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Abstract: The need to meet current energy demands while protecting the interests of future generations 

has driven people to adopt regulatory frameworks that promote the careful use of limited resources. 

Among these resources, the sun is an everlasting source of energy. Solar energy stands out as a prime 

example of a renewable and environmentally friendly energy source. An imperative requirement exists 

for precise and dependable decision-making methods for the selection of the most efficacious solar 

cell. We aimed to address this particular issue. The theory of complex intuitionistic fuzzy sets (CIFS) 

adeptly tackles ambiguity, encompassing complex problem formulations characterized by both 

intuitionistic uncertainty and periodicity. We introduced two aggregation operators: The complex 

intuitionistic fuzzy dynamic ordered weighted averaging (CIFDOWA) operator and the complex 

intuitionistic fuzzy dynamic ordered weighted geometric (CIFDOWG) operator. Noteworthy features 

of these operators were stated, and significant special cases were meticulously outlined. An updated 

score function was devised to address the deficiencies, identified in the current score function within 

the context of CIF knowledge. In addition, we devised a methodical strategy for managing multiple 

attribute decision-making (MADM) problems that involve CIF data by implementing the proposed 
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operators. To demonstrate the efficacy of the formulated algorithm, we presented a numerical example 

involving the selection of solar cells together with a comparative analysis with several well-established 

methodologies. 

Keywords: CIFS; CIFDOWA operator; CIFDOWG operator; decision making; optimization; 

algorithms 

Mathematics Subject Classification: 90B50, 94D05 

 

1. Introduction 

1.1. Background 

Solar energy is an economical and ecologically sustainable fuel option utilized in the production 

of electricity. By means of the photovoltaic effect, a solar cell converts the energy emitted by light into 

electrical energy. Fuzzy logic was employed by Kwi-Seong et al. [1] to assess hybrid systems that 

integrated fuel cells, batteries, DC/AC converters, and DC/AC inverters. To ascertain the most 

advantageous location for connecting solar photovoltaic installations to the power grid in the province 

of Granada, Spain, Arán-Carrión et al. [2] conducted a study. Several thermal solar concentrator 

devices were evaluated by Cavallaro [3] in the field of high temperature solar thermal energy using 

the PROMETHEE method. In [4], the fuzzy TOPSIS method was employed to assess the thermal 

energy storage capabilities of concentrated solar power systems. Cavallaro [5] conducted a 

comparative analysis of thin-film photovoltaic manufacturing processes using an ELECTRE III 

technique. The averaging aggregation operators of T-spherical fuzzy sets were introduced by Shouzhen 

Zeng et al. [6] for use in the solar cell selection process. Multiple attribute decision-making (MADM) 

is currently a prominent topic within the domain of decision-making processes aimed at determining 

the best alternative(s) from a set of feasible choices. In practical decision-making, decision-makers are 

required to convey their evaluations of attributes using various evaluation methods, including crisp 

numbers, interval numbers, and fuzzy numbers [7–10]. However, due to growing data uncertainty and 

the cognitive limitations experienced by decision-makers, it frequently proves challenging for them to 

represent their preferences using real numerical values. Fuzzy sets (FSs) were introduced by Zadeh 

[11] as a framework to evaluate indeterminate and ambiguous information. Fuzzy sets are supported 

by membership function with the range [0,1]. Recent studies have demonstrated that many domains 

compile characteristics and assess their distinctions, thereby augmenting their reliance on FSs [12–14]. 

Atanassov [15] introduced the concept of intuitionistic fuzzy sets (IFSs), which are composed of 

membership and non-membership functions. These functions ensure that the combined degrees of 

membership and non-membership fall within the range of values between 0 and 1. Researchers have 

proposed many techniques that use IFSs to address the difficulty of integrating and quantifying the 

differences among multiple attributes in distinct areas. Liu et al. [16] proposed a hybrid solution that 

combines flexible weighting for IFS. Thao [17] conducted an inquiry into the application of entropies 

and divergence metrics within the domain of IFS, incorporating the consideration of Archimedean 

norms. Building upon this investigation, Gohain et al. [18] extended the study to examine the similarity 

and distance metrics pertaining to IFS. Furthermore, Garg and Rani [19] formulated and examined 

similarity measures specifically designed for IFSs. Hayat et al. [20] delved into the exploration of 

novel aggregation operators strategically designed to effectively convey information within the 
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framework of IFS. To attain a more comprehensive understanding of advancements in the realm of 

IFSs, readers are advised to refer to the sources listed as references [21–28].  

The practical advantages of the knowledge mentioned in the preceding paragraph is constrained 

by its dependence on FS and IFS, which are utilized in the one-dimensional processing of data. This 

limitation may result in the loss of data for specialists. Instead of FS and IFS, there is an increasing 

demand for a method that can effectively manage two-dimensional data. In response to this 

requirement, Ramot et al. [29] introduced the complex fuzzy set (CFS) theoretical framework 

subsequent to an extensive investigation. Membership in the CFS is enhanced by the "phase term," a 

periodic component that is crucial for decision-making. Calculations of distance and averages between 

qualities continue to present challenges. As a result of these intricate contexts, the incorporation of 

CFS into various industries has been the subject of debate [30–33]. By including a complex-valued 

non-membership degree, [34] expands the notion of CFS and produces CIFS. To provide an example, 

the authors of [35] examined novel aggregation operators that operate within the CIFS domain. A 

comprehensive analysis of robust aggregation techniques within CIFS was performed in reference [36], 

whereas reference [37] explored generalized geometric aggregation strategies within the CIFS 

framework. In order to establish a systematic framework for handling MADM situations involving 

CIF data, Dilshad et al. [38] introduced and implemented two novel aggregation operators. Masmali 

et al. [39] proposed a method to determine the most effective water purification method under CIF 

framework. A comprehensive theoretical framework was established in reference [40] with regards to 

prioritized aggregation operators for CIF soft information.  

In addition to these, numerous additional researchers introduced other types of aggregation 

operators and their utilization in the decision-making process. A few examples are linguistic q-rung 

orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators [41], 

picture fuzzy interactional partitioned Heronian mean aggregation operators, an application to the 

MADM process [42], and multi-attribute group decision-making based on linguistic Pythagorean 

fuzzy interaction partitioned Bonferroni mean aggregation operators [43]. Yager [44] presented a 

generalized class of averaging operators with the ordered weighted averaging (OWA) operator. 

Located between the max and min operators, this operator is distinguished by a reordering operation 

that assigns the weight vector in accordance with the descending order of the input parameters. To 

obtain further information regarding the evolution of OWA operators across different domains, we 

refer to the references [45–54]. 

1.2. Research gap, motivations, and contributions 

Xu and Yager [55] showed that the majority of current research focuses on decision-making 

scenarios in which all pertinent decision information is accessible simultaneously. On the other hand, 

Wei, G. W. [56] put forth a number of geometric aggregation functions and their implementation in 

dynamic MADM in IF settings. These dynamic aggregation operators were defined for IFS containing 

information with real-valued membership and non-membership degrees. But they only take into 

account the amplitude term and cannot handle the phase term. This research challenge highlights the 

importance of defining dynamic aggregation operators in a CIF environment. The idea of CIFS is a 

generalization of the theories of CFS and IFS that considers significantly more object-related 

information during the process and handles two-dimensional data in a single set. However, the existing 

studies related to CIF cannot be evaluated with time-dependent data. In the absence of a dynamic 

component, alterations in the significance of data points might not be reflected in the aggregated output. 
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This insensitivity could potentially lead to erroneous conclusions in situations where the relevance of 

data elements evolves over time. 

One of the main advantages of the current study is that the prompt response of dynamic weighted 

aggregation operators to environmental or input data changes makes them ideal for time-sensitive 

decision-making. But when making different kinds of decisions, like multi-period investment decisions, 

dynamic medical diagnostics, dynamic evaluation of the efficiency of military systems, and personnel 

dynamic assessment, the important data for making decisions are often gathered at different times. 

Dynamic ordered weighted aggregation operators make decisions more accurate and flexible by 

combining data in a smart way that changes over time. They facilitate the ability to make decisions in 

real-time, mitigate risks, improve the allocation of resources, contribute to planning for the future, and 

have the potential to generate cost savings. Through an examination of the distinct challenges 

presented by dynamic decision knowledge, this research seeks to contribute significantly to the field 

of MADM. In this current study, we overcome the deficiency of existing literature by introducing two 

novel dynamic aggregation operators, namely, CIFDOWA and CIFDOWG, within the framework of 

CIF settings. The major contributions to this study are outlined as follows: 

1) The limitations of the current score function has been identified and an improved score function 

is introduced. The development will help to improve the ranking system in CIF system 

2) Two novel aggregation operators, CIFDOWA and CIFDOWA, have been developed to manage 

complex scenarios involving CIF data in decision-making. 

3) The structural characteristics of CIFDOWA and CIFDOWG operators, specifically 

idempotency, monotonicity, and boundedness, have been proven. This highlights the logical existence 

of the proposed operators. 

4) By utilizing newly defined operators, a methodical approach to tackling MADM issues within 

the context of CIF information is given. 

5) By utilizing the proposed method to solve a real-world MADM problem such as the selection 

of solar cells, its practical application is highlighted. 

6) An extensive comparative study is conducted to assess the viability of the suggested method in 

relation to various well-established strategies. The developed approach is consistent and reliable, as 

shown by the comparison findings. 

The succeeding sections of this manuscript are organized as follows: Section 2 delivers a 

comprehensive exposition of fundamental definitions. In Section 3, a deficiency in the existing score 

function is addressed by introducing a specially built new score function that resolves this limitation 

within the CIF framework. Section 4 elaborates on dynamic aggregation operators expressly devised 

for CIFS and delves into an exploration of their fundamental properties. Section 5 elaborates on a 

method to tackle the complex issue of MADM with CIF information, utilizing CIF dynamic weighted 

aggregation operators. Section 6 depicts a numerical illustration of the proposed strategies with which 

the MADM problem of efficient solar cell selection is addressed. Moreover, this section conducts a 

comparative analysis with the objective of elucidating the efficacy and feasibility of these pioneering 

strategies compared to established methodologies. In Section 7, the paper concludes by summarizing 

the primary findings and discussing potential implications. 

2. Preliminaries 

This section provides a concise overview of the fundamental definitions that are necessary for 

understanding the content delineated within this article. 
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Definition 1. [15]. An IFS 𝐴  of the universe 𝑊 , is characterized as follows: 𝐴 =
{(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥): 𝑥 ∈ 𝑊}. 

Here 𝜇𝐴: 𝑊 ⟶ [0,1]  and 𝜈𝐴: 𝑊 ⟶ [0,1]  are known as the membership and non-membership 

functions, respectively, such that 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. The hesitancy margin of 𝐴  is defined as 

𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥). 

Definition 2. [29]. A CFS 𝐴 of the universe 𝑊, is expressed as follows: 𝐴 = {(𝑥, 𝜇𝐴(𝑥)) ∶ 𝑥 ∈ 𝑊}. 

Here 𝜇𝐴: 𝑊 → {𝑐 ∶ 𝑐 𝜖 𝐶, |𝑐| ≤ 1}  signifies the complex-valued membership degree function, defined 

as 𝜇𝐴(𝑥) = 𝚛𝐴(𝑥)𝑒𝑖2Π𝜃𝐴(𝑥) . The parameters 𝚛𝐴(𝑥)  and 𝜃𝐴(𝑥 ) are amplitude and phase terms, 

respectively. Moreover, 𝚛𝐴(𝑥),𝜃𝐴(𝑥) ∈[0, 1]. 

Definition 3. [34]. A CIFS 𝐴 of the universe 𝑊 is delineated as: 𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) ∶ 𝑥 ∈ 𝑊}. 

Here, 𝜇𝐴 and 𝜈𝐴 denote the complex-valued membership and non-membership functions, respectively. 

