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Abstract: The regression of mutually independent time series, whether stationary or non-stationary,
will result in autocorrelation in the random error term. This leads to the over-rejection of the null
hypothesis in the conventional t-test, causing spurious regression. We propose a new method to reduce
spurious regression by applying the Cochrane-Orutt feasible generalized least squares method based
on a bias-corrected method for a first-order autoregressive model in finite samples. This method
eliminates the requirements for a kernel function and bandwidth selection, making it simpler to
implement than the traditional heteroskedasticity and autocorrelation consistent method. A series of
Monte Carlo simulations indicate that our method can decrease the probability of spurious regression
among stationary, non-stationary, or trend-stationary series within a sample size of 10–50. We applied
this proposed method to the actual data studied by Yule in 1926, and found that it can significantly
minimize spurious regression. Thus, we deduce that there is no significant regressive relationship
between the proportion of marriages in the Church of England and the mortality rate in England and
Wales.
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1. Introduction

The spurious phenomenon can be traced back to Yule [1], who found that two independent variables
have a significantly correlated relationship. This has received much attention over the last several years.
Spurious regression may occur in various fields, particularly within economic and financial research.
Our usual approach involves examining the relationships between multiple factors, determining if there
is any correlation and then building a regression model. Finally, we propose relevant economic policies
based on the derived results. Therefore, when studying these relationships between several variables,
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it is critical to not only establish whether a genuine correlation exists from a theoretical economic
perspective, but also to confirm their statistical significance prior to building a regression model.
For example, in studies investigating factors influencing economic growth [2–4], variables affecting
financial conditions [5–8], and the impact of foreign direct investment [9], similar consideration
for spurious regression is necessary. The same holds true when examining the effects of digital
transformation [10] or a digital economy [11–13], and in green innovation research [14–17]. In
addition, when analyzing how investor sentiment affects the stock market or the environment [18–20],
investigators must figure out whether there is a direct relationship or an indirect impact that is mediated
by other factors.

Previous studies have shown that spurious regression can occur between stationary and non-
stationary time series [21,22]. For example, Kim et al. [23] found that when the sample size approaches
infinity, the ordinary least square (OLS) estimator of regression coefficient for two series with trends
convergence in probability to the ratio of the corresponding trend component, rather than the true
correlation coefficient value between two series. If we ignore spurious regression, the conclusion we
get from the regression model is wrong. Therefore, how to avoid spurious regression is an urgent
problem to be solved.

One widely accepted explanation for spurious regression is as follows. The error term in the
regression model displays serial correlation or heteroskedasticity. Ventosa-Santaulària [24] attributes
spurious regression to the distortion of the test statistic. Liu [25] pointed out that using OLS
estimation in the regression model for two mutually independent stationary series will lead to the
existence of autocorrelation and heteroskedasticity in unknown forms within the random error term.
If autocorrelation and heteroskedasticity are ignored, the estimation of the standard error will be
biased, causing the t-test to over-reject the null hypothesis and induce spurious regression. Similarly,
MaCallum [26] found that spurious regression between random walk series and highly autocorrelated
series is due to substantial autocorrelation in the random error term. Based on these studies,
autocorrelation and heteroskedasticity* in the error term are responsible for spurious regression and
we will prove it in the following section.

Currently, there are two aspects of literature dedicated to solving the issue of spurious regression.
The first involves constructing a robust test statistic by correcting the standard error. Liu [27, 28]
proposed a series of advanced heteroskedasticity and autocorrelation consistent (HAC) methods to
correct the standard error of the OLS estimation and further reduce the probability of spurious
regression. However, the HAC methods requires choosing a kernel function and bandwidth, and
different choices will impact the results. Moreover, HAC methods can only obtain consistent estimates
when the sample size approaches infinity. The second aspect aims to reduce spurious regression by
directly eliminating the autocorrelation within the random error term of the regression model. Choi
et al. [29] suggested that, if the random error term is a unit root process, the feasible generalized
least squares (FGLS) estimator based on the Cochrane-Orutt transformation (hereinafter referred to
as CO-FGLS) is asymptotically equivalent to that in the differenced regression. The Cochrane-Orcutt
transformation, i.e., a generalized difference method, is frequently used to handle the autocorrelation
problem. They also argued that CO-FGLS estimates remain asymptotically consistent and robust,

*While the proposed method focuses on eliminating the autocorrelation of the random error term in the regression model to solve the
spurious regression problem, the Monte Carlo simulations in the subsequent section demonstrate that this method can handle spurious
regression issues in series with heteroskedasticity.
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irrespective of whether the random error term is stationary or non-stationary. Further, Wu [30]
demonstrated through simulations and theoretical arguments that the CO-FGLS method is capable
of solving spurious regression between stationary processes or unit root series. Wu suggested that
autocorrelation within the error term could be eliminated by using this method, regardless of the
existence of a co-integration relationship between integrated series. Given these facts, the CO-FGLS
method, being effective and easy to implement, is therefore the method that we have chosen to reduce
spurious regression.

The CO-FGLS method requires the use of a first-order autoregression (AR) model to fit the
random error term. However, both the common OLS estimator and maximum likelihood estimator
are consistent only with large sample sizes. Besides, when the root of the AR(1) model is near the unit
circle*, the bias of the estimator will be significantly large. For instance, Sørbye et al. [31] discovered
that the smaller the sample size, the larger the bias between the estimation and the true value. They also
found that if the true parameter is close to one, the estimator is biased downward. Kim [32] observed
that the OLS estimator of the slope coefficient for the AR(1) model exhibiting linear trend is biased
downward, while the trend coefficient is biased upward. These finite sample biases can impact the
statistical inferences in real-world applications, such as forecasting economic time series. Therefore,
given that the sample sizes in practical applications are often finite or small, it is imperative to correct
the bias of the parameters in finite samples when using the CO-FGLS method. This adjustment aims
to minimize the incidence of spurious regression.

