0, 1].

Proof. Adding the definition of L yields (3.5) and (3.6):

L|Ek = −(k2 + 1)Id : Vc → Vc and L|E0 = −Id (k > 0). (3.9)

Specifically, L−1 and, by extension, L is G-equivariant. Since j is an embedding, it also satisfies
the conditions of G-equivariance. It follows that Fλ is a fully continuous field since L and N are
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continuous and j is a compact operator. Furthermore, by conditions (A1), the operator N is Z2-
equivariant. Since problem (1.1) is autonomous, it follows that N ◦ j is S O(2)-equivariant. The proof
just has to demonstrate that N ◦ j commutes with the κ-action. For every t, one obtains:

N(j(κx))(t) = f
(
x(−t),

∫ b

a
x(−t + s)ds

)
− x(−t)

= f
(
κx(t),−

∫ 2π−b

2π−a
κx(−t + (2π − s))ds

)
− x(−t)

= f
(
κx(t),

∫ b

a
κx(−t − s))ds

)
− x(−t)

= κN(j(x))(t).

On the other hand, x ≡ 0 is a solution to (3.8) for any λ ∈ [0, 1]. Assuming that condition (A3) is
satisfied, put

A := DF1(0) : E → E . (3.10)

Then,
A = Id − L−1(DN(0)) ◦ j : E → E . (3.11)

One can easily check that A ∈ Lc(E ) and, as such, is a Fredholm operator of index zero1*. Therefore,
A is an isomorphism if and only if 0 < σ(A ) (here σ(A ) stands for the spectrum of A ). Also, since
G{0} = G, it follows that A ∈ LG

c (E ).

Lemma 3.1. Furthermore, assume that 0 < σ(A ) under the assumptions (A1) and (A3). The map
F := F1 (c f . (3.8)) is then Ωε-admissibly G-equivariantly homotopic to A , as given by (3.10)
and (3.11) for a sufficiently small ε > 0 (here Ωε := {x ∈ E : ‖x‖ < ε}).

Proof. We set Hλ(x) := (1 − λ)A (x) + λF (x), x ∈ E , λ ∈ [0, 1], and show that there exists a
sufficiently small ε > 0 such that Hλ(·) is an Ωε-admissible homotopy. Indeed, assume for contraction,
that there exist sequences xn ⊂ E and λn ⊂ [0, 1] such that xn → 0, λn → λ0 and

Hλn(xn) = A (xn) − λn(A (xn) −F (xn)) = 0 f or all n ∈ N.

Then, by linearity and differentiability, one has:

A (xn)
‖xn‖

= A (
xn

‖xn‖
) =

λn(A (xn) −F (xn))
‖xn‖

→ 0 as n→ ∞. (3.12)

Set vn := xn
‖xn‖

. Combining (3.12) with (3.11) yields:

A (vn) = vn − L−1(DN(0)(j(vn)))→ 0 as n→ ∞. (3.13)

Since j is a compact operator, there exist y0 and a subsequence
{
vnk

}
such that L−1(DN(0)(j(vnk))) →

y0. Hence, by the continuity of A combined with (3.13), one has that vnk → y0 and ‖y0‖ = 1. Therefore,
A (y0) = 0 which is impossible since A is an isomorphism.

*1 Here Lc(E ) stands for the space of linear operators T : E → E of the type T : Id − K, where K is a compact operator.
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4. Equivariant invariant and abstract existence result

To formulate a result by using the equivariant degree in relation to problem (1.2), we need
additional concepts.

Definition 4.1. If there is k > 0 and u , 0, u ∈ Ek, such that H = Gu and (H) is a maximal orbit type in
Φ(G,Ek \ {0}), i.e., H = Dd

2k ≤ O(2)×Z2, then an orbit type (H) in the space E is said to be of maximal
kind, where

Dd
2k := {(1, 1), (γ,−1), . . . , (γ2k−1,−1), (κ, 1)(γκ,−1), . . . , (γ2k−1κ,−1)},

where γ := ei πk ∈ S O(2).

Remark 4.1. The above concepts have a very transparent meaning. Without extra assumptions, typical
equivariant degree based results provide minimal spatio-temporal symmetries of the corresponding
periodic solutions for Definition 4.1.