These functions allocate a complex number within the closed unit disk to each element, defined as: 

𝜇𝐴(𝑥) = 𝚛𝐴(𝑥)𝑒𝑖2Π𝜃𝐴(𝑥)  and 𝜈𝐴(𝑥) = К𝐴(𝑥)𝑒і2ᴨ𝜑𝐴(𝑥) . Furthermore, 𝚛𝐴(𝑥), К𝐴(𝑥),  𝜃𝐴(𝑥)  and 

𝜑𝐴(𝑥) satisfy 0 ≤ 𝚛𝐴(𝑥), К𝐴(𝑥),  𝜃𝐴(𝑥), 𝜑𝐴(𝑥),  𝚛𝐴(𝑥) + К𝐴(𝑥),  𝜃𝐴(𝑥) + 𝜑𝐴(𝑥) ≤ 1. 

To simplify the representation, the membership and non-membership degrees of 𝑥 ∈ 𝑊  are 

denoted as 𝐴 = ((г, 𝜃), (К, 𝜑)) and are called complex intuitionistic fuzzy numbers (CIFNs). The 

CIFNs satisfy 0 ≤ г, К, г + К ≤ 1, and 0 ≤ 𝜃, 𝜑, 𝜃 + 𝜑 ≤ 1. 

We highlight the idea of an intuitionistic fuzzy variable in the following definition. 

Definition 4. [56]. In the context of time variable 𝑡, we establish the IF variable 𝛼𝑡 as follows: 𝛼𝑡 =
(𝜇𝑡 , 𝜈𝑡), where 𝜇𝑡 and 𝜈𝑡 belong to [0,1] and 𝜇𝑡 + 𝜈𝑡 ≤ 1. For the IF variable 𝛼𝑡 = (𝜇𝑡 , 𝜈𝑡), if 𝑡 takes 

values 𝑡1, 𝑡2, … , 𝑡𝑝 , then 𝛼𝑡1
, 𝛼𝑡2

, … , 𝛼𝑡𝑝
 represent 𝑝 fuzzy numbers that were obtained at 𝑝 distinct 

time periods. 

Aggregation operators are essential mathematical tools used to combine multiple inputs into a 

single output. Here, we describe the ideas of some important aggregation operators in CIF settings. 

Definition 5. [36]. Let 𝜓  be the collection of CIFNs 𝛼𝛾 = ((г𝛾 , 𝜃𝛾), (К𝛾, 𝜑𝛾)), for 𝛾 = 1,2, … , 𝑛 . 

Additionally, let 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑛]𝑇 represents the weight vector relative to these CIFNs, such that 

𝑤𝛾 ∈ [0,1] and ∑ 𝑤𝛾 = 1𝑛
𝛾=1 . For a collection of 𝑛 CIFNs, 𝛼1, 𝛼2, . . . , 𝛼𝑛, the CIF weighted averaging 

operator (CIFWA) is a function 𝐶𝐼𝐹𝑊𝐴: 𝜓𝑛 → 𝜓, which is defined in the following way: 

𝐶𝐼𝐹𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊕𝛾=1
𝑛 𝑤𝛾𝛼𝛾 = (

(1−∏ (1−г𝛾)𝑤𝛾𝑛
𝛾=1 ,1−∏ (1−𝜃𝛾)𝑤𝛾𝑛

𝛾=1 ),

(∏ (К𝛾)
𝑤𝛾𝑛

𝛾=1 ,∏ (𝜑𝛾)
𝑤𝛾𝑛

𝛾=1 )
). 

Definition 6. [36]. Let 𝜓 be the collection of CIFNs 𝛼𝛾 = ((г𝛾 , 𝜃𝛾), (К𝛾, 𝜑𝛾)), for 𝛾 = 1,2, … , 𝑛. The 

weight vector 𝑤 = [𝑤1, 𝑤2, … … . . , 𝑤𝑛]𝑇  pertains to these CIFNs, adhering to 𝑤𝛾 ∈ [0,1] , and 

∑ 𝑤𝛾 = 1𝑛
𝛾=1 . For a given set of 𝑛  CIFNs, 𝛼1, 𝛼2, . . . , 𝛼𝑛 , the mapping CIF weighted geometric 

operator (CIFWG), denoted as 𝐶𝐼𝐹𝑊𝐺: 𝜓𝑛 → 𝜓, could be described as follows: 

𝐶𝐼𝐹𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊗𝛾=1
𝑛 𝛼𝛾

𝑤𝛾 = (
(∏ (г𝛾)𝑤𝛾𝑛

𝛾=1 ,∏ (𝜃𝛾)𝑤𝛾𝑛
𝛾=1 ),

(1−∏ (1−К𝛾)
𝑤𝛾𝑛

𝛾=1 ,1−∏ (1−𝜑𝛾)𝑤𝛾)𝑛
𝛾=1

). 

Definition 7. [36]. Let 𝜓  be the collection of CIFNs 𝛼𝛾 = ((г𝛾 , 𝜃𝛾), (К𝛾, 𝜑𝛾)), for 𝛾 = 1,2, … , 𝑛 . 

Additionally, let 𝑤 = [𝑤1, 𝑤2, … … . . , 𝑤𝑛]𝑇  represents the weight vector of these CIFNs, such that 

𝑤𝛾 ∈ [0,1] and ∑ 𝑤𝛾 = 1𝑛
𝛾=1 . For a collection of 𝑛 CIFNs, 𝛼1, 𝛼2, . . . , 𝛼𝑛, the mapping CIF ordered 

weighted averaging operator (CIFOWA), denoted as 𝐶𝐼𝐹𝑂𝑊𝐴: 𝜓𝑛 → 𝜓, is described as follows: 
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𝐶𝐼𝐹𝑂𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊕𝛾=1
𝑛 𝑤𝛾𝛼𝜎(𝛾) = (

(1−∏ (1−г𝜎(𝛾))𝑤𝛾𝑛
𝛾=1 ,1−∏ (1−𝜃𝜎(𝛾))𝑤𝛾𝑛

𝛾=1 ),

(∏ (К𝜎(𝛾))
𝑤𝛾𝑛

𝛾=1 ,∏ (𝜑𝜎(𝛾))
𝑤𝛾𝑛

𝛾=1 )
). 

Here (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) is a permutation such that 𝛼𝜎(𝛾−1) ≥ 𝛼𝜎(𝛾) for all 𝛾. 

Definition 8. [36]. Let 𝜓 be the collection of CIFNs 𝛼𝛾 = ((г𝛾 , 𝜃𝛾), (К𝛾, 𝜑𝛾)), for 𝛾 = 1,2, … , 𝑛. The 

weight vector 𝑤 = [𝑤1, 𝑤2, … … . . , 𝑤𝑛]𝑇  corresponds to these CIFNs, adhering to 𝑤𝛾 ∈ [0,1], and 

∑ 𝑤𝛾 = 1𝑛
𝛾=1 . For a given set of 𝑛 CIFNs, 𝛼1, 𝛼2, . . . , 𝛼𝑛, the mapping CIF ordered weighted geometric 

operator (CIFOWG), denoted as 𝐶𝐼𝐹𝑂𝑊𝐺: 𝜓𝑛 → 𝜓, could be described as follows: 

𝐶𝐼𝐹𝑂𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊗𝛾=1
𝑛 𝛼𝜎(𝛾)

𝑤𝛾 = (
(∏ (г𝜎(𝛾))𝑤𝛾𝑛

𝛾=1 ,∏ (𝜃𝜎(𝛾))𝑤𝛾𝑛
𝛾=1 ),

(1−∏ (1−К𝜎(𝛾))
𝑤𝛾𝑛

𝛾=1 ,1−∏ (1−𝜑𝜎(𝛾))𝑤𝛾)𝑛
𝛾=1

). 

Here (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) is a permutation such that 𝛼𝜎(𝛾−1) ≥ 𝛼𝜎(𝛾) for all 𝛾. 

The next definition emphasizes the evaluation and ordering procedures that employ specific score 

and accuracy functions within the existing structure. 

Definition 9. [34]. For any CIFN 𝛼0=((г0, 𝜃0), (К0, 𝜑0)), wherein the score function is articulated as 

follows: 

𝑆(𝛼0) = г0 − К0 + 𝜃0 − 𝜑0,  𝑆(𝛼0) ∈ [−2,2]. 

The accuracy function is specified as: 

𝐻(𝛼0) = г0 + К0 + 𝜃0 + 𝜑0, 𝐻(𝛼0) ∈ [0,2]. 

Additionally, it is essential to emphasize that 𝛼1 and 𝛼2, representing distinct CIFNs, adhere to 

the stated comparison laws as follows: 

i. If 𝑆(𝛼1) > 𝑆(𝛼2), then 𝛼1 > 𝛼2; 

ii. If 𝑆(𝛼1) < 𝑆(𝛼2), then 𝛼1 < 𝛼2; 

iii. If 𝑆(𝛼1) = 𝑆(𝛼2) , then if 𝐻(𝛼1) > 𝐻(𝛼2) ⟹ 𝛼1 > 𝛼2 , 𝐻(𝛼1) < 𝐻(𝛼2) ⟹ 𝛼1 < 𝛼2  and 

𝐻(𝛼1) = 𝐻(𝛼2) ⟹ 𝛼1 = 𝛼2. 

3. An improvement of the existing score functions for CIFNs 

This section identifies the shortcomings of the score function that was devised in reference [34] 

and proposes an improved version that is more suitable for CIFNS. 

Example 1. Let 𝛼1 = ((0.4,0.6), (0.3,0.2)) and 𝛼2 = ((0.7,0.3), (0.1,0.4)) be two CIFNs. Applying 

definition 9 to CIFNs 𝛼1  and 𝛼2  yields 𝑆(𝛼1) = 𝑆(𝛼2) = 0.5  and 𝐻(𝛼1) = 𝐻(𝛼2) = 1.5 . Using 

definition 9, it is easy to verify that CIFNs 𝛼1 and 𝛼2 are not comparable. 

The example given above highlights the inherent deficiency of the existing score function within 

our designated domain of investigation. As a result, it motivates our endeavor to improve this score 

function, delineated in the following definition. 

Definition 10. For any 𝛼0 = ((г0, 𝜃0), (К0, 𝜑0)) signifies a CIFN. The updated score function Ƈ(𝛼0) 

for CIFNs is defined in the following way: 
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Ƈ(𝛼0) =
1

2
(г0 + 𝜃0 − К0 + 𝜑0 − г0К0 + 𝜃0𝜑0). 

Herein, Ƈ(𝛼0) ∈ [−2,2]. 

It is essential to mention that the given score function complies with the comparison rules, that is, 

Ƈ(𝛼1) > Ƈ(𝛼2) ⟹ 𝛼1 > 𝛼2, Ƈ(𝛼1) < Ƈ(𝛼2) ⟹ 𝛼1 < 𝛼2, and Ƈ(𝛼1) = Ƈ(𝛼2) ⟹ 𝛼1 = 𝛼2. 

The subsequent illustration is provided to clarify the accuracy and effectiveness that are intrinsic 

to the suggested score function designed for CIFNs. 

Example 2. A pair of arbitrary-selected CIFNs are denoted as 𝛼1 = ((0.4,0.6), (0.3,0.2)) and 𝛼2 =

((0.7,0.3), (0.1,0.4)), respectively. Example 1 has already shown the limits of the existing score 

function when used with these CIFNs. Using the framework described in definition 10, the application 

of this framework to these CIFNs results in Ƈ(𝛼1) = 0.45 and Ƈ(𝛼2) = 0.68. Therefore, based on the 

principle explained in property 2 of definition 10, it is clear that 𝛼1 < 𝛼2. Based on this substantial 

evidence, it may be inferred that 𝛼2 is indeed preferable to 𝛼1. 

4. Dynamic operations on CIFNs 

The aggregation of information is a fundamental and vital element in the study of information 

fusion. Specifically, the operators CIFOWA and CIFOWG are designed to aggregate CIF information, 

particularly when dealing with time-independent parameters. However, when accounting for the time 

period, it is vital to acknowledge that the acquisition of CIF information occurs at varying intervals. 