Numerous scholars have proposed bias correction methods for the AR(1) model in finite samples.
These methods include restricted maximum likelihood estimation, median-unbiased estimation, and
as Kim [32] suggested a bootstrap mean bias-corrected estimation method (BootBC) to enhance
the precision of forecasting in the AR models exhibiting trends in finite samples. Recently, Sørbye
et al. [31] devised new estimators by modeling the relationship between the true and initially estimated
AR coefficients using weighted orthogonal polynomial regression. They accounted for the sampling
distribution of the original estimators, minimized the model, and derived the final estimator†. Their
simulations suggest that this new method performs well. In this paper, we apply a feasible generalized
least squares estimation method based on the Cochrane-Orutt transformation by using the bias-
corrected method proposed by Sørbye et al. to correct the bias of an AR(1) model in finite samples and
consequently reduce the spurious regression (CO-BCE).

The main content and contributions of the paper can be summarized as follows. First, our
theoretical findings reveal that the autocorrelation components contained in the explanatory variables
and the explanatory variables cause the autocorrelation in the random error term, leading to spurious
regression. The asymptotic distribution of the t-test statistic is related to the degree of autocorrelation
of the series, and the higher the degree of autocorrelation, the higher the probability of spurious
regression. Second, we use the CO-FGLS method to solve the spurious regression caused by error
correlation and non-stationary unit root processes. In other words, the CO-FGLS method eliminates
the possible serial correlation of the error term through the use of Cochrane-Orutt transformation,

*If the series is a near unit root process, the autoregressive coefficients exhibit a finite sample bias when fitted using the AR(1)
model.

†In Sørbye et al.’s simulation, the initial estimates are obtained by using various estimation methods such as maximum likelihood
estimation (MLE), or conditional MLE. The initial estimates obtained by using the different methods can be effectively corrected for the
bias, with little variance in the extent of the corrections. In the Monte Carlo simulation of the initial estimates in the later section the
MLE method is used.
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avoids model error setting, and reduces the spurious regression. Third, considering that real economic
variables are usually short time series, the parameter of the AR(1) model is biased in finite samples.
We use the CO-FGLS method and then correct the parameter in the AR(1) model by using a bias-
corrected method to reduce the spurious regression. This method avoids estimation of the variance of
the error term and is easy to implement since the estimation of the long-run variance of error refers to
the choice of kernel function and bandwidth. Furthermore, instead of proposing a new test to determine
whether there is spurious regression, we only need to use a traditional t-test of slope coefficients; this
means that, if the absolute value of the t-value is greater than 1.96, we reject the null hypothesis of
no linear relationship between explanatory variables and response variables at a 5% critical value.
Fourthly, the proposed method is able to solve the spurious regression problem between mutually
independent stationary and non-stationary series. For series with trends, the probability of spurious
regression can be reduced by adding a trend term in the regression model and then using the CO-BCE
method. A series of simulations show that the CO-BCE method is effective for stationary series, unit
root processes, or series with trends. In addition, some economic variables may contain autoregressive
conditional heteroskedasticity (ARCH) or generalized autoregressive conditional heteroskedasticity
(GARCH) effects, so we also simulated such data and found that the proposed CO-BCE method can
also reduce the probability of spurious regression between series with conditional heteroskedasticity.
Finally, we applied the CO-BCE method to the proportion of marriages in the Church of England and
the mortality rate in England and Wales from 1866 to 1911, as studied by Yule. Our findings confirm
no significant regressive relationship between the two variables, indicating that the CO-BCE method
can effectively solve the spurious regression problem.

The rest of the paper is organized as follows. The causes of spurious regression are analyzed
theoretically in Section 2. Sections 3 and 4 introduce the Cochrane-Orutt FGLS method proposed by
Choi et al. [29] and the bias-corrected estimation proposed by Sørbye et al. [31]. Section 5 investigates
the spurious regression that occurred in the time series with trends and the solution. The data with the
simulations of the method are presented in Section 6. Section 7 contains some conclusions and future
studies.

2. Theoretical analysis of the causes of spurious regression

Autocorrelation or heteroskedasticity* in the random error terms will lead to bias in their standard
errors, and the t-test statistic will over reject the null hypothesis, resulting in spurious regression.
Referring to Liu [25], he deduced the cause of spurious regression. Consider the following univariate
regression model:

yt = xtβ + ut, t = 1, · · · , n, (2.1)

where yt is a response variable, xt is a scalar explanatory variable for simplicity and error term ut. If ut

exhibits serial correlation or has a unit root process, OLS estimation will lead to spurious regression;
n is the length of time series. The OLS estimator of β is β̂OLS = (X

′

X)−1X
′

Y = β + (X
′

X)−1X
′

u, where
X, Y and u are the matrix forms of xt, yt and ut respectively, and X

′

is the transpose of X. If ut satisfies
the four basic assumptions of using OLS estimation, i.e., the expectation E(ut) = 0, ut is not related to

*The reason for the spurious regression is illustrated the perspective of containing autocorrelation in the random error term;
containing heteroskedasticity also generates spurious regression, and the method proposed in this paper is also valid for series containing
heteroskedasticity.
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X, variance Var(ut) = σ2 for t = 1, . . . , n and covariance Cov(ui, u j) = 0 for i, j = 1, · · · , n, i , j, then
according to the central limit theorem given by

√
n(β̂OLS − β)

asy
−→ N(0, σ2Q−1), (2.2)

where asy is asymptotic, β̂OLS follows the above normal distribution when the sample size n tends to
infinity, and Q = limn→∞

X
′
X

n . T-statistics also follow the standard normal distribution when n→ ∞:

tβ̂OLS
=
β̂OLS − β

S β̂OLS

asy
−→ N(0, 1), (2.3)

where S β̂OLS
is the standard error of the regression model and it is important for hypothesis testing. Now,

we shall analyze the mechanism of spurious regression. Since economic variables usually contain an
autocorrelation component, we assume that the dependent variable yt and explanatory variable xt is an
independent first-order stationary autoregressive process:

yt = αyyt−1 + uyt,

xt = αxxt−1 + uxt,
(2.4)

where αy ∈ [0, 1), αx ∈ [0, 1), uyt ∼ IID(0, δ2
y), uxt ∼ IID(0, δ2

x), and uyt and uxt are independent of each
other. If we build the regression model given by Eq (2.1) for these AR(1) series yt and xt, the regression
coefficient β should equal 0. Besides, the autocorrelation and heteroskedasticity of ut in Eq (2.1) has
the same structure as yt; then, applying the basic assumptions above, which state that the variance is
a constant and the covariance is zero are not satisfied. At this point, the estimator of covariance of β,
i.e., Φ = limn→+∞

1
n Q−1X

′

ΩXQ−1 where Ω is the covariance of the error term:

Ω = δ2
y


1 αy · · · αn−1

y

αy 1 · · · αn−2
y

...
...