Under the conditions (A1) and (A3), the G-equivariant degree G-deg (A , B(E )) ∈ A(G) is correctly
defined provided that 0 < σ(A ) (here B(E ) denotes the unit ball in E ). Set

ω := (G) −G-deg (A , B(E )). (4.1)

Now we can formulate a result that is abstract.

Proposition 4.1. Assume that f : V2 → V satisfies conditions (A1) − (A3). Furthermore, assume that
0 < σ(A ) (cf. (3.8), (3.10), (3.11)). Finally, assume that

ω = n1(H1) + n2(H2) + · · · + nN(HN), n j , 0, (H j) ∈ Φ0(G), (4.2)

(cf. (4.1)). Then,

(a) there exists a G-orbit of 2π-periodic solutions x ∈ E \ {0} to (1.2) such that (Gx) ≥ (H j), for every
j = 1, 2, ...,N,

(b) if (H j) is of maximal kind, i.e., H j = Dd
2k, then the solution x is non-constant and Gx = Dd

2m when
m ∈ N is a multiple of k.

proof. (a) Consider Ωε as given in Lemma 3.1 and set F := F1 (see (3.8)). Then, F is Ωε-admissible
and, by equivariant homotopy invariance of the equivariant degree,

G-deg (F ,Ωε) = G-deg (A , B(E )). (4.3)

Similarly, consider C as given in Lemma 2.2 and set Ωc := {x ∈ E : ‖x‖ < C}. Then, F is Ωc-
admissible and equivariantly homotopic to F0 = Id . Hence,

G-deg (F ,Ωc) = (G). (4.4)

Put
Ω := Ωc \Ωε. (4.5)
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Then, using the degree’s additivity property,

G-deg (F ,Ω) = G-deg (F ,Ωc) −G-deg (F ,Ωε) = (G) −G-deg (A , B(E )).

Thus, combining (4.1)–(4.4) yields that ω = G-deg (F ,Ω), which, by the statement follows.

(b) Note that Gx ≥ O(2) if x ∈ E is a constant function. However, the following property holds for
any (H) of maximum kind, H = Dd

2k; if (K) ∈ Φ0(G,E \ {0}) and (K) ≥ (H), then there exists s ∈ N
such that (K) = (Dd

2sk). Specifically, (K) is also of maximal kind. As a result, (K) is an orbit type for a
2π-periodic function that is not constant.

5. Computation of G-deg (A , B(E )): Reduction to basic degrees

By Proposition 4.1, problem (1.2) is reduced to a computation of G-deg (A , B(E )). One needs a
workable formula for G-deg (A , B(E )) to analyze the non-triviality of some of the coefficients of ω.

First, we get the equivariant spectral information associated with A . Since (by G-equivariance) A
respects the isotypic decomposition, establish

ξ :=
∫ b

a
e−iksds =

e−ika − e−ikb

ik
= −

2 sin ka
k

,

and define (see (3.9)) Ak := A |Ek to satisfy

Ak = Id +
1

k2 + 1
(A0 + ξA1 − Id ). (5.1)

To simplify the computations, assume the following:

(A4) The matrices A0 and A1 are diagonalizable and A0A1 = A1A0, with σ(A0) = {µ j : j = 1, 2, . . . , r},
σ(A1) = {ν j : j = 1, 2, . . . , r}, E(µ j) = E(ν j).

This gives one the following spectrum description of A :

σ(A ) =

∞⋃
k=0

σ(Ak), (5.2)

where

σ(A0) = σ(A0),

σ(Ak) =

{
1 +

1
k2 + 1

(
µ j −

2ν j sin ak
k

− 1
)

: k = 1, 2, . . . , µ j ∈ σ(A0), ν j ∈ σ(A1)
}
.

Put
m j := dim E(µ j) = dim E(ν j),

i.e., m j stands for the multiplicity of the eigenvalues µ j and ν j. Denote

λk, j := 1 +
1

k2 + 1

(
µ j −

2ν j sin ak
k

− 1
)
, j = 1, 2, . . . , r,
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for k ∈ N. Notice that the G-isotypic multiplicity of λk, j is equal to m j. Moreover, one has

λk, j < 0 ⇔ k3 + kµ j − 2ν j sin ak < 0, (5.3)

which allows us to describe the negative spectrum σ−(A )

σ−(A ) = σ−(A0) ∪
∞⋃

k=1

{λk, j : k3 + kµ j − 2ν j sin ak < 0, and j = 1, 2, . . . , r}.