Consequently, it becomes imperative to assure that both the aggregation operators and their respective 

weights are not held invariable. In the subsequent sections, we proceed by establishing the foundational 

framework of a CIF variable. 

4.1. Dynamic operational laws of CIFNs 

In this section, we present the concept of CIF variable and expound upon several fundamental 

dynamic operational laws governing these variable. 

Definition 11. [38]. Let 𝑡 denote a time variable. We define 𝛼𝑡 = ((г𝑡 , 𝜃𝑡), (К𝑡 , 𝜑𝑡)) as a CIF variable, 

where г𝑡, К𝑡, 𝜃𝑡, and 𝜑𝑡 lies within the closed interval [0,1], subject to the constraints г𝑡 + К𝑡 ≤ 1 and 

𝜃𝑡 + 𝜑𝑡 ≤ 1. 

For the CIF variable 𝛼𝑡 = ((г𝑡 , 𝜃𝑡), (К𝑡 , 𝜑𝑡)) , when 𝑡  assumes values 𝑡1, 𝑡2, … , 𝑡𝑝 , the 

expressions 𝛼𝑡1
, 𝛼𝑡2

, … , 𝛼𝑡𝑝
 denote a set of 𝑝 distinct CIF numbers observed at 𝑝 different time periods. 

Within the context of CIFNs, we elucidate the basic laws that govern their interactions by means 

of the definitions 12 and 13. 

Definition 12. [38]. Consider two CIFNs, denoted as 𝛼𝑡1
= ((г𝑡1

, 𝜃𝑡1
), (К𝑡1

, 𝜑𝑡1
))  and 𝛼𝑡2

=

((г𝑡2
, 𝜃𝑡2

), (К𝑡2
, 𝜑𝑡2

)). The basic operational principles regulating their interplay can be expressed as 

follows: 

i. 𝛼𝑡1
≤ 𝛼𝑡2

 𝑖𝑓 г𝑡1
≤ г𝑡2

, К𝑡1
≥ К𝑡2

 and 𝜃𝑡1
≤ 𝜃𝑡2

, 𝜑𝑡1
≥ 𝜑𝑡2

; 

ii. 𝛼𝑡1
= 𝛼𝑡2  

if and only if 𝛼𝑡1
⊆ 𝛼𝑡2  

and 𝛼𝑡2
⊆ 𝛼𝑡1

; 

iii. 𝛼𝑡1

𝑐 = ((К𝑡1
, 𝜑𝑡1

), (г𝑡1
, 𝜃𝑡1

)). 
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Definition 13. [38]. Consider two CIFNs, denoted as 𝛼𝑡1
= ((г𝑡1

, 𝜃𝑡1
), (К𝑡1

, 𝜑𝑡1
))  and 𝛼𝑡2

=

((г𝑡2
, 𝜃𝑡2

), (К𝑡2
, 𝜑𝑡2

)), alongside a positive real number denoted by λ, we precisely articulate the 

fundamental dynamic operations in the subsequent manner: 

i. 𝛼𝑡1
⊕ 𝛼𝑡2

= ((1 − ∏ (1 − г𝑡𝑘
)2

𝑘=1 , 1 − ∏ (1 − 𝜃𝑡𝑘
)2

𝑘=1 ), (∏ К𝑡𝑘

2
𝑘=1 , ∏ 𝜑𝑡𝑘

2
𝑘=1 )); 

ii. 𝛼𝑡1
⊗ 𝛼𝑡2

= ((∏ г𝑡𝑘

2
𝑘=1 , ∏ 𝜃𝑡𝑘

2
𝑘=1 ), (1 − ∏ (1 − К𝑡𝑘

)2
𝑘=1 , 1 − ∏ (1 − 𝜑𝑡𝑘

)2
𝑘=1 )); 

iii. 𝜆𝛼𝑡1
= (1 − (1 − г𝑡1

)
𝜆

, 1 − (1 − 𝜃𝑡1
)

𝜆
) , ((К𝑡1

)
𝜆

, (𝜑𝑡1
)

𝜆
); 

iv. 𝛼𝑡1
𝜆 = ((г𝑡1

)𝜆, (𝜃𝑡1
)𝜆), (1 − (1 − К𝑡1

)𝜆, 1 − (1 − 𝜑𝑡1
)

𝜆
). 

4.2. Structural properties of CIFDOWA operator 

Within this subsection, we define the notion of the CIF dynamic ordered weighted averaging 

operator and show its basic structural features. 

Definition 14. Consider 𝜓 be the collection of CIFNs 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)), at distinct time 

periods with 𝑘 ranging from 1 to 𝑝. Furthermore, let 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
represents the weight 

vector associated with time periods 𝑡𝑘, adhering to 𝜆𝑡𝑘
∈ [0,1], satisfying the constraint ∑ 𝜆𝑡𝑘

= 1.
𝑝
𝑘=1  

Within this context, we introduce a mapping 𝐶𝐼𝐹𝐷𝑂𝑊𝐴 ∶  𝜓𝑝 → 𝜓 defined as follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) =⊕𝑘=1

𝑝
𝜆𝑡𝑘

𝛼𝜎(𝑡𝑘), 

where ((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝)) is a permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝) such that  𝛼𝜎(𝑡𝑘−1) ≥ 𝛼𝜎(𝑡𝑘) 

for all 𝑘. 

The following result describes that when a finite number of CIFNs are combined using the 

CIFDOWA operator, the resulting value is also a CIFN. 

Theorem 1. Let 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)) be the set of CIFNs at 𝑝 distinct time periods 𝑡𝑘, where 

𝑘 = 1,2,3, … , 𝑝.  Assume that 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
represents the weight vector related to 𝑡𝑘 

such that 𝜆𝑡𝑘
∈ [0,1] and ∑ 𝜆𝑡𝑘

= 1.
𝑝
𝑘=1  In the framework of the CIFDOWA operator, the aggregated 

value of these CIFNs is also represented as a CIFN, obtained through the following expression: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = (

(1−∏ (1−г𝜎(𝑡𝑘))
𝜆𝑡𝑘

𝑝
𝑘=1 ,1−∏ (1−𝜃𝜎(𝑡𝑘))

𝜆𝑡𝑘
𝑝
𝑘=1 ),

(∏ (К𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑝

𝑘=1 ,∏ (𝜑𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑝

𝑘=1 )
), 

where ((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝)) is a permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝) such that  𝛼𝜎(𝑡𝑘−1) ≥ 𝛼𝜎(𝑡𝑘) 

for all 𝑘. 

Proof: We demonstrate the theorem’s validity utilizing the method of mathematical induction. 

In the initial step, we take 𝑝 = 2, and consider a pair of CIFNs: 𝛼𝑡1
= ((г𝑡1

, 𝜃𝑡1
), (К𝑡1

, 𝜑𝑡1
)) and 

𝛼𝑡2
= ((г𝑡2

, 𝜃𝑡2
), (К𝑡2

, 𝜑𝑡2
)). Through the prescribed operations specific to CIFNs, we derive the 

subsequent expressions: 

𝜆𝑡1
𝛼𝜎(𝑡1) = ((1−(1 − г𝜎(𝑡1))𝜆𝑡1 , 1 − (1 − 𝜃𝜎(𝑡1))

𝜆𝑡1 ) , ((К𝜎(𝑡1))
𝜆𝑡1 , (𝜑𝜎(𝑡1))

𝜆𝑡1 )), 
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𝜆𝑡2
𝛼𝜎(𝑡2) = ((1−(1 − г𝜎(𝑡2))𝜆𝑡2 , 1 − (1 − 𝜃𝜎(𝑡2))

𝜆𝑡2 ) , ((К𝜎(𝑡2))
𝜆𝑡2 , (𝜑𝜎(𝑡2))

𝜆𝑡2 )). 

Next, employing the CIFDOWA operator on 𝛼𝑡1
 and 𝛼𝑡2

, we combine these two CIFNs in the 

subsequent manner: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

) =  𝜆𝑡1
𝛼𝜎(𝑡1) ⊕ 𝜆𝑡2

𝛼𝜎(𝑡2) = ((1−(1 − г𝜎(𝑡1))𝜆𝑡1 , 1 − (1 −

𝜃𝜎(𝑡1))
𝜆𝑡1 ) , ((К𝜎(𝑡1))

𝜆𝑡1 , (𝜑𝜎(𝑡1))
𝜆𝑡1 )) ⊕ ((1−(1 − г𝜎(𝑡2))𝜆𝑡2 , 1 − (1 −

𝜃𝜎(𝑡2))
𝜆𝑡2 ) , ((К𝜎(𝑡2))

𝜆𝑡2 , (𝜑𝜎(𝑡2))
𝜆𝑡2 )). 

It follows that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

) = ((1 − ∏ (1 − г𝜎(𝑡𝑘))𝜆𝑡𝑘2
𝑘=1 , 1 − ∏ (1 −2

𝑘=1

𝜃𝜎(𝑡𝑘))𝜆𝑡𝑘 ), (∏ (К𝜎(𝑡𝑘))
𝜆𝑡𝑘2

𝑘=1 , ∏ (𝜑𝜎(𝑡𝑘))
𝜆𝑡𝑘2

𝑘=1 )). 

Therefore, the validity of the statement for 𝑝 = 2 is verified. 

Let the statement be valid for 𝑝 = 𝑚 > 2. This means that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑚
) = (

(1−∏ (1−г𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 ,1−∏ (1−𝜃𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 ),

(∏ (К𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 ,∏ (𝜑𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 )
). 

Consider 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑚
, 𝛼𝑡𝑚+1

) = 𝜆𝑡1
𝛼𝜎(𝑡1) ⊕ 𝜆𝑡2

𝛼𝜎(𝑡2) ⊕ … … .⊕ 𝜆𝑡𝑚
𝛼𝜎(𝑡𝑚) ⊕

𝜆𝑡𝑚+1
𝛼𝜎(𝑡𝑚+1) = ((1 − ∏ (1 − г𝜎(𝑡𝑘))𝜆𝑡𝑘𝑚

𝑘=1 , 1 − ∏ (1 −𝑚
𝑘=1

𝜃𝜎(𝑡𝑘))
𝜆𝑡𝑘 ) , (∏ (К𝜎(𝑡𝑘))

𝜆𝑡𝑘𝑚
𝑘=1 , ∏ (𝜑𝜎(𝑡𝑘))

𝜆𝑡𝑘𝑚
𝑘=1 )) ⊕ ((1−(1 − г𝜎(𝑡𝑚+1))𝜆𝑡𝑚+1 , 1 −

(1 − 𝜃𝜎(𝑡𝑚+1))
𝜆𝑡𝑚+1 ) , ((К𝜎(𝑡𝑚+1))

𝜆𝑡𝑚+1 , (𝜑𝜎(𝑡𝑚+1))
𝜆𝑡𝑚+1 )). 

This shows that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑚
, 𝛼𝑡𝑚+1

) = ((1 − ∏ (1 − г𝜎(𝑡𝑘))𝜆𝑡𝑘𝑚+1
𝑘=1 , 1 − ∏ (1 −𝑚+1

𝑘=1

𝜃𝜎(𝑡𝑘))𝜆𝑡𝑘 ), (∏ (К𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚+1

𝑘=1 , ∏ (𝜑𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚+1

𝑘=1 )). 

The statement stands valid for the case where 𝑝 = 𝑚 + 1. Hence, the assertion remains true for 

all positive integers 𝑝. 

The subsequent example validates the assertion outlined in Theorem 1. 

Example 3. Suppose 𝛼𝑡1
= ((0.5,0.8), (0.3,0.2)) , 𝛼𝑡2

= ((0.5,0.7), (0.4,0.2)) , 𝛼𝑡3
=

((0.80,0.30), (0.20,0.60))  and 𝛼𝑡4
= ((0.60,0.90), (0.20,0.10))  CIFNs, and 𝜆𝑡 =

[0.350,0.150,0.300,0.200]𝑇  represents the weight vector of the periods 𝑡1 , 𝑡2 , 𝑡3 , and 𝑡4 . To 

aggregate these values using the CIFDOWA operator, we initiate the process by permuting these 

numbers according to definition 10, obtaining the subsequent data. 