...
...

αn−1
y αn−2

y · · · 1

 , (2.5)

and the error term is also a first-order autoregressive process with slope coefficient αy. After the
deduction, the limiting distribution of the t-test statistic is as follows*:

tβ̂OLS
=
β̂OLS − β

S β̂OLS

asy
−→ N(0,

1 + αyαx

1 − αyαx
). (2.6)

This is not a standard normal distribution. In real economic applications, the regression coefficient is
often larger than 0; thus, the variance of the above t-test statistic is larger than 1. If the probability
of the t-test statistic taking extreme values is greater than for the standard normal distribution, then
it is more likely that the null hypothesis will be rejected, and finally, spurious regression will occur.
To sum up, due to the autocorrelation of the explanatory variables and the explanatory variables, the
random error term also has an autocorrelation structure, which causes spurious regression. In addition,
according to Eq (2.6), the closer the autoregressive coefficient of the series is to 1, the higher the
probability of spurious regression; however, when its autoregressive coefficient is small, spurious
regression may not occur, which is confirmed by the Monte Carlo simulation section. Also, when
the autoregressive coefficient is 0.9, the probability of pseudoregression is greater than that for the
autoregressive coefficient is 0.5.

*For the detailed process, please refer to Liu [25].
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3. CO-FGLS

The CO-FGLS method proposed by Choi et al. [29] and the limiting distribution of the CO-FGLS
estimator is proven to be the same as the differencing estimators. CO-FGLS can be used for the serial
correlation error term in the regression model since the error term of the model after the Cochrane-Orutt
transformation has no autocorrelation. Then, we can use the normal t-statistics test method.

First, obtain the OLS estimator β̂OLS of the model given by Eq (2.1); we have the estimator of the
error term:

ût = yt − xtβ̂OLS. (3.1)

In order to apply the CO-FGLS estimator, we fit ût with the AR(1) model:

ût = φ̂ut−1 + êt, (3.2)

φ̂ is the OLS estimator of the autocorrelation efficient in the AR(1) model. If the random error term
is a unit root process, the value of φ̂ is close to 1 and there is a finite sample bias in φ̂ in the case of
insufficient sample size. The Cochrane-Orcutt transformation of series in the regression is performed
as follows:

ỹt = yt − φ̂yt−1, x̃t = xt − φ̂xt−1, ũt = ut − φ̂ut−1. (3.3)

Then consider the OLS estimation of the model

ỹt = x̃tβ + error, (3.4)

where the ‘error’ term satisfies the basic assumption of using least squares. We have

β̂CO−FGLS =

 n∑
t=1

x̃t x̃t

−1 n∑
t=1

x̃tỹt, (3.5)

where β̂CO−FGLS is a consistent and robust estimator of spurious regression [29].
Thus, in this paper, we use CO-FGLS to solve the spurious regression problem in finite samples that

is caused by the serial correlation of the error term; we then use the bias-corrected method to correct
the bias of parameters in the AR(1) model.

4. Bias-corrected estimation

Economic variables often have short time periods, and the slope coefficient of the AR model for this
kind of dataset is biased when the time series are short. Sørbye et al. [31] proposed a new method to
correct the bias of the estimators, and the simulations show a smaller bias than other estimators.

Suppose that φ̂ is an initial coefficient estimator for φ of the AR(1) process; see the first-order
autocorrelation coefficient in Eq (3.2). The method requires us to construct a bias-corrected estimator
φ̂c = φ̂ − E(φ̂ − φ), with E(φ̂c) = φ for all values φ. The main idea of the method is to use a
weighted orthogonal polynomial regression model to model the relationship between the true values
and the estimated values by using the true values as the response variables in the regression model
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and minimizing this model to obtain the bias-corrected estimators. The method is as follows. First,
introduce a monotonic transformation to avoid constraints on the support of φ:

g(φ) = logit(
φ + 1

2
). (4.1)

The transformation has finite support. This is helpful for optimization and means that the inverse
transformed bias-corrected estimate will always be within the stationary area of the AR (1) model.

Model the real AR model with an orthogonal polynomial model:

φ = f (φ̂, β) = g−1

 K∑
k=0

βkhk(g(φ̂))

 , φ̂ ∈ (−1, 1), (4.2)

where β = {βk}
K
k=0 is defined as a fixed set of regression coefficients and {hk(·)}Kk=0 is a set of orthogonal

polynomials of order k. We chose to use the probabilists’ Hermite polynomials; see [31]. These
polynomials are denoted by

h0(x) = 1, h1(x) = x, hk+1(x) = xhk(x) − khk−1(x), k ≥ 1. (4.3)

Then, to estimate β for a given sample size n, the method generates m = 1000 time series for a fine
grid of φ values that can be seen as the training set. We note that the suggested estimator is a nonlinear
function of φ̂ implying that

E( f (φ̂, β)) , f (E(φ̂, β)). (4.4)

So, the optimization can consider the estimated value for each time series rather than the average
estimate of the m simulations. Thus, solving the optimization problem to obtain the regression
coefficients can proceed as follows:

β̂ = arg min
β

l∑
r=1

1
s2

r

 1
m

m∑
j=1

g−1

 K∑
k=0

βkhk(g(φ̂r j))

 − φr


2

= arg min
β

l∑
r=1

1
s2

r

 1
m

m∑
j=1

f (φ̂r j, β) − φr


2

,

(4.5)

where φ̂r j is the estimator of φr in simulation j. We have chosen φr ∈ (−0.95,−0.94, · · · , 0.95) and
l = 191. The sample variances s2

r of the m estimator of φc are used as weights; other details can be
seen in [31], and the paper also gave a bias correction procedure for the AR(2) model*. From here, we
obtain the estimator β̂ and the bias-corrected estimator φ̂c = f (φ̂, β̂).