Put
Nk :=

{
j ∈ {1, 2, . . . , r} : k3 + kµ j − 2ν j sin ak < 0

}
, k ∈ N

and
mk :=

∑
j∈Nk

m j. (5.4)

The degree G-deg (A , B(E )) can be calculated; by using the following formula:

G-deg (A , B(E )) = G-deg (A0, B(V)) ·
∞∏

k=1

(degVk
)mk . (5.5)

The basic degrees degVk
are given by

degVk
= (O(2) × Z2) − (Dd

2k).

6. Main results and examples

In this section, we present our primary findings and provide illustrative examples by using G =

O(2) × Z2. Since A is a Fredholm operator of index zero, its invertibility depends on whether zero
belongs to σ(A ). Depending on that, we distinguish between non-degenerate and degenerate cases.
The following statement is a non-degenerate version of the main result.

Theorem 6.1. Assume that f : V2 → V satisfies conditions (A1) − (A4) and, in addition, that 0 <
σ(A ), where σ(A ) is given by (5.2). If for some k > 0 the number mk (given by (5.4)) is odd, then
problem (1.2) admits a non-constant 2π-periodic solution with symmetries denoted by Dd

2m, where m is
a multiple of k.

Proof. By Proposition 4.1 we need to prove that ω = G-deg (F ,Ω) has a nonzero coefficient
corresponding to the orbit type (Dd

2k). By (5.5),

G-deg (A , B(E )) = G-deg (A0, B(V)) ·
∞∏

l=1

(degVl
)ml ,

and since for l = k, mk is odd, one has

(degVk
)mk = degVk

= (G) − (Dd
2k).
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So

G-deg (A , B(E )) = G-deg (A0, B(V))((G) − (Dd
2k)) ·

∏
l,k

(degVl
)ml

= (G) ± (Dd
2k) + α,

where α ∈ A(G) is an element such that for H := Dd
2k one has coeffH(α) = 0. Then,

ω = (G) −G-deg (F , B(E ))
= (G) − (G) ∓ (Dd

2k) − α,

i.e.,
coeffH(ω) = ∓1 , 0,

and the conclusion follows from Proposition 4.1.
In Theorem 6.1, the obtained solution x(t) to (1.2) admits the symmetries denoted by Dd

2m which
can be simply written as the following condition

∀t∈R x(t + τ) = −x(t), for τ :=
π

m
. (6.1)

Clearly, such a solution is non-constant.

The following “degenerate” version of the main conclusion can be established by using the same
argument as that used in the demonstration of Theorem 6.1.

Theorem 6.2. Assume that f : V2 → V satisfies conditions (A1) − (A4) but 0 ∈ σ(A ), i.e., the set

C :=
{
k ∈ N ∪ {0} : k3 + kµ j − 2ν j sin ak = 0

}
, ∅.

Assume that s ∈ N is such that
C ∩ {(2k − 1)s : k ∈ N} = ∅, (6.2)

and that there exists k ∈ N such that m(2k−1)s is odd. Then, system (1.2) admits a non-constant 2π-
periodic solution with the orbit type (Dd

2m), where m is a multiple of (2k − 1)s.

Proof. If eiπ/k ∈ O(2) acts as −Id on the representations denoted by Em, then the element (eiπ/k,−1) ∈
O(2) × Z2 acts trivially on Em, i.e., the group formed by (eiπ/k,−1) is contained in each isotropy group
of the representation Em, i.e.,

K = Zd
2k := {e} × {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2k−1,−1)}, γ = eiπ/k. (6.3)

(γ,−1) acting on the function cos(lt)u + sin(lt)v ∈ E
Zd

2k
l is given by

(γ,−1)(cos(lt)u + sin(lt)v) = −

(
cos

(
lt +

lπ
k

)
u + sin

(
lt +

lπ
k

)
v
)
.

Thus, if l is an odd multiple of k, then these functions are in the fixed point space E K and

E K =
⊕

l∈k(2N−1)

El.
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Notice that K is normal in G and W(K) = O(2). Suppose that any solution to the problem

F K(x) = 0, x ∈ ΩK, (6.4)

where F K := F |E K is O(2)-equivariant, is also a solution to

F (x) = 0, x ∈ Ω. (6.5)

It is sufficient to show that O(2)-deg(A K, B(E K) is well-defined and

coeffD(2k−1)s
(
O(2)-deg(A K, B(E K)

)
, 0.