Ƈ(𝛼𝑡1
) = 0.605, Ƈ(𝛼𝑡2

) = 0.47, Ƈ(𝛼𝑡3
) = 0.75 and Ƈ(𝛼𝑡4

) = 0.685. 
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Utilizing definition 10, the permuted values of the CIFNs are computed in the subsequent 

manner:  𝛼𝜎(𝑡1) = ((0.8,0.3), (0.2,0.6)) , 𝛼𝜎(𝑡2) = ((0.6,0.9), (0.2,0.1)) , 𝛼𝜎(𝑡3) =

((0.5,0.8), (0.3,0.2) and 𝛼𝜎(𝑡4) = ((0.5,0.7), (0.4,0.2)). Then, 

∏ (1 − г𝜎(𝑡𝑘))𝜆(𝑡𝑘)4
𝑘=1 = 0.351,   ∏ (1 − 𝜃𝜎(𝑡𝑘))𝜆(𝑡𝑘)4

𝑘=1 = 0.303, 

∏ (К𝜎(𝑡𝑘))
𝜆(𝑡𝑘)4

𝑘=1 = 0.259,   ∏ (𝜑𝜎(𝑡𝑘))
𝜆(𝑡𝑘)

= 0.2654
𝑘=1 . 

It follows that 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴(𝛼𝑡1
, 𝛼𝑡2

, 𝛼𝑡3
, 𝛼𝑡4

) =⊕𝑘=1
4 𝜆𝑡𝑘

𝛼𝜎(𝑡𝑘) 

= ((0.649,0.697), (0.259,0.265)). 

Therefore, we can infer that the result of the preceding discussion is a CIFN. 

The subsequent result verifies the idempotency property of CIFNs in the framework of 

CIFDOWA operator. 

Theorem 2. Consider a collection of CIFNs 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)) , for 𝑘 = 1,2,3, … , 𝑝 , 

adheres to the constraint 𝛼𝜎(𝑡𝑘) = 𝛼𝑡0
 for all 𝑘, where 𝛼𝑡0

= ((г𝑡0
, 𝜃𝑡0

), (К𝑡0
, 𝜑𝑡0

)) is itself a CIFN 

and  𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = 𝛼𝑡0

. 

Proof: Given that 𝛼𝜎(𝑡𝑘) = 𝛼𝑡𝑜
 for all 𝑘, we may deduce from Definition 12 that г𝜎(𝑡𝑘) = г𝑡0

, θσ(tk) =

θt0
, К𝜎(tk) = Кt0

, and φσ(tk) = φt0
 for all 𝑘. By replacing these relationships in Theorem 1, we derive 

the following: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = (

(1−∏ (1−г𝑡0)
𝜆𝑡𝑘

𝑝
𝑘=1 ,1−∏ (1−𝜃𝑡0)

𝜆𝑡𝑘
𝑝
𝑘=1 ),

(∏ (К𝑡0)
𝜆𝑡𝑘𝑝

𝑘=1 ,∏ (𝜑𝑡0)
𝜆𝑡𝑘𝑝

𝑘=1 )
) =

(
(1−(1−г𝑡0)

∑ 𝜆𝑡𝑘
𝑝
𝑘=1 ,1−(1−𝜃𝑡0)

∑ 𝜆𝑡𝑘
𝑝
𝑘=1 ),

((К𝑡0)
∑ 𝜆𝑡𝑘

𝑝
𝑘=1 ,(𝜑𝑡0)

∑ 𝜆𝑡𝑘
𝑝
𝑘=1 )

) = ((г𝑡0
, 𝜃𝑡0

), (К𝑡0
, 𝜑𝑡0

)). 

Hence, we conclude that 𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = 𝛼𝑡0

. 

In the context of the CIFDOWA operator, the following result demonstrates that every set of 

CIFNs satisfies the monotonicity property. 

Theorem 3. Consider 𝑝  number of CIFNs 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
))  and 𝛼𝑡𝑘

′ =

((г𝑡𝑘
′ , 𝜃𝑡𝑘

′ ), (К𝑡𝑘
′ , 𝜑𝑡𝑘

′ ))  for all 𝑘 = 1,2,3, … . , 𝑝 . Furthermore, let 𝜆𝑡 =

[𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
represents the weight vector related to 𝑡𝑘 such that 𝜆𝑡𝑘

∈ [0,1], and ∑ 𝜆𝑡𝑘
=

𝑝
𝑘=1

1 . Moreover, ((𝜎(𝑡1), 𝜎(𝑡2), … , 𝜎(𝑡𝑝)) is a permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝)  such that 𝛼𝜎(𝑡𝑘−1) ≥

𝛼𝜎(𝑡𝑘) and 𝛼𝜎(𝑡𝑘−1)
′ ≥ 𝛼𝜎(𝑡𝑘)

′  for all 𝑘. Provided that the subsequent conditions are satisfied for each 𝑘: 

г𝜎(𝑡𝑘) ≤ г𝜎(𝑡𝑘)
′ , К𝜎(𝑡𝑘) ≥ К𝜎(𝑡𝑘)

′ , 𝜃𝜎(𝑡𝑘) ≤ 𝜃𝜎(𝑡𝑘)
′ , and 𝜑𝜎(𝑡𝑘) ≥ 𝜑𝜎(𝑡𝑘)

′ , then we can rigorously establish 

the following: 𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) ≤ 𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1,

′ 𝛼𝑡2
′ , … . . , 𝛼𝑡𝑝

′ ). 

Proof: In light of the provided representations of 𝛼𝑡𝑘
 and 𝛼𝑡𝑘

′  , the respective outcomes in the context 

of CIFDOWA are delineated as follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = ((г𝑡 , 𝜃𝑡), (К𝑡 , 𝜑𝑡)), 
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𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1,
′ 𝛼𝑡2

′ , … . . , 𝛼𝑡𝑝
′ ) = ((г𝑡

′ , 𝜃𝑡
′), (К𝑡

′ , 𝜑𝑡
′)). 

By employing the observation that г𝜎(𝑡𝑘) ≤ г𝜎(𝑡𝑘)
′ , we can infer that 1 − г𝜎(𝑡𝑘) ≥ 1 − г𝜎(𝑡𝑘)

′ . Hence, 

this implies that ∏ (1 − г𝜎(𝑡𝑘))𝜆𝑡𝑘
𝑝
𝑘=1 ≥ ∏ (1 − г𝜎(𝑡𝑘)

′ )𝜆𝑡𝑘 ⟹ 1 − ∏ (1 − г𝜎(𝑡𝑘))𝜆𝑡𝑘
𝑝
𝑘=1 ≤ 1 −

𝑝
𝑘=1

∏ (1 − г𝜎(𝑡𝑘)
′ )𝜆𝑡𝑘

𝑝
𝑘=1 . Consequently, we can affirm that г𝑡 ≤ г𝑡

′ . 

Similarly, by considering К𝜎(𝑡𝑘) ≥ К𝜎(𝑡𝑘)
′ , we deduce that ∏ (К𝜎(𝑡𝑘))

𝜆𝑡𝑘 ≥
𝑝
𝑘=1 ∏ (К𝜎(𝑡𝑘)

′ )
𝜆𝑡𝑘𝑝

𝑘=1 , 

which further indicates that К𝑡 ≥ К𝑡
′ . 

Thus, by utilizing Definition 12, we get the desired outcome. 

The following result proves that any finite set of CIFNs adheres to the boundedness property in 

the framework of the CIFDOWA operator. 

Theorem 4. Consider a 𝑝 number of CIFNs, denoted as 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)) for all 𝑘 =

1,2, … , 𝑝. Let 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
 represents the weight vector related to 𝑡𝑘, where 𝜆𝑡𝑘

∈ [0,1], 

and the constraint ∑ 𝜆𝑡𝑘
= 1

𝑝
𝑘=1  holds. 

Furthermore, let 

𝛼− = ((min
𝑡𝑘

{ г𝜎(𝑡𝑘)}, min
𝑡𝑘

{ 𝜃𝜎(𝑡𝑘)}) , (max
𝑡𝑘

{К𝜎(𝑡𝑘)}, max
𝑡𝑘

{𝜑𝜎(𝑡𝑘)})), 

and 

𝛼+ = ((max
𝑡𝑘

{г𝜎(𝑡𝑘)}, max
𝑡𝑘

{𝜃𝜎(𝑡𝑘)}) , (min
𝑡𝑘

{ К𝜎(𝑡𝑘)}, min
𝑡𝑘

{ 𝜑𝜎(𝑡𝑘)})) 

be the lower and upper bounds of these CIFNs. Moreover, ((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝))  is a 

permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝) such that 𝛼𝜎(𝑡𝑘−1)
− ≥ 𝛼𝜎(𝑡𝑘)

−  and 𝛼𝜎(𝑡𝑘−1)
+ ≥ 𝛼𝜎(𝑡𝑘)

+  for all 𝑘. Then, 

𝛼− ≤  𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) ≤ 𝛼+. 

Proof: Consider the outcome of the CIFDOWA operator to the set of CIFNs as follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = ((г𝑡 , 𝜃𝑡), (К𝑡 , 𝜑𝑡)). 

For each CIFN 𝛼𝑡𝑘
,  

min
tk

{гσ(tk)} ≤ гσ(tk) ≤ max
tk

{гσ(tk)} ⟹ 1 − max
tk

{гσ(tk)} ≤ 1 − гσ(tk) ≤ 1 − min
tk

{гσ(tk)} ⟹

∏ (1 − max
tk

{гσ(tk)})λtk
p
k=1 ≤ ∏ (1 − гσ(tk))

λtk ≤ ∏ (1 − min
𝑡𝑘

{гσ(tk)})λtk ⟹
p
k=1

p
k=1

(1 − max
tk

{гσ(tk)})∑ λtk

p
k=1 ≤ ∏ (1 − гσ(tk))

λtk ≤ (1 − min
tk

{гσ(tk)})∑ λtk

p
k=1 ⇒ 1 −

p
k=1

max
tk

{гσ(tk)} ≤ ∏ (1 − гσ(tk))
λtk ≤

p
k=1 1 − min

tk

{г𝜎(tk)} ⟹ min
tk

{гσ(tk)} ≤ 1 − ∏ (1 − г𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑝

𝑘=1 ≤

max
𝑡𝑘

{г𝜎(𝑡𝑘)}. 

Hence, 

min
𝑡𝑘

{г𝜎(𝑡𝑘)} ≤ г𝑡 ≤ max
𝑡𝑘

{г𝜎(𝑡𝑘
)}. 

Moreover, 



8417 

AIMS Mathematics  Volume 9, Issue 4, 8406–8438. 

 

 

min
𝑡𝑘

{К𝜎(𝑡𝑘)} ≤ К𝜎(𝑡𝑘) ≤ max
𝑡𝑘

{К𝜎(𝑡𝑘)}⟹∏ (min
𝑡𝑘

{К𝜎(𝑡𝑘)})𝜆𝑡𝑘
𝑝
𝑘=1 ≤ ∏ {К𝜎(𝑡𝑘)}𝜆𝑡𝑘 ≤

𝑝
𝑘=1

∏ (max
𝑡𝑘

{К𝜎(𝑡𝑘)})
𝜆𝑡𝑘

⟹
𝑝
𝑘=1 (min

𝑡𝑘

{К𝜎(𝑡𝑘)})
∑ 𝜆𝑡𝑘

𝑝
𝑘=1

≤ ∏ (К𝜎(𝑡𝑘))
𝜆𝑡𝑘 ≤ (max

𝑡𝑘

{К𝜎(𝑡𝑘)})
∑ 𝜆𝑡𝑘

𝑝
𝑘=1𝑝

𝑘=1 ⟹

min
𝑡𝑘

{К𝜎(𝑡𝑘)} ≤ К𝑡 ≤ max
𝑡𝑘

{К𝜎(𝑡𝑘)}. 