The proposed method involves using this bias correction estimation method to correct the finite
sample biases of the autoregressive coefficients φ̂ in Eq (3.2) within the CO-FGLS method, and then
plugging the corrected estimate φ̂c into Eq (3.3).

*This work does not need to use the bias-correction method for AR(2), so we chose to not expand the description.

AIMS Mathematics Volume 9, Issue 4, 8439–8460.



8446

5. Spurious regression with trend series

Macro-micro economic variables are often affected by factors such as the market, policy, or a
financial crisis, and they exhibit trend characteristics over time. For example, Wang and Hu [33]
pointed out that since China’s economic reform and opening up, the gross domestic product (GDP)
series has shown significant stable growth over time, i.e., the deterministic trend*, which is brought
about by the growth of production factors as well as technological advances, etc.; in addition to this,
it also contains some random factors, such as natural disasters or financial crises, that may affect the
economy, i.e., the stochastic trend, which is presented as a unit root process in the series. Moreover,
there have been many studies showing that the GDP series of the vast majority of countries can be
represented by unit root processes. Precisely, the GDP series of China contains both deterministic
and stochastic trends. There are many other economic variables with this kind of non-stationary
data structure, and the spurious regression among the non-stationary series can be solved directly by
using the proposed CO-BCE method. However, the limitation of the method is that it cannot handle
series with trends. This is because CO-BCE cannot eliminate the trend feature in the series, and the
trend component can induce the spurious regression phenomenon since there is an indirect correlation
between two mutually independent series. Therefore, we refer to the existing methods to solve the
spurious regression between series containing trends.

Many studies have shown that spurious regression occurs between stationary time series with trends,
e.g., Kim et al. [23] proved that the regression coefficient between stationary series with trends is
related to the proportion of the coefficients of the corresponding trend, and that the t-test statistic
is divergent. Hence, some scholars have studied the method of spurious regression between series
with trends. Noriega and Ventosa-Santaulària [34] and Garcı́a-Belmonte and Ventosa-Santaulària [35]
suggest that adding a trend term in the regression model can eliminate the spurious regression caused
by a trending mechanism. Wu and You [36] also added a trend term to the regression model to avoid
spurious regression for series with trends.

Considering its practical implications in real-world economics, the proposed method was designed
to resolve spurious regression between trending series. This can be achieved by incorporating a time-
trend term into the regression model and consequently applying the CO-BCE technique to this modified
model. We can build a regression model with a trend term:

yt = xtβ + αt + ut, (5.1)

where αt could capture the deterministic trend of the regressors and α is the parameter of the trend
term†. The rest of the variables are the as same as in Eq (2.1). If ut is a white noise series, we can use
the OLS estimate and the t-statistics is convergent; however, when there is an autocorrelation or a unit
root process in ut, spurious regression occurs by using OLS, and it is necessary to use the method of
CO-FGLS to effectively prevent spurious regression; and for the analysis of the economic indicators
with a shorter length of the time series, such as the study of China’s GDP growth and other related
issues, we need to use the GDP series with a non-stationary trend, and the CO-FGLS method has a
finite sample bias, so we can effectively use the proposed CO-BCE method for the above model.

*Deterministic trends are typically represented by a linear trend in a model.
†The model can contain drift, e.g., the explanatory xt can be a vector whose first element is value one.
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6. Simulations

6.1. Monte Carlo

Section 2 theoretically explains that the reason for spurious regression is the existence of
autocorrelation in the random error term in the regression model; thus, here, we further verify it
via Monte Carlo simulation. Consider the following data generation process: xt is a first-order AR
model with αx = 0.9, and yt is also a first-order AR model with αy. The autocorrelation structure of
the random error term is the same as that of the explanatory variables; then, in order to explore the
spurious regression that is due to the autocorrelation of the random error term, the cases without and
with autocorrelation were set up respectively. The random error terms of their data generation process
all followed the standard normal distribution. yt and xt are independent of each other, and we built the
model as given by Eq (2.1) by using OLS estimation.

We simulated all data generation processes with 1000 iterations, and in each replication, 200 +

n observations were generated (n = 20, 30, 40, and 50), of which the first 200 observations were
discarded to eliminate the impact of initial values.

As shown in Figure 1, the y axis represents the percentage of occurrences in 1000 simulations at a
significance level of 0.05, i.e., the proportion of spurious regression. When αy = 0, yt is a stationary
series following a standard normal distribution; the random error term in the regression model does
not contain autocorrelation components; and the probability of spurious regression using the OLS
estimation method is very small and close to a given significant level of 0.05, and it can be judged to be
a phenomenon of no spurious regression. Alternatively, when yt is a first-order autocorrelation process,
there is spurious regression, and the larger the degree of its autocorrelation, the higher the probability
of the appearance of spurious regression, which is consistent with the conclusion demonstrated by the
previous theory in Section 2.

Figure 1. The proportion of spurious regression under different levels of autoregressions for
random error terms.

*Note: The black solid line in the figure represents a significance level of 0.05.
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To investigate the finite sample properties of the CO-BCE method in spurious regression, we
performed some Monte Carlo simulations and compared the results with those of other three methods:
OLS, CO-FGLS [29], and BootBC [32]. We separated the simulation into three subsections: the first
one is the series without a trend, the second one is the series with a trend, and the third one is the series
with heteroskedasticity.

6.1.1. Series with no trend

Suppose that we have the following common data generation processes:

(1) DGP1: zt = 0.5zt−1 + et,
(2) DGP2: zt = 0.9zt−1 + et,
(3) DGP3: zt = zt−1 + et,
(4) DGP4: zt = γ1zt−1 + γ2zt−2 + et,
(5) DGP5: zt = zt−1 + et + ηet−1,
(6) DGP6: zt = γ1zt−1 + et + ηet−1,

where zt stands for xt or yt, and et follows standard normal distribution. For simplicity, we did not
add drift in the regression model; however, we also simulated data processes with drift and found
that the drift does not affect the result. xt and yt were generated through the use of autocorrelated
autoregressive series (DGP1, 2, and 4), a non-stationary I(1) process (DGP3), and ARIMA(0,1,1)
(DGP5) and ARMA(1,1) (DGP6) data processes. We modeled the regression of Eq (2.1) for the above
data generation process. The following tables display the percentage of rejection of the null hypothesis
of no linear relationship between xt and yt, i.e., the absolute value of the t-value of slope coefficients
greater than 1.96.