By applying the same argument as before, we obtain that

O(2)-deg(A K, B(E )) =
∏

l∈(2N−1)s

(O(2) − (Dl))ml

= (O(2)) ± (D(2k−1)s) + α,

where
coeffD(2k−1)s(α) = 0.

Then, clearly, by the same argument as the one used in the proof of Theorem 6.1, one can show that
there exists a solution x to (6.4) with symmetries denoted by Dm, where m is a multiple of (2k − 1)s;
thus, x is also a solution to (6.5) and has the orbit type (Dd

2m).

Example 6.1. We start by describing a class of maps that satisfy condition (A2). Take V := RN as
equipped with the standard Euclidean norm, and consider a map f : V × V→ V given by

f (x, y) = A0x + A1y + ‖x‖4 x − ‖x‖ ‖y‖ y, (x, y) ∈ V, y =

∫ b

a
x(t − s)ds, (6.6)

where A j : V→ V, j = 0, 1, satisfies condition (A4) for |y| ≤ (b − a) |x|; then, one has

x • f (x, y) = x • A0x + x • A1y + x • ‖x‖4 x − x • ‖x‖ ‖y‖ y

≥ ‖x‖6 − (b − a)2 ‖x‖4 − ‖A0‖ ‖x‖2 − (b − a) ‖A1‖ ‖x‖2 > 0,

which implies that the assumption (A2) is satisfied. Observe that the map f (x, y) also satisfies
conditions (A1) and (A3). Assume in addition that A0 and A1 are symmetric matrices such that
A0A1 = A1A0. Then, there exists an orthonormal basis {v1, v2, . . . , vN} in V = RN such that

A0vk = µkvk, A1vk = νkvk k = 1, 2, . . . ,N,

and consequently the map f satisfies the assumption (A4).
To illustrate how Theorem 6.1 is applied to a concrete map f : V2 → V, assume that N = 5, f is

given by (6.6) and it satisfies conditions (A1) − (A4) with A0v j = 1
j v j, A1v j = jv j, j = 1, 2, . . . , 5. Thus,

we have the following system

ẍ(t) = A0x(t) + A1

∫ 5π
3

π
3

x(t − s)ds + ‖x(t)‖4 x(t)
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− ‖x(t)‖

∥∥∥∥∥∥∥
∫ 5π

3

π
3

x(t − s)ds

∥∥∥∥∥∥∥
∫ 5π

3

π
3

x(t − s)ds,

where x(t) ∈ R5.
Then, for k ∈ N one has the following:

sin( kπ
3 ) =

 0 if k
3 ∈ N,√

3
2 (−1)b

3
k c otherwise.

Then, one can easily verify (by (5.3)) that

σ−(A ) = σ−(A1) ∪ σ−(A2),

where
σ−(A1) = {λ1,1, λ1,2, λ1,3, λ1,4, λ1,5}, σ−(A2) = {λ2,5}.

In our example for all j = 1, 2, . . . , 5, m j = 1; thus, we obtain

m1 = 5, m2 = 1,

which implies that

G-deg (A ) = deg5
V1
· degV2

= degV1
· degV2

= (O(2) × Z2) − (Dd
2) − (Dd

4) − 2(Dz
1) + (D1),

which implies that
ω := (Dd

2) + (Dd
4) + 2(Dz

1) − (D1),

where (Dd
2) and (Dd

4) are of maximal orbit kind.

7. Conclusions

The results presented in this paper show that the equivariant degree method is a viable and effective
alternative to the main methods usually used to study periodic solutions of distributed delay differential
equations, and, particularly, the fixed point methods and those of Kaplan-Yorke. Numerical simulations
suggest that distributed delay differential equations may have multiple periodic solutions, and that
there is clearly a question related to the topological and symmetric properties of these solutions. The
equivariant degree theory is a topological tool that may provide some answers to this question. By
converting the existence problem of periodic solutions for distributed delay differential equations into
the existence problem of zeros of an equivariant operator, one can predict some equivariant topological
properties of these periodic solutions.

It is important to mention that complex dynamical systems may not satisfy usual regularity
conditions or admit variational structure, which does not constitute an issue for the equivariant degree
method. Using these advantages of the method presented here, one can expect that it might be directly
extended to a more general class of differential equations with multiple mixed delays (including
distributed delays) and additional spatial symmetries.
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