Similarly we can obtain that min
𝑡𝑘

{𝜃𝜎(𝑡𝑘)} ≤ 𝜃𝑡 ≤ max
𝑡𝑘

{𝜃𝜎(𝑡𝑘)}  and min
𝑡𝑘

{𝜑𝜎(𝑡𝑘)} ≤ 𝜑𝑡 ≤

max
𝑡𝑘

{𝜑𝜎(𝑡𝑘)} . Thus, through the utilization of Definition 12, it follows that 𝛼𝑡
− ≤

𝐶𝐼𝐹𝐷𝑊𝐴 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) ≤ 𝛼𝑡

+. 

4.3. Structural properties of CIFDOWG operator 

In this subsection, we present the concept of the CIF dynamic ordered weighted geometric 

operator and meticulously establish its inherent structural properties of foundational significance. 

Definition 15. Consider 𝜓 be the collection of  CIFNs 𝛼𝑡𝑘
=  ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)), observed at 

distinct periods 𝑡𝑘, where 𝑘 ranges from 1 to 𝑝. Moreover, let 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
signifies the 

weight vector associated with these time periods 𝑡𝑘, adhering to the constraint that 𝜆𝑡𝑘
 lies within the 

interval [0,1], while satisfying the condition ∑ 𝜆𝑡𝑘
= 1

𝑝
𝑘=1 . The CIFDOWG operator 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺: 𝜓𝑝 → 𝜓, is a mapping defined by 𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) =⊗𝑘=1

𝑝
𝛼𝜎(𝑡𝑘)

𝜆𝑡𝑘 , where 

((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝)) is a permutation of (𝑡1, 𝑡2, … , 𝑡𝑝) such that  𝛼𝜎(𝑡𝑘−1) ≥ 𝛼𝜎(𝑡𝑘) for all 𝑘. 

The following result describes that when a finite number of CIFNs are combined using the 

CIFDOWG operator, the resulting value is also a CIFN. 

Theorem 5. Let 𝜓 be the collection of CIFNs 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
)), at 𝑝 different periods 𝑡𝑘 

(𝑘 = 1,2, … , 𝑝). The weight vector related to 𝑡𝑘 is denoted as 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
, satisfying 

∑ 𝜆𝑡𝑘
= 1

𝑝
𝑘=1 . In the framework of the CIFDOWG operator, the aggregated value of these CIFNs is 

also represented as a CIFN, determined through the following expression: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = (

(∏ (г𝜎(𝑡𝑘))
𝜆𝑡𝑘

𝑝
𝑘=1 ,∏ (𝜃𝜎(𝑡𝑘))

𝜆𝑡𝑘
𝑝
𝑘=1 ),

(1−∏ (1−К𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑝

𝑘=1 ,1−∏ (1−𝜑𝜎(𝑡𝑘))
𝜆𝑡𝑘 )

𝑝
𝑘=1

), 

where, ((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝)) is a permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝) such that  𝛼𝜎(𝑡𝑘−1) ≥ 𝛼𝜎(𝑡𝑘) 

for all 𝑘. 

Proof: We substantiate the theorem’s validity by employing the mathematical induction technique. 

In the initial case where 𝑝 = 2 , we are presented with two CIFNs, denoted as 𝛼𝑡1
=

((г𝑡1
, 𝜃𝑡1

), (К𝑡1
, 𝜑𝑡1

))  and 𝛼𝑡2
= ((г𝑡2

, 𝜃𝑡2
), (К𝑡2

, 𝜑𝑡2
)) . By applying the prescribed operations 

associated with CIFNs, we derive the subsequent mathematical expressions: 

𝛼𝜎(𝑡1)
𝜆𝑡1 = (((г𝜎(𝑡1))

𝜆𝑡1 , (𝜃𝜎(𝑡1))
𝜆𝑡1 ) , (1−(1 − К𝜎(𝑡1))𝜆𝑡1 , 1 − (1 − 𝜑𝜎(𝑡1))

𝜆𝑡1 )), 

𝛼𝜎(𝑡2)
𝜆𝑡2 = (((г𝜎(𝑡2))

𝜆𝑡2 , (𝜃𝜎(𝑡2))
𝜆𝑡2 ) , (1−(1 − К𝜎(𝑡2))𝜆𝑡2 , 1 − (1 − 𝜑𝜎(𝑡2))

𝜆𝑡2 )). 
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Subsequently, employing the CIFDOWG operator on 𝛼𝑡1
 and 𝛼𝑡2

, we amalgamate these CIFNs 

in the subsequent manner: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺(𝛼𝑡1
, 𝛼𝑡2

) =  𝛼𝜎(𝑡1)
𝜆𝑡1 ⊗ 𝛼𝜎(𝑡2)

𝜆𝑡2  

= (((г𝜎(𝑡1))
𝜆𝑡1 , (𝜃𝜎(𝑡1))

𝜆𝑡1 ) , (1−(1 − К𝜎(𝑡1))𝜆𝑡1 , 1 − (1 − 𝜑𝜎(𝑡1))
𝜆𝑡1 ))

⊗ (((г𝜎(𝑡2))
𝜆𝑡2 , (𝜃𝜎(𝑡2))

𝜆𝑡2 ) , (1−(1 − К𝜎(𝑡2))𝜆𝑡2 , 1 − (1 − 𝜑𝜎(𝑡2))
𝜆𝑡2 )). 

It follows that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺(𝛼𝑡1
, 𝛼𝑡2

) = ((∏ (г𝜎(𝑡𝑘))
𝜆𝑡𝑘2

𝑘=1 , ∏ (𝜃𝜎(𝑡𝑘))
𝜆𝑡𝑘2

𝑘=1 ) , (1 − ∏ (1 − К𝜎(𝑡𝑘))𝜆𝑡𝑘2
𝑘=1 , 1 −

∏ (1 − 𝜑𝜎(𝑡𝑘))𝜆𝑡𝑘2
𝑘=1 )). 

Therefore, we have duly demonstrated the validity of the theorem for the foundational case where 

𝑝 = 2. 

Next, we advance to the induction step, wherein we posit the theorem's veracity for 𝑝 = 𝑚 > 2. 

Consequently, it follows that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = (

(∏ (г𝑡𝑘
)

𝜆𝑡𝑘𝑚
𝑘=1 ,∏ (𝜃𝑡𝑘

)
𝜆𝑡𝑘𝑚

𝑘=1 ),

(1−∏ (1−К𝑡𝑘
)

𝜆𝑡𝑘𝑚
𝑘=1 ,1−∏ (1−𝜑𝑡𝑘

)
𝜆𝑡𝑘 )𝑚

𝑘=1

). 

Consider 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺(𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑚
, 𝛼𝑡𝑚+1

) = 𝛼𝑡1

𝜆𝑡1 ⊗ 𝛼𝑡2

𝜆𝑡2 ⊗ … .⊗ 𝛼𝑡𝑚

𝜆𝑡𝑚 ⊗ 𝛼𝑡𝑚+1

𝜆𝑡𝑚+1 =

((∏ (г𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 , ∏ (𝜃𝜎(𝑡𝑘))
𝜆𝑡𝑘𝑚

𝑘=1 ) , (1 − ∏ (1 − К𝜎(𝑡𝑘))𝜆𝑡𝑘𝑚
𝑘=1 , 1 − ∏ (1 − 𝜑𝜎(𝑡𝑘))

𝜆𝑡𝑘𝑚
𝑘=1 )) ⊗

(((г𝜎(𝑡𝑚+1))
𝜆𝑡𝑚+1 , (𝜃𝜎(𝑡𝑚+1))

𝜆𝑡𝑚+1 ) , (1−(1 − К𝜎(𝑡𝑚+1))𝜆𝑡𝑚+1 , 1 − (1 − 𝜑𝜎(𝑡𝑚+1))
𝜆𝑡𝑚+1 )). 

It follows that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺(𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑚
, 𝛼𝑡𝑚+1

)

= ((∏ (г𝜎(tk))
λtk

m+1

k=1
, ∏ (θσ(tk))

λtk
m+1

k=1
) , (1 − ∏ (1 − Кσ(tk))λtk

m+1

k=1
, 1

− ∏ (1 − φ𝜎(tk))λtk

m+1

k=1
)). 

Hence, the statement is true for every positive integer 𝑝. 

The subsequent example validates the assertion outlined in Theorem 5. 

Example 4. Suppose 𝛼𝑡1
= ((0.7,0.6), (0.3,0.2)) , 𝛼𝑡2

= ((0.8,0.3), (0.1,0.5)) , 𝛼𝑡3
=

((0.2,0.7), (0.8,0.2))  and 𝛼𝑡4
= ((0.6,0.6), (0.3,0.4))  are any four CIFNs, and 𝜆𝑡 =

[0.350,0.150,0.300,0.200]𝑇  represents the weight vector of the periods 𝑡1 , 𝑡2 , 𝑡3 , and 𝑡4 . To 

aggregate these values using the CIFDOWG operator, we initiate the process by permuting these 

numbers according to Definition 10, obtaining the subsequent data. 

𝐶(𝛼𝑡1
) = 0.555, 𝐶(𝛼𝑡2

) = 0.785, 𝐶(𝛼𝑡3
) = 0.140 and 𝐶(𝛼𝑡4

) = 0.680. 
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Utilizing Definition 10, the permuted values of the CIFNs are computed in the subsequent 

manner:  𝛼𝜎(𝑡1) = ((0.8,0.3), (0.1,0.5)) , 𝛼𝜎(𝑡2) = ((0.6,0.6), (0.3,0.4)) , 𝛼𝜎(𝑡3) =

((0.7,0.6), (0.3,0.2) and 𝛼𝜎(𝑡4) = ((0.2,0.7), (0.8,0.2)). Then, we have 

∏ (г𝑡𝑘
)𝜆𝑡𝑘4

𝑘=1 = 0.558,  ∏ (𝜃𝑡𝑘
)𝜆𝑡𝑘4

𝑘=1 = 0.485, 

∏ (1 − К𝑡𝑘
)

𝜆𝑡𝑘4
𝑘=1 = 0.595,  ∏ (1 − 𝜑𝑡𝑘

)𝜆𝑡𝑘 )4
𝑘=1 = 0.650. 

This implies that 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺(𝛼𝑡1
, 𝛼𝑡2

, 𝛼𝑡3
, 𝛼𝑡4

) =⊗𝑘=1
𝑝

𝛼𝜎(𝑡𝑘)
𝜆𝑡𝑘  

= ((0.558,0.485), (0.405,0.350)). 

Therefore, we can infer that the result of the preceding discussion is a CIFN. 

The subsequent result verifies the idempotency property of CIFNs in the framework of 

CIFDOWG operator. 

Theorem 6. Consider 𝑝  number of CIFNs denoted by 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
))  where 𝑘 =

1,2, … , 𝑝 , and it satisfies the condition 𝛼𝜎(𝑡𝑘) = 𝛼𝑡0
 for all 𝑘 , where 𝛼𝑡0

= ((г𝑡0
, 𝜃𝑡0

), (К𝑡0
, 𝜑𝑡0

)) 

being a CIFN itself. Additionally, we consider a weight vector 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
 related to 

𝑡𝑘 , where 𝜆𝑡𝑘
∈ [0,1], and ∑ 𝜆𝑡𝑘

= 1.
𝑝
𝑘=1  Then, it follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) = 𝛼𝑡0

. 

Proof: The demonstration of this theorem proceeds analogously to the reasoning employed in 

establishing Theorem 2. 

In the context of the CIFDOWG operator, the subsequent result demonstrates that every collection 

of CIFNs satisfies the monotonicity property. 