Table 1 displays the percentage of rejection for different sample sizes*, as well as the data generation
forms as compared with the other three methods (OLS, CO-FGLS, and BootBC). The results show
that the CO-BCE method exhibited the best performance in terms of solving the spurious regression
in many situations. It exhibited a low likelihood to obtain the spurious regression between the two
stationary and non-stationary independent variables, which means that CO-BCE can also manage the
spurious regression between stationary and non-stationary variables. However, when the explanatory
variable xt and interpreted variable yt are stationary, the performance of the method is not optimal, but
it is still good. This is because spurious regression is not likely to occur in two stationary time series
when the sample size is small, that is, when the sample size is so small that the characteristics of the
time variables are not clear and the correlation of the variables is opaque. When variables xt and yt

have a strong correlation with the lag, the method CO-BCE performs better. We also simulated the
data with drift. The results were the same as the results without drift in Table 1. When the sample size
becomes large, e.g., n > 50, the probability of the spurious regression will increase, so we just need to
use the CO-FGLS method to avoid it†.

*When xt and yt are other data types, such as when yt is a second-order autoregressive series and when xt is a first-order
autoregressive series, the method proposed in this paper still has good results. We show only part of the data results to save space.

†Least squares estimators or other common estimators give very similar results for large sample sizes [31].
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Table 1. Spurious regression results for the case of a unit root or near unit root process.

method 20 30 40 50

x ∼ DGP1 OLS 0.208 0.221 0.225 0.213

y ∼ DGP2 CO-FGLS 0.090 0.080 0.077 0.058

BootBC 0.084 0.072 0.080 0.062

CO-BCE 0.085 0.067 0.073 0.059

x ∼ DGP2 OLS 0.202 0.218 0.213 0.213

y ∼ DGP1 CO-FGLS 0.151 0.116 0.091 0.081

BootBC 0.146 0.100 0.074 0.072

CO-BCE 0.143 0.097 0.072 0.068

x ∼ DGP1 OLS 0.225 0.227 0.255 0.218

y ∼ DGP3 CO-FGLS 0.100 0.073 0.076 0.056

BootBC 0.098 0.074 0.072 0.056

CO-BCE 0.082 0.070 0.071 0.055

x ∼ DGP3 OLS 0.194 0.242 0.225 0.226

y ∼ DGP1 CO-FGLS 0.139 0.139 0.122 0.081

BootBC 0.132 0.122 0.100 0.069

CO-BCE 0.129 0.119 0.097 0.069

x ∼ DGP2 OLS 0.470 0.480 0.521 0.572

y ∼ DGP3 CO-FGLS 0.226 0.165 0.161 0.111

BootBC 0.178 0.131 0.122 0.089

CO-BCE 0.156 0.105 0.109 0.075

x ∼ DGP3 OLS 0.452 0.524 0.510 0.557

y ∼ DGP2 CO-FGLS 0.224 0.209 0.165 0.134

BootBC 0.178 0.161 0.123 0.105

CO-BCE 0.158 0.146 0.101 0.097

x ∼ DGP1 OLS 0.128 0.118 0.130 0.129

y ∼ DGP1 CO-FGLS 0.106 0.077 0.070 0.071

BootBC 0.105 0.075 0.068 0.070

CO-BCE 0.107 0.073 0.067 0.072

x ∼ DGP2 OLS 0.421 0.454 0.437 0.466

y ∼ DGP2 CO-FGLS 0.203 0.164 0.117 0.108

BootBC 0.167 0.128 0.100 0.086

CO-BCE 0.157 0.113 0.088 0.076

x ∼ DGP3 OLS 0.534 0.602 0.632 0.687

y ∼ DGP3 CO-FGLS 0.278 0.237 0.226 0.190

BootBC 0.208 0.183 0.169 0.127

CO-BCE 0.178 0.158 0.144 0.103

Note: The value in the table denotes the percentage of |t| > 1.96.
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Table 2 presents the probability of the spurious regression under the DGP4 to 6 when x and y have
the same structures and we also set various values in the data generating processes. The CO-BCE
method can control perfectly the spurious regression problem under several typical cases. However,
we can see in the table that the CO-BCE method is not good when x and y both have a weak serial
correlation. The first reason is that spurious regression is unlikely to occur between stationary time
series in small sample sizes. Second, the error term in the regression model built from two stationary
variables may not have serial correlation.

Table 2. Spurious regression results for the case of two similar data generation processes.

method 20 30 40 50

x ∼ DGP4(0.7, 0.2) OLS 0.295 0.336 0.335 0.373
y ∼ DGP4(0.65, 0.1) CO-FGLS 0.182 0.164 0.120 0.102

BootBC 0.156 0.139 0.103 0.088
CO-BCE 0.148 0.133 0.101 0.087

x ∼ DGP4(0.65, 0.1) OLS 0.291 0.313 0.346 0.356
y ∼ DGP4(0.7, 0.2) CO-FGLS 0.152 0.119 0.100 0.086

BootBC 0.132 0.100 0.086 0.079
CO-BCE 0.125 0.096 0.081 0.078

x ∼ DGP5(0.5) OLS 0.573 0.630 0.654 0.698
y ∼ DGP5(0.3) CO-FGLS 0.293 0.222 0.230 0.181

BootBC 0.216 0.177 0.163 0.118
CO-BCE 0.170 0.146 0.126 0.096

x ∼ DGP5(0.3) OLS 0.564 0.619 0.655 0.692
y ∼ DGP5(0.5) CO-FGLS 0.242 0.236 0.211 0.170

BootBC 0.185 0.157 0.146 0.118
CO-BCE 0.149 0.123 0.111 0.095

x ∼ DGP6(0.9, 0.5) OLS 0.411 0.436 0.441 0.453
y ∼ DGP6(0.8, 0.3) CO-FGLS 0.209 0.161 0.133 0.110

BootBC 0.169 0.132 0.109 0.085
CO-BCE 0.139 0.123 0.095 0.082

x ∼ DGP6(0.8, 0.3) OLS 0.406 0.404 0.432 0.427
y ∼ DGP6(0.9, 0.5) CO-FGLS 0.171 0.119 0.092 0.087

BootBC 0.132 0.109 0.079 0.071
CO-BCE 0.115 0.097 0.065 0.066

Note: The value in the table denotes the percentage of |t| > 1.96. DGP(·) represents the value of

the parameters in the data generation process, e.g., DGP4 (0.7,0.2) denotes γ1 = 0.7 and γ = 0.2,

DGP5(0.5) denotes η = 0.5.
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Table 3 displays the cases in which the explanatory and response variables have different data
structures. When the response variable y has strong autocorrelation, the probability of spurious
regression is close to a significance level of 0.05.

Table 3. Spurious regression results for different types of data generation processes.

method 20 30 40 50

x ∼ DGP4(0.65, 0.1) OLS 0.359 0.383 0.416 0.418
y ∼ DGP5(0.3) CO-FGLS 0.134 0.081 0.071 0.055

BootBC 0.104 0.066 0.060 0.046
CO-BCE 0.092 0.061 0.053 0.042

x ∼ DGP5(0.3) OLS 0.339 0.396 0.428 0.424
y ∼ DGP4(0.65, 0.1) CO-FGLS 0.203 0.199 0.164 0.173

BootBC 0.167 0.162 0.132 0.134
CO-BCE 0.158 0.145 0.126 0.118

x ∼ DGP4(0.65, 0.1) OLS 0.289 0.303 0.315 0.327
y ∼ DGP6(0.8, 0.3) CO-FGLS 0.124 0.088 0.068 0.063

BootBC 0.103 0.070 0.061 0.051
CO-BCE 0.090 0.064 0.053 0.049

x ∼ DGP6(0.8, 0.3) OLS 0.292 0.316 0.311 0.323
y ∼ DGP4(0.65, 0.1) CO-FGLS 0.165 0.145 0.116 0.087

BootBC 0.142 0.125 0.096 0.075
CO-BCE 0.131 0.119 0.083 0.071

x ∼ DGP5(0.5) OLS 0.398 0.459 0.493 0.495
y ∼ DGP6(0.8, 0.3) CO-FGLS 0.200 0.189 0.145 0.125

BootBC 0.149 0.154 0.113 0.080
CO-BCE 0.121 0.125 0.097 0.074

x ∼ DGP6(0.8, 0.3) OLS 0.425 0.437 0.480 0.500
y ∼ DGP5(0.5) CO-FGLS 0.197 0.120 0.106 0.093

BootBC 0.150 0.096 0.083 0.084
CO-BCE 0.118 0.085 0.082 0.078

Note: The value in the table denotes the percentage of |t| > 1.96.
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Briefly, for stationary or non-stationary series with no trend, spurious regression will occur to a
great extent as a result of applying OLS to finite samples, i.e., reject the null hypothesis that there is
a significant relationship between xt and yt according to the t-test of the slope coefficients. CO-FGLS
can also reduce the spurious regression but the percentages of rejections of the CO-BCE method will
be lower and almost reach the significance level of 0.05*, which means that the probability of spurious
regression has been largely reduced. In a word, CO-BCE can efficiently to solve the spurious regression
problem.

6.1.2. Series with a trend

Economic variables are usually time series with trends. We also simulated the data with the trend
as follows:

zt = zt−1 + fzt + et, (6.1a)
zt = 0.9zt−1 + fzt + et. (6.1b)

Let xt and yt be zt; fzt is the trend term and et is similar to the data generation processes above in
Section 6.1.1†. We chose to solve this spurious regression between these kinds of time series by adding
a trend term in the regression model given by (5.1) mentioned in Section 4.

Table 4 displays the variables with trends and unit root processes; see Eq (6.1a). Even though CO-
FGLS can reduce the probability of spurious regression, CO-BCE is the best among all of the methods.
When the explanatory and response variables have the same trending properties, spurious regression
will occur as a result of using OLS estimation. And, when the sample size is increased, the effect of
CO-BCE is improved; thus, the problem of spurious regression can be largely solved.

In Table 5, we show the spurious regression results for the variables with strong correlation and
trends; see Eq (6.1b). Compared with Table 4, variables with strong correlation in Table 5 have the
lower percentage of rejection of all methods, whereas using CO-BCE can cause the rejection rate to
almost reach 0.05. Even though CO-FGLS can also solve the spurious regression, CO-BCE has a lower
rejection value.

To sum up, we found that the CO-FGLS method is also effective when we compared the series with
the trend with the series without a trend, but CO-BCE is better. In Section 4, we mentioned that the
reason for adding a linear trend in the regression model is to omit the important explanatory variables
when response variables or explanatory variables have trends. Hence, the coefficient of the AR(1)
model used in the CO-FGLS method exhibited little bias, so the effect of bias-corrected estimation in
CO-BCE is limited. But, CO-BCE is still good and further reduces the percentage of rejection. In
general, the CO-BCE method performs better in terms of solving the spurious regression problem.