Theorem 7. Consider 𝑝  number of CIFNs denoted as 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
))  and 𝛼𝑡𝑘

′ =

((г𝑡𝑘
′ , 𝜃𝑡𝑘

′ ), (К𝑡𝑘
′ , 𝜑𝑡𝑘

′ )) for all 𝑘 = 1,2,3, … . , 𝑝. Let 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
represents the weight 

vector of time periods 𝑡𝑘 , where 𝜆𝑡𝑘
∈ [0,1] , subject to the constraint ∑ 𝜆𝑡𝑘

= 1.
𝑝
𝑘=1  Moreover, 

((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝))  is a permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝)  such that 𝛼𝜎(𝑡𝑘−1) ≥ 𝛼𝜎(𝑡𝑘) 

𝛼𝜎(𝑡𝑘−1)
′ ≥ 𝛼𝜎(𝑡𝑘)

′  and for all 𝑘 . If for all 𝑘 , г𝜎(𝑡𝑘) ≤ г𝜎(𝑡𝑘)
′ ,  К𝜎(𝑡𝑘) ≥ К𝜎(𝑡𝑘)

′ , 𝜃𝜎(𝑡𝑘) ≤ 𝜃𝜎(𝑡𝑘)
′ , and 

𝜑𝜎(𝑡𝑘) ≥ 𝜑𝜎(𝑡𝑘)
′ , then we can establish that: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) ≤ 𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1,

′ 𝛼𝑡2
′ , … . . , 𝛼𝑡𝑝

′ ). 

Proof: The demonstration of this theorem proceeds analogously to the reasoning employed in 

establishing Theorem 3. 

The following result proves that any finite set of CIFNs adheres to the boundedness property for 

CIFDOWG operator. 

Theorem 8. Consider 𝑝  number of CIFNs, denoted as 𝛼𝑡𝑘
= ((г𝑡𝑘

, 𝜃𝑡𝑘
), (К𝑡𝑘

, 𝜑𝑡𝑘
))  for all 𝑘 =

1,2, … , 𝑝. Let 𝜆𝑡 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]

𝑇
denotes the weight vector related to 𝑡𝑘, where 𝜆𝑡𝑘

∈ [0,1], 

and the constraint ∑ 𝜆𝑡𝑘
= 1

𝑝
𝑘=1  holds.  

Furthermore, let 
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𝛼− = ((min
𝑡𝑘

{ г𝜎(𝑡𝑘)}, min
𝑡𝑘

{ 𝜃𝜎(𝑡𝑘)}) , (max
𝑡𝑘

{К𝜎(𝑡𝑘)}, max
𝑡𝑘

{𝜑𝜎(𝑡𝑘)})), 

and 

𝛼+ = ((max
𝑡𝑘

{г𝜎(𝑡𝑘)}, max
𝑡𝑘

{𝜃𝜎(𝑡𝑘)}) , (min
𝑡𝑘

{ К𝜎(𝑡𝑘)}, min
𝑡𝑘

{ 𝜑𝜎(𝑡𝑘)})) 

be the lower and upper bounds of these CIFNs. Moreover, ((𝜎(𝑡1), 𝜎(𝑡2), … … , 𝜎(𝑡𝑝))  is a 

permutation of (𝑡1, 𝑡2, … … . . , 𝑡𝑝) such that 𝛼𝜎(𝑡𝑘−1)
− ≥ 𝛼𝜎(𝑡𝑘)

−  and 𝛼𝜎(𝑡𝑘−1)
+ ≥ 𝛼𝜎(𝑡𝑘)

+  for all 𝑘. Then, 

𝛼− ≤  𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝛼𝑡1
, 𝛼𝑡2

, . . . , 𝛼𝑡𝑝
) ≤ 𝛼+. 

Proof: The demonstration of this theorem proceeds analogously to the reasoning employed in 

establishing Theorem 4. 

5. Proposed method employing dynamic ordered weighted aggregation operators for 

handling MADM challenges. 

This section introduces a methodology to address MADM problems employing dynamic 

aggregation operators for CIF information. 

Let us designate a discrete collection of alternatives as 𝜅 = {𝜅1, 𝜅2, … , 𝜅𝑚}. Furthermore, we 

contemplate a set of attributes denoted by 𝜋 = {𝜋1, 𝜋2, … , 𝜋𝑛}, accompanied by their respective weight 

vector denoted as 𝑤 = [𝑤1, 𝑤2, … . , 𝑤𝑛]𝑇 , where 𝑤𝛾 ≥ 0  for 𝛾 =  1,2, … . . , 𝑛 , and ∑ 𝑤𝛾 = 1𝑛
𝛾=1 . 

Moreover, for 𝑝  distinct time periods 𝑡𝑘 , consider 𝜆 = [𝜆𝑡1
, 𝜆𝑡2

, … … . . , 𝜆𝑡𝑝
]𝑇  is a weight vector 

associated to these time periods, characterized by 𝜆𝑡𝑘
∈ [0,1] , and subject to the constraint 

∑ 𝜆𝑡𝑘
= 1

𝑝
𝑘=1 . 

Let 𝑅𝑡𝑘
= (𝜅𝑖𝑗(𝑡𝑘))

𝑚×𝑛
= ((г𝑖𝑗(𝑡𝑘), 𝜃𝑖𝑗(𝑡𝑘) ), (К𝑖𝑗(𝑡𝑘), 𝜑𝑖𝑗(𝑡𝑘))) denote the CIF decision matrices 

across 𝑝 distinct time periods 𝑡𝑘  for 𝑘 = 1, 2, … , 𝑝. In these matrices, г𝑖𝑗(𝑡𝑘)  and 𝜃𝑖𝑗(𝑡𝑘)  signify the 

extent to which the alternative 𝜅𝑖 meets the attribute 𝜋𝑗 during time periods 𝑡𝑘, whereas К𝑖𝑗(𝑡𝑘) and 

𝜑𝑖𝑗(𝑡𝑘) indicate the extent to which alternative 𝜅𝑖 does not fulfill the attribute 𝜋𝑗 during time periods 

𝑡𝑘 . It is noteworthy that these values are confined within the interval [0,1] and conform to the 

constraints 0 ≤ г𝑖𝑗(𝑡𝑘) + К𝑖𝑗(𝑡𝑘), 𝜃𝑖𝑗(𝑡𝑘) + 𝜑𝑖𝑗(𝑡𝑘) ≤ 1, where 𝑖 = 1,2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛. 

To address the MADM problem, the subsequent algorithms are devised. 

5.1. Algorithm for CIFDOWA 

Step 1. In order to obtain the CIF permuted decision matrices 𝑅𝜎(𝑡𝑘) = (𝜅𝜎(𝑖𝑗(𝑡𝑘)))
𝑚×𝑛

=

((г𝜎(𝑖𝑗(𝑡𝑘)), 𝜃𝜎(𝑖𝑗(𝑡𝑘)) ), (К𝜎(𝑖𝑗(𝑡𝑘)), 𝜑𝜎(𝑖𝑗(𝑡𝑘)))), we adopt the following two stages: 

1) Obtain the score values of all 𝜋𝑗, corresponding to each alternative 𝜅𝑖 of each matrix 𝑅𝑡𝑘
 at 

time periods 𝑡𝑘 by means of Definition 10. 

2) Obtain the CIF permuted decision matrices by arranging the computed values from above stage 

of all criteria 𝜋𝑗 , corresponding to each alternative 𝜅𝑖  of each matrix 𝑅𝑡𝑘
 at time periods 𝑡𝑘 , in 

descending order. 
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Step 2. Apply the CIFDOWA operator to obtain the collected CIF permuted decision matrix Ɗ as 

follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐴 (𝜅𝜎(𝑖𝑗(𝑡1)), 𝜅𝜎(𝑖𝑗(𝑡2)), … . , 𝜅𝜎(𝑖𝑗(𝑡𝑝))) =  (
(1−∏ (1−г𝜎(𝑖𝑗(𝑡𝑘)))

𝜆𝑡𝑘
𝑝
𝑘=1 ,(1−∏ (1−𝜃𝜎(𝑖𝑗(𝑡𝑘)))

𝜆𝑡𝑘
𝑝
𝑘=1 ),

(∏ (К𝜎(𝑖𝑗(𝑡𝑘)))
𝜆𝑡𝑘𝑝

𝑘=1 ,∏ (𝜑𝜎(𝑖𝑗(𝑡𝑘)))
𝜆𝑡𝑘𝑝

𝑘=1 )
). 

Step 3. Apply CIFWA operator to each row Ɗ𝑖 of the collective matrix Ɗ, to determine the preference 

value (𝜅𝑖) of each alternative 𝜅𝑖, where 𝑖 = 1, 2, … , 𝑚 as follows: 

𝐶𝐼𝐹𝑊𝐴(𝜅𝑖1, 𝜅𝑖2, … . , 𝜅𝑖𝑛) = (
(1−∏ (1−г𝑖𝛾)𝑤𝛾𝑛

𝛾=1 ,1−∏ (1−𝜃𝑖𝛾)𝑤𝛾𝑛
𝛾=1 ),

(∏ (К𝑖𝛾)
𝑤𝛾𝑛

𝛾=1 ,∏ (𝜑𝑖𝛾)
𝑤𝛾𝑛

𝛾=1 )
) = ((г𝑖 , 𝜃𝑖), (К𝑖 , 𝜑𝑖)) = (𝜅𝑖). 

Step 4. Calculate the score values Ƈ(𝜅𝑖) for every alternative 𝜅𝑖 using Definition 10. 

Step 5. Determine the optimal option from the alternatives 𝜅𝑖 where 𝑖 = 1,2, … , 𝑚 by ranking them 

according to their Ƈ(𝜅𝑖). 

5.2. Algorithm for CIFDOWG 

Step 1. In order to obtain the CIF permuted decision matrices  𝑅𝜎(𝑡𝑘) = (𝜅𝜎(𝑖𝑗(𝑡𝑘)))
𝑚×𝑛

=

((г𝜎(𝑖𝑗(𝑡𝑘)), 𝜃𝜎(𝑖𝑗(𝑡𝑘)) ), (К𝜎(𝑖𝑗(𝑡𝑘)), 𝜑𝜎(𝑖𝑗(𝑡𝑘)))), we adopt the following two stages: 

1) Obtain the score values of all 𝜋𝑗, corresponding to each alternative 𝜅𝑖 of each matrix 𝑅𝑡𝑘
 at 

time periods 𝑡𝑘 by means of Definition 10. 

2) Obtain the CIF permuted decision matrices by arranging the computed values from above stage 

of all criteria 𝜋𝑗 , corresponding to each alternative 𝜅𝑖  of each matrix 𝑅𝑡𝑘
 at time periods 𝑡𝑘 , in 

descending order. 

Step 2. Utilize the CIFDOWG operator to obtain the collected CIF permuted decision matrix Ɗ as 

follows: 

𝐶𝐼𝐹𝐷𝑂𝑊𝐺 (𝜅𝜎(𝑖𝑗(𝑡1)), 𝜅𝜎(𝑖𝑗(𝑡2)), … . , 𝜅𝜎(𝑖𝑗(𝑡𝑝)))

=  (
(∏ (г𝜎(𝑖𝑗(𝑡𝑘)))

𝜆𝑡𝑘𝑝
𝑘=1 , ∏ (𝜃𝜎(𝑖𝑗(𝑡𝑘)))

𝜆𝑡𝑘𝑝
𝑘=1 ) ,

((1 − ∏ (1 − К𝜎(𝑖𝑗(𝑡𝑘)))𝜆𝑡𝑘
𝑝
𝑘=1 , 1 − ∏ (1 − 𝜑𝜎(𝑖𝑗(𝑡𝑘)))𝜆𝑡𝑘

𝑝
𝑘=1 ))

). 

Step 3. Apply CIFWG operator to each row Ɗ𝑖 of the collective matrix Ɗ, to determine the preference 

value (𝜅𝑖) of each alternative 𝜅𝑖, where 𝑖 = 1, 2, … , 𝑚 as follows: 

𝐶𝐼𝐹𝑊𝐺(𝜅𝑖1, 𝜅𝑖2, … . , 𝜅𝑖𝑛) = (
(∏ (г𝑖𝛾)

𝑤𝛾𝑛
𝛾=1 , ∏ (𝜃𝑖𝛾)

𝑤𝛾𝑛
𝛾=1 ),

(1 − ∏ (1 − К𝑖𝛾)𝑤𝛾𝑛
𝛾=1 , 1 − ∏ (1 − 𝜑𝑖𝛾)𝑤𝛾𝑛

𝛾=1 )
)

= ((г𝑖 , 𝜃𝑖), (К𝑖 , 𝜑𝑖)) = (𝜅𝑖). 