*In some situations, the rejection value is smaller than 0.05.
†This data generation process just considers the unit root and high autocorrelated series with the trend since we just need to use

OLS estimation for the error term with no serial correlation or unit root.
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Table 4. Spurious regression results for the case of normal distribution for unit root series.

method 20 30 40 50

fx = 0 OLS 0.530 0.647 0.679 0.723

fy = 0.2 CO-FGLS 0.122 0.082 0.071 0.069

BootBC 0.107 0.076 0.067 0.057

CO-BCE 0.098 0.070 0.060 0.058

fx = 0.2 OLS 0.562 0.623 0.715 0.738

fy = 0 CO-FGLS 0.128 0.097 0.085 0.080

BootBC 0.114 0.084 0.074 0.064

CO-BCE 0.110 0.077 0.065 0.062

fx = 0 OLS 0.713 0.791 0.791 0.822

fy = 0.9 CO-FGLS 0.098 0.062 0.052 0.054

BootBC 0.096 0.075 0.063 0.051

CO-BCE 0.089 0.063 0.051 0.051

fx = 0.9 OLS 0.713 0.764 0.806 0.818

fy = 0 CO-FGLS 0.109 0.079 0.073 0.066

BootBC 0.093 0.064 0.063 0.055

CO-BCE 0.087 0.063 0.058 0.060

fx = 0.2 OLS 0.803 0.847 0.897 0.927

fy = 0.9 CO-FGLS 0.096 0.073 0.068 0.067

BootBC 0.095 0.080 0.061 0.058

CO-BCE 0.093 0.068 0.051 0.057

fx = 0.9 OLS 0.780 0.856 0.897 0.928

fy = 0.2 CO-FGLS 0.108 0.079 0.084 0.071

BootBC 0.097 0.074 0.069 0.059

CO-BCE 0.087 0.068 0.065 0.062

fx = 0.2 OLS 0.583 0.708 0.788 0.833

fy = 0.2 CO-FGLS 0.110 0.084 0.085 0.076

BootBC 0.107 0.077 0.072 0.070

CO-BCE 0.100 0.071 0.064 0.068

fx = 0.9 OLS 1.000 1.000 1.000 1.000

fy = 0.9 CO-FGLS 0.126 0.096 0.106 0.092

BootBC 0.111 0.083 0.086 0.079

CO-BCE 0.100 0.075 0.076 0.075

Note: The value in the table denotes the percentage of |t| > 1.96.
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Table 5. Spurious regression results for the case of normal distribution for highly correlated
series.

method 20 30 40 50

fx = 0 OLS 0.436 0.543 0.602 0.617

fy = 0.2 CO-FGLS 0.111 0.090 0.063 0.056

BootBC 0.107 0.087 0.056 0.051

CO-BCE 0.092 0.083 0.048 0.052

fx = 0.2 OLS 0.443 0.520 0.561 0.627

fy = 0 CO-FGLS 0.111 0.087 0.085 0.069

BootBC 0.104 0.085 0.070 0.062

CO-BCE 0.102 0.082 0.063 0.057

fx = 0 OLS 0.594 0.656 0.661 0.682

fy = 0.9 CO-FGLS 0.087 0.066 0.046 0.051

BootBC 0.098 0.070 0.048 0.053

CO-BCE 0.087 0.066 0.048 0.053

fx = 0.9 OLS 0.597 0.635 0.621 0.662

fy = 0 CO-FGLS 0.101 0.064 0.065 0.058

BootBC 0.087 0.067 0.052 0.056

CO-BCE 0.086 0.071 0.046 0.054

fx = 0.2 OLS 0.779 0.889 0.955 0.992

fy = 0.9 CO-FGLS 0.103 0.069 0.067 0.055

BootBC 0.097 0.070 0.054 0.054

CO-BCE 0.089 0.067 0.050 0.054

fx = 0.9 OLS 0.773 0.901 0.955 0.988

fy = 0.2 CO-FGLS 0.100 0.067 0.077 0.067

BootBC 0.091 0.072 0.065 0.062

CO-BCE 0.084 0.076 0.062 0.059

fx = 0.2 OLS 0.558 0.763 0.864 0.958

fy = 0.2 CO-FGLS 0.109 0.083 0.077 0.070

BootBC 0.107 0.079 0.071 0.065

CO-BCE 0.104 0.079 0.067 0.064

fx = 0.9 OLS 1.000 1.000 1.000 1.000

fy = 0.9 CO-FGLS 0.123 0.092 0.093 0.077

BootBC 0.105 0.087 0.084 0.066

CO-BCE 0.098 0.083 0.075 0.068

Note: The value in the table denotes the percentage of |t| > 1.96.
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6.1.3. Series with heteroskedasticity

Some economic variables have ARCH or GARCH effects, such as the time series of stock prices.
In order to verify that CO-BCE is also effective for series containing heteroskedasticity, we considered
the explanatory variable yt to exhibit ARCH and GARCH processes respectively:

yt = g + uyt, (6.2a)
xt = 0.9xt−1 + et, (6.2b)

where g follows AR or ARMA processes, uyt is an ARCH or a GARCH process, xt is an AR(1)
process*, and xt and yt is independent of each other.

As shown in Table 6, spurious regression occurred as a result of applying the OLS method to four
data generation processes, and the greater its autocorrelation, the greater the probability of spurious
regression, i.e., for the third and fourth groups of generated data in the table, the rate of spurious
regression that occurs when the autoregressive coefficient is 0.9 is greater than that when the coefficient
is 0.5, and the result also supports the conclusions obtained via theoretical analyses of spurious
regression in Section 4. The proposed CO-BCE method yielded a lower probability of spurious
regression in many data generation processes, and this result was better than that of the other compared
estimation methods, so CO-BCE still has good results for series containing heteroskedasticity. Overall,
the CO-BCE works well as a method to solve the spurious regression problem in finite samples, and it
is robust under a variety of data structures.

Table 6. Spurious regression results for ARCH or GARCH processes.
method 20 30 40 50

yt ∼ AR(1) − ARCH(2)† OLS 0.191 0.202 0.206 0.201
CO-FGLS 0.132 0.095 0.091 0.090
BootBC 0.124 0.082 0.076 0.087
CO-BCE 0.123 0.081 0.075 0.087

yt ∼ AR([1, 5]) − GARCH(1, 1) OLS 0.184 0.206 0.246 0.244
CO-FGLS 0.127 0.126 0.112 0.116
BootBC 0.111 0.108 0.097 0.096
CO-BCE 0.110 0.103 0.096 0.096

yt ∼ ARMA(1, 2) − GARCH(1, 1) OLS 0.177 0.185 0.185 0.176
ar = 0.5 CO-FGLS 0.105 0.083 0.068 0.067

BootBC 0.099 0.071 0.052 0.059
CO-BCE 0.099 0.068 0.054 0.056

yt ∼ ARMA(1, 2) − GARCH(1, 1) OLS 0.373 0.415 0.442 0.453
ar = 0.9 CO-FGLS 0.165 0.125 0.119 0.108

BootBC 0.119 0.096 0.094 0.088
CO-BCE 0.107 0.082 0.084 0.084

Note: The value in the table denotes the percentage of |t| > 1.96, ar is the value of efficient of AR model.