Step 4. Calculate the score values Ƈ(𝜅𝑖) for each alternative 𝜅𝑖 using Definition 10. 

Step 5. Determine the optimal option from the alternatives 𝜅𝑖 where 𝑖 = 1,2, … , 𝑚 by ranking them 

according to their Ƈ(𝜅𝑖). 
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6. Application of proposed CIF dynamic aggregation operators in the MADM problem 

In this section, we expand on the previously explained method by presenting a numerical 

illustration. Subsequently, we analyze the outcomes of this specific instance in relation to the findings 

of previous studies. 

6.1. Case study 

A solar cell consists of semiconducting materials, particularly silicon, that are meticulously 

designed into a p-n junction structure. The structural integrity is achieved by strategically including 

small amounts of boron and phosphorus, which induce p-type and n-type properties, respectively. This 

is exemplified in the case of silicon. Solar cells absorb incoming particles from the atmosphere that 

impact them during operation. Electrons undergo excitation and transition from the valence band to 

the conduction band upon absorption of photons. This can also occur in organic solar cells, where 

electrons move from occupied to vacant molecular orbitals. As a result, electron-hole pairs are formed. 

When these pairings appear along the boundary between p-type and n-type materials, the concentrated 

electric field helps to separate them towards opposite electrodes. As a result, an excess of electrons 

builds up on one side, while there is a large number of holes on the other side. Without external 

electrical connection or when subjected to high external load, the solar cell undergoes a process in 

which electrons and holes move towards equilibrium by diffusing back across the junction against the 

existing electric field. As a result, they recombine and release thermal energy. However, when the 

external load is not too heavy, the restoration of balance happens more easily by allowing extra 

electrons to flow through the external circuit, thus performing useful work during this phase of 

reestablishment. 

A collection of solar cells converts incoming solar energy into a measurable amount of direct 

current electricity that can be used practically. In order to enhance its usefulness, an inverter plays a 

crucial role in transforming this electricity into alternating current. The most prominent solar cell 

design, widely acknowledged, is comprised of a large p-n junction made from silicon. Additional 

categorizations of solar cells include organic solar cells, dye-sensitized solar cells, perovskite solar 

cells, and quantum dot solar cells, among various others. The incident light on a solar cell typically 

interacts with a transparent conducting film on its exposed side, allowing the light to enter the active 

material and enabling the collection of generated charge carriers. This feature requires films that have 

a high level of transparency and strong electrical conductivity. These films usually use materials like 

indium tin oxide, conducting polymers, or conducting nanowire networks to meet this requirement. 

6.1.1. Materials 

Solar cells typically use naming conventions that reflect the semiconducting material they are 

made of. These materials require special characteristics in order to efficiently absorb solar light. Solar 

cell designs are customized to either adapt to solar radiation on Earth or to maximize efficiency in 

space environments. Solar cells can exist as either single-junction structures, consisting of a single 

light-absorbing material layer, or as multi-junction structures, which incorporate several physical 

configurations to optimize absorption and charge separation mechanisms. 

Solar cells can be classified into three separate generations: first, second, and third. The first 

generation cells, also known as the initial iteration, refer to the widely used and dominant crystalline 

silicon solar cells. The conventional category, also known as wafer-based or traditional cells, is the 
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most common type of cells used in commercial photovoltaic (PV) systems. These cells are made from 

materials such as polysilicon and monocrystalline silicon. On the other hand, the second generation of 

solar cells, known as thin-film solar cells, utilize materials like amorphous silicon, cadmium telluride 

and copper indium gallium selenide (CdTe and CIGS). These cells have gained significant commercial 

success, especially in large-scale photovoltaic power stations, integration into building structures 

(known as building integrated photovoltaics), and small, self-contained power systems. The third 

evolutionary phase of solar cell technology encompasses a spectrum of thin-film technologies, aptly 

designated as emerging photovoltaics. The majority within this classification remain situated in the 

realm of research and developmental stages, yet to witness broad commercial implementation. Many 

of these technologies employ organic materials, frequently in the form of organometallic compounds, 

and incorporate various inorganic substances. Historically, their efficiency levels have been modest, 

coupled with challenges pertaining to the stability of the absorber materials, rendering them less 

suitable for immediate commercial deployment. However, persistent investigation persists due to their 

potential to actualize the dual objective of low-cost production and elevated solar cell efficiency. 

Notably, as of 2016, prevailing prominence and efficiency in solar cell technology were still reserved 

for those constructed from thin silicon wafers, a technology tracing its origins to the earliest phases of 

solar cell development. 

6.1.2. Timeline of solar cells 

During the 19th century, scientists made actual findings that showed when sunlight hits certain 

materials, it produces an electric current that can be detected. This phenomenon is called the 

photoelectric effect. This crucial breakthrough provided the essential foundation for the creation of 

solar cells. Solar cells have become widely used in numerous fields over time. Their first applications 

mostly focused on situations where there was no access to electricity from established power systems.  

The progress of this technology has led to the increased importance of solar cells in generating 

power for satellites that travel in Earth’s orbit. As a result, solar cells have become the leading method 

for capturing solar energy, effectively transforming sunlight into electrical power. Currently, solar cells 

are widely used in satellites, firmly confirming their essential function in modern technological 

systems. 

I. First time period (1979–1993) 

• During the late 1970s, amidst the energy crisis, there was a surge in public interest in solar 

energy utilization, encompassing photovoltaic systems and various solar applications in architectural 

designs, off-grid buildings, and residential settings. 

• In the year 1980, the Institute of Energy Conversion at the University of Delaware achieved a 

significant milestone in solar cell technology by pioneering the development of the inaugural thin film 

solar cell surpassing a notable efficiency threshold of 10%, employing Cu2S/CdS technology. 

• Concurrently, in 1981, the esteemed Fraunhofer Institute for Solar Energy Systems ISE was 

established under the guidance of Adolf Goetzberger in Freiburg, Germany. 

• The subsequent year, 1982, witnessed a breakthrough with the unveiling of the inaugural 

amorphous silicon thin film solar cell, boasting an efficiency exceeding 10%. 

•  In the year 1983, the global photovoltaic production surpassed an aggregate capacity of 21.3 

megawatts, accompanied by sales figures exceeding a substantial sum of $250 million. 

• In 1984, a groundbreaking 30,000 sq. ft. Building-Integrated Photovoltaic (BI-PV) Roof 

emerged at Georgetown University. Eileen M. Smith, M.Arch., marked its 20th Anniversary in 2004 
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with an enlightening journey for Peace and Photovoltaics from the solar roof to Ground Zero. The BI-

PV system displayed remarkable, sustained productivity in urban Washington, D.C. 

• In 1985, the University of New South Wales’ Centre for Photovoltaic Engineering achieved a 

breakthrough, yielding silicon cells boasting a remarkable 20% efficiency rate.  

• Subsequently, in 1986, Lt. Colonel Richard T. Headrick of Irvine, California, secured a patent 

for the innovative “Solar-Voltaic DomeTM”, an architecturally efficient design seamlessly integrating 

photovoltaics (BI-PV). This pioneering concept was realized in a field array in Hesperia, California. 

• In 1988, Michael Grätzel and Brian O'Regan made history by introducing dye-sensitized solar 

cells, a photoelectrochemical variant distinguished by the presence of an organic dye compound within 

the cell. Notably cost-effective, these cells stood as a viable alternative, at approximately half the cost 

of traditional silicon solar cells. 

• During the span of 1988 to 1991, AMOCO/Enron strategically employed Solarex patents in 

legal proceedings against ARCO Solar, resulting in the latter’s exit from the amorphous silicon (a-Si) 

solar business (see Solarex Corp. (Enron/Amoco) v. Arco Solar, Inc. Ddel, 805 Fsupp 252 Fed Digest). 

Additionally, 1989 marked the advent of reflective solar concentrators in conjunction with solar cells, 

signifying a notable advancement in solar technology. Last, in 1990, the Magdeburg Cathedral 

achieved a historic feat by integrating solar cells onto its roof: a pioneering installation within East 

Germany’s ecclesiastical landscape. 

• In 1991, significant advancements were made in photoelectrochemical cell technology, aimed 

at elevating efficiency. Concurrently, President George H. W. Bush directed the U. S. Department of 

Energy to create the National Renewable Energy Laboratory, involving the transfer of the existing 

Solar Energy Research Institute. 

• The year 1992 witnessed the inception of the PV Pioneer Program, led by the Sacramento 

Municipal Utility District. This initiative was groundbreaking, spearheading the commercialization of 

distributed, grid-connected PV systems-commonly denoted as “roof-top solar”, and laid the foundation 

for the subsequent CA Million Solar Roofs Program. Additionally, in 1992, the University of South 

Florida achieved a noteworthy feat by producing a 15.89% efficient thin-film cell. 

• In 1993, the National Renewable Energy Laboratory cemented its dedication to solar research 

and development with the establishment of the Solar Energy Research Facility. 

II. Second time period (1994–2008) 

• A seminal accomplishment occurred in 1994 when NREL engineered a GaInP/GaAs two-

terminal concentrator cell operating at 180 suns, achieving a pioneering milestone as the first solar cell 

to surpass an impressive 30% conversion efficiency. 

• In 1996, the National Center for Photovoltaics was developed. Professor Michael Grätzel 

achieved an 11% efficiency using dye-sensitized cells. 

• By 1999, global installed photovoltaic power reached 1,000 megawatts, signifying a major leap 

in solar technology. 

• In 2003, President George Bush installed a 9 KW photovoltaic (PV) system and solar thermal 

setups at the White House groundskeeping building. 

• In 2004, Governor Schwarzenegger introduced the Solar rooftops Initiative, aiming for one 

million solar rooftops in California by 2017. In 2004, Kansas Governor Kathleen Sebelius issued 

Executive Order 04-05 to achieve 1,000 MWp of renewable power by 2015. 

• By 2006, polysilicon use in photovoltaics outpaced all other applications. Also in 2006, the 

California Public Utilities Commission approved the extensive $2.8 billion California Solar Initiative 

(CSI) to incentivize solar development over 11 years. A transformative moment in 2006 saw solar cell 

technology breach the 40% efficiency barrier for sunlight-to-electricity conversion. 
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• In 2007, construction commenced on the 15 MW Nellis Solar Power Plant through a Power 

Purchase Agreement (PPA). Additionally, the Vatican planned solar panel installations on select 

buildings in 2007 as part of a comprehensive energy project for resource conservation. The University 

of Delaware claimed a pioneering solar cell technology achievement in the same year, allegedly 

reaching 42.8% efficiency, lacking independent confirmation. In another 2007 breakthrough, 

Nanosolar achieved a milestone by shipping the inaugural commercially printed Copper Indium 

Gallium Selenide (CIGS) solar modules, projecting future costs to fall below $1/watt, while 

withholding specific technical and pricing details. 

• In 2008, NREL set a solar efficiency record at 40.8%, using a highly concentrated light of 326 

suns on an inverted metamorphic triple-junction solar cell. 

III. Third time period (2009–2023) 

• In 2010, IKAROS achieved a historic feat, displaying solar sail prowess in interplanetary 

realms. Concurrently, President Barack Obama initiated solar enhancements at the White House. 

• By 2011, Chinese factories accelerated solar module production, halving costs to $1.25 per 

watt, leading to a global surge in solar installations. 

• In 2013, Completion of the White House solar upgrades came to fruition. 

• In 2016, the University of New South Wales achieved a breakthrough, hitting a record 34.5% 

sunlight-to-electricity conversion. Their innovative four-junction mini-module, using a prism, split 

sunlight into four bands and maximized energy extraction. Concurrently, First Solar pioneered with a 

22.1% efficiency using experimental cadmium telluride cells, a technology comprising 5% of global 

solar power. 