*In order to verify whether the method proposed is still valid for the heteroskedasticity present in the random error term, yt was set to
exibit ARCH or GARCH effects and xt was set as a first-order autoregressive process because the autocorrelation and heteroskedasticity
structure in the random error term is consistent with the explanatory variable yt. In this part of the simulation, the parameters of
the ARCH and GARCH processes were used with the default parameter values from the fGarch package in R; see https://cran.r-
project.org/web/packages/fGarch/fGarch.pdf.
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6.2. A real example

The spurious regression problem was proposed by Yule [1]. By using OLS estimation, he found
that, from 1866 to 1911, the proportion of the England Church marriages and the mortality rate in
England and Wales had a strong correlation. Two time series seem to have similar trends, as can be
seen in Figure 2, but they are not correlated with each other according to their actual meaning.

Figure 2. The mortality rate (line with circle in left) and Church rate of England marriages
(line with triangle in right) in England and Wales.

To test the efficiency of the CO-BCE method as a tool to solve the spurious regression for series
with a trend, we used the data from Yule [1] and chose yt to denote the mortality rate (per 1000 persons)
of England and Wales*; xt denotes the ratio of Church of England marriages to all marriages (per 1000
persons) in England and Wales†. Then, we employed OLS, CO-FGLS, and CO-BCE methods for the
model given by Eq (5.1).

According to Figure 2, both time series have obvious trends, so we used the model given by Eq (5.1)
with drift. Table 7 presents the drifts, slope coefficients, and their corresponding t-values. When we
used OLS to apply the regression model for this real example without a trend term, spurious regression
occurred, i.e., the slope coefficient was 0.4185 and the t-value was larger than 1.96 at the significance
level of 0.05, which means that they have a significant linear relationship. The result for CO-FGLS
shows that the method can manage the spurious regression problem since the t-value (1.1392) of the
slope coefficient was smaller than 1.96 and the estimator of the coefficient was 0.0193. The results
of BootBC and CO-BCE were similar. The slope coefficient estimators of BootBC and CO-FGLS
was 0.0124 and 0.0132, respectively, and their t-values were further reduced relative to the CO-FGLS
to a certain extent. BootBC and CO-BCE were more effective than CO-FGLS in terms of solving
the spurious regression problem between two independent variables. We mentioned that the t-value

*https://github.com/renatopp/arff-datasets/blob/master/statlib/numeric/mhsetsroberts − yule1.arff.
†https://github.com/renatopp/arff-datasets/blob/master/statlib/numeric/mhsetsroberts − yule2.arff.
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of β was 0.8127 and 0.8543 for BootBC and CO-BCE which are both small, and BootBC exhibited
a slightly lower t-value than CO-BCE. The possible reason for this result is that the series in the
real example contained the random disturbances. The random disturbances may affect the result. In
addition, most data generation processes in the simulations, CO-BCE performed better than BootBC.
Also, the t-value of β0 and α for CO-BCE were lower than for BootBC. Therefore, we think that CO-
BCE performs significantly better. In summary, it means that there is no significant linear relationship
between church marriages and mortality.

Table 7. Empirical results.

β0 β α

OLS −10.8466∗∗∗ 0.4185∗∗∗ -
(-7.61447) (20.5251)

CO-FGLS 7.0961∗∗∗ 0.0193 −0.0532∗∗∗

(15.4128) (1.1392) (-18.057630)
BootBC 5.7454∗∗∗ 0.0124 −0.0431∗∗∗

(17.3894) (0.8127) (-17.5125)
CO-BCE 5.9327∗∗∗ 0.0132 −0.0445∗∗∗

(17.1250) (0.8543) (-17.6583)

Note: β0 is drift in the regression model, ∗∗∗ denotes the significance level of 0.05, and the

values in brackets represents the t-value of the corresponding parameter.

7. Conclusions

In this paper, we applied the Cochrane-Orcutt feasible generalized least squares method based
on a bias-corrected method to solve the spurious regression problem caused by the error term with
autocorrelation or a unit root process in the regression model for the case of finite samples. We
have demonstrated, through the use of theoretical inference, that spurious regression is caused by
the autocorrelation component in the random error term. The proposed CO-BCE method is easy to
implement and we do not have to estimate the long-run variance of the error term to avoid the choice
of kernel function and bandwidth. A series of simulations has shown that CO-BCE is efficient as a
tool to solve the spurious regression problem, unlike the other OLS, CO-FGLS, and BootBC methods.
In the case of a small sample size, the performance of the CO-BCE methods can reduce the spurious
regression as much as possible. Besides, when the response variable is a highly autocorrelated series
or unit root, the effect of the CO-BCE method is better. Moreover, the effect of CO-BCE as a tool to
reduce spurious regression is good regardless of whether the variable is stationary or non-stationary.
We have also taken into account that real economic variables usually exhibit trends over time, and we
proposed a time-series model with trends to solve the spurious regression between series exhibiting
trends. In addition, common time-series data may contain ARCH or GARCH effects; the series
containing heteroskedasticity were simulated, and it was found that CO-BCE is also effective. Finally,
we applied CO-BCE to the mortality and Church marriages data from Yule and found that there is no
significant relationship between these two variables. The real example illustrates that our method is
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practical.
Several interesting and valuable issues deserve further study. For example, it will be important to

investigate the more general method in the case of the AR(p) process for the error term in the regression
model or more complex data structures; see Wang and Hafner [37]. Spurious regression also occurs in
panel data [38]. Besides, spurious regression has recently been further extended to the factor analysis
model [39]. The form of a trend in a series could be nonlinear or polynomial. Adding a linear trend
term in the regression model is not efficient. Some new methods should be proposed to solve this
problem. In real application, stock data have different forms of characteristics and can usually be
characterized by using GARCH family models [40]. Whether other components in the data will cause
pseudo regression remains to be investigated.
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