• In 2018, Alta Devices set a verified solar cell efficiency record of 29.1% using gallium arsenide. 

Furthermore, Europe saw the inauguration of its inaugural dedicated solar panel recycling plant. 

• In 2019, the National Renewable Energy Laboratory achieved a remarkable 47.1% efficiency 

in solar cell technology, surpassing the standard 37%. 

• In 2020, Perovskite solar cells showed exceptional progress, soaring from 3.8% efficiency to 

an impressive 25.2% for single-junction designs. Moreover, silicon-based tandem cells reached an 

even higher 29.1% efficiency, surpassing the peak efficiency achieved by single-junction silicon solar 

cells. 

• In 2021, researchers have successfully constructed a prototype and specified the essential 

design criteria for silicon solar cells incorporating contact on both sides, attaining outstanding 

conversion efficiencies approaching 26%. This achievement represents the highest level of efficiency 

in this specific category of solar cell technology on Earth. 

• In 2022, Frank Dimroth and his team at Fraunhofer ISE have successfully developed a 4-

junction solar cell, which has achieved an exceptional efficiency of 47.6% in converting solar energy. 

This achievement sets a remarkable world record in the field of solar energy conversion. 

As of the year 2023, optimal laboratory instances of conventional crystalline silicon (c-Si) solar 

cells have exhibited efficiencies reaching 26.81%. In contrast, laboratory exemplars of multi-junction 

cells have showcased performance surpassing 46% when subjected to concentrated solar illumination. 

6.2. Illustrated example 

A company has determined the best location for a solar plant, it is time to select the type of cell 

that will optimize the installation from the numerous existing solar cells currently accessible. Based 

on this premise, a company is in search to identify a solar cell type that maximizes profits in grid-

connected systems by increasing production or enhancing efficiency. Furthermore, there is a strong 
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emphasis on the cell’s ability to adapt to various climatic circumstances, while also prioritizing 

enhanced maturity and consistent reliability. For this purpose, the company has hired a group of 

physicists, who is an expert on photovoltaic technologies with more than 20 years of experience. The 

experts formulate a decision making problem in which the solar cells previously delineated are 

assumed to serve as its alternatives. Let {𝜅1, 𝜅2, 𝜅3, 𝜅4, 𝜅5} be the set of alternatives: 

i. 𝜅1: solar cells with advanced III–V thin layer with tracking systems for solar concentration; 

ii. 𝜅2: solar cells with crystalline silicon (mono-crystalline and poly-crystalline); 

iii. 𝜅3: solar cells with amorphous silicon; 

iv. 𝜅4: solar cells with dye-sensitized; 

v. 𝜅5 : solar cells with inorganic thin layer (cadmium telluride and copper indium gallium 

selenide); 

vi. Experts have assessed these alternatives by taking into account the subsequent attributes: 

vii. 𝜋1: Efficiency in energy conversion; 

viii. 𝜋2: Environmental impact; 

ix. 𝜋3: Reliability and durability; 

x. 𝜋4: Heat tolerance 

These elements are classified into two characteristics to construct CIFNs. 

• Higher efficiency solar cells produce more electricity for a given amount of sunlight and offer 

more flexibility in system design. 

• Selecting solar cells with a lower environmental impact is in line with sustainability goals and 

the desire to reduce the carbon footprint associated with renewable energy production. 

• Solar cells with higher reliability ensure consistent energy production over the system's lifespan 

and is essential for meeting energy requirements. 

• Solar cells with good heat tolerance maintain higher efficiency levels even in hot climates and 

can reduce the need for additional cooling. 

The experts are tasked with evaluating the five potential alternatives 𝜅1, 𝜅2, 𝜅3, 𝜅4 and 𝜅5 are to 

be evaluated using the CIF information for the four attributes 𝜋1, 𝜋2, 𝜋3 and 𝜋4 during the specified 

time intervals 𝑡1, 𝑡2, and 𝑡3 corresponding to the years 1979 to 1993, 1994 to 2008, and 2009 to 2023, 

respectively. The weight vector of the time periods designated by the group of experts is denoted by 

𝜆𝑡 = [0.200,0.300,0.500]𝑇. Similarly, the attribute weight vector is 𝑤 = [0.35,0.3,0.25,0.1]𝑇. The 

group of physicists’ expert opinion regarding the reliability of each alternative 𝜅𝑖  relating to each 

attribute 𝜋𝑗 for the specified time periods 𝑡𝑘 is concisely presented in the assessment matrices 𝑅𝑡𝑘
, 

with entries in Tables 1–3, respectively, representing CIFNs. 

Table 1. Decision matrix acquired from 𝑅𝑡1
. 

 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝝅𝟒 

𝜅1 ((0.5,0.5),(0.4,0.3)) ((0.6,0.6),(0.4,0.3)) ((0.6,0.5),(0.4,0.4)) ((0.6,0.7),(0.3,0.3)) 

𝜅2 ((0.6,0.7),(0.1,0.2)) ((0.7,0.7),(0.1,0.1)) ((0.4,0.6),(0.3,0.1)) ((0.7,0.6),(0.1,0.2)) 

𝜅3 ((0.6,0.6),(0.2,0.2)) ((0.5,0.8),(0.3,0.1)) ((0.3,0.4),(0.5,0.6)) ((0.7,0.7),(0.2,0.3)) 

𝜅4 ((0.8,0.1),(0.1,0.4)) ((0.6,0.6),(0.3,0.4)) ((0.4,0.9),(0.2,0.1)) ((0.6,0.6),(0.3,0.1)) 

𝜅5 ((0.6,0.9),(0.1,0.1)) ((0.7,0.6),(0.3,0.3)) ((0.3,0.4),(0.6,0.4)) ((0.6,0.6),(0.2,0.2)) 
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Table 2. Decision matrix acquired from 𝑅𝑡2
. 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.6,0.8),(0.3,0.2)) ((0.5,0.7),(0.4,0.2)) ((0.6,0.3),(0.3,0.6)) ((0.6,0.8),(0.2,0.2)) 

𝜅2 ((0.4,0.9),(0.5,0.1)) ((0.1,0.3),(0.6,0.5)) ((0.5,0.5),(0.3,0.3)) ((0.7,0.7),(0.3,0.2)) 

𝜅3 ((0.7,0.6),(0.2,0.2)) ((0.8,0.3),(0.1,0.5)) ((0.2,0.7),(0.8,0.2)) ((0.6,0.6),(0.3,0.2)) 

𝜅4 ((0.8,0.3),(0.1,0.6)) ((0.4,0.8),(0.5,0.2)) ((0.3,0.1),(0.6,0.3)) ((0.5,0.5),(0.2,0.1)) 

𝜅5 ((0.8,0.6),(0.1,0.2)) ((0.6,0.4),(0.1,0.5)) ((0.3,0.6),(0.3,0.1)) ((0.5,0.3),(0.4,0.6)) 

Table 3. Decision matrix acquired from 𝑅𝑡3
. 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.8,0.6),(0.2,0.3)) ((0.7,0.7),(0.2,0.2)) ((0.7,0.8),(0.3,0.1)) ((0.70.4),(0.2,0.5)) 

𝜅2 ((0.8,0.5),(0.1,0.4)) ((0.6,0.5),(0.3,0.4)) ((0.6,0.3),(0.3,0.5)) ((0.7,0.6),(0.2,0.3)) 

𝜅3 ((0.7,0.3),(0.1,0.5)) ((0.6,0.4),(0.4,0.4)) ((0.3,0.1),(0.6,0.3)) ((0.6,0.5),(0.1,0.3)) 

𝜅4 ((0.7,0.9),(0.1,0.1)) ((0.6,0.5),(0.1,0.1)) ((0.4,0.3),(0.2,0.5)) ((0.7,0.3),(0.3,0.3)) 

𝜅5 ((0.5,0.5),(0.3,0.4)) ((0.5,0.3),(0.4,0.6)) ((0.2,0.8),(0.5,0.1)) ((0.4,0.8),(0.5,0.1)) 

Step 1. In order to obtain the CIF permuted decision matrices Rσ(tk) = (κσ(ij(tk)))
m×n

=

((гσ(ij(tk)), θσ(ij(tk)) ), (Кσ(ij(tk)), φσ(ij(tk)))), we adopt the following two stages: 

1) Obtain the score values of all 𝜋𝑗(𝑗 = 1,2,3,4) , corresponding to each alternative 𝜅𝑖(𝑖 =

1,2,3,4,5) of each matrix 𝑅𝑡𝑘
 at time periods 𝑡𝑘(𝑘 = 1,2,3) by means of Definition 10. 

2) Obtain the CIF permuted decision matrices (see Tables 4–6) by arranging the computed values 

from above stage of all criteria 𝜋𝑗 , corresponding to each alternative 𝜅𝑖  of each matrix 𝑅𝑡𝑘
 at time 

periods 𝑡𝑘, in descending order. 

Table 4. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡1). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.6,0.7),(0.3,0.3)) ((0.6,0.5),(0.4,0.4)) ((0.6,0.6),(0.4,0.3)) ((0.5,0.5),(0.4,0.3)) 

𝜅2 ((0.6,0.7),(0.1,0.2)) ((0.7,0.6),(0.1,0.2)) ((0.7,0.7),(0.1,0.1)) ((0.4,0.6),(0.3,0.1)) 

𝜅3 ((0.7,0.7),(0.2,0.3)) ((0.6,0.6),(0.2,0.2)) ((0.5,0.8),(0.3,0.1)) ((0.3,0.4),(0.5,0.6)) 

𝜅4 ((0.6,0.6),(0.3,0.4)) ((0.4,0.9),(0.2,0.1)) ((0.8,0.1),(0.1,0.4)) ((0.6,0.6),(0.3,0.1)) 

𝜅5 ((0.6,0.9),(0.1,0.1)) ((0.7,0.6),(0.3,0.3)) ((0.6,0.6),(0.2,0.2)) ((0.3,0.4),(0.6,0.4)) 

Table 5. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡2). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.6,0.8),(0.2,0.2)) ((0.6,0.8),(0.3,0.2)) ((0.6,0.3),(0.3,0.6)) ((0.5,0.7),(0.4,0.2)) 

𝜅2 ((0.7,0.7),(0.3,0.2)) ((0.5,0.5),(0.3,0.3)) ((0.4,0.9),(0.5,0.1)) ((0.1,0.3),(0.6,0.5)) 

𝜅3 ((0.8,0.3),(0.1,0.5)) ((0.7,0.6),(0.2,0.2)) ((0.6,0.6),(0.3,0.2)) ((0.2,0.7),(0.8,0.2)) 

𝜅4 ((0.8,0.3),(0.1,0.6)) (((0.4,0.8),(0.5,0.2)) ((0.5,0.5),(0.2,0.1)) ((0.3,0.1),(0.6,0.3)) 

𝜅5 ((0.8,0.6),(0.1,0.2)) ((0.6,0.4),(0.1,0.5)) ((0.5,0.3),(0.4,0.6)) ((0.3,0.6),(0.3,0.1)) 
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Table 6. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡3). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.8,0.6),(0.2,0.3)) ((0.7,0.4),(0.2,0.5)) ((0.7,0.7),(0.2,0.2)) ((0.7,0.8),(0.3,0.1)) 

𝜅2 ((0.8,0.5),(0.1,0.4)) ((0.7,0.6),(0.2,0.3)) ((0.6,0.5),(0.3,0.4)) ((0.6,0.3),(0.3,0.5)) 

𝜅3 ((0.7,0.3),(0.1,0.5)) ((0.6,0.5),(0.1,0.3)) ((0.6,0.4),(0.4,0.4)) ((0.3,0.1),(0.6,0.3)) 

𝜅4 ((0.7,0.9),(0.1,0.1)) ((0.6,0.5),(0.1,0.1)) ((0.4,0.3),(0.2,0.5)) ((0.7,0.3),(0.3,0.3)) 

𝜅5 ((0.5,0.5),(0.3,0.4)) ((0.5,0.3),(0.4,0.6)) ((0.4,0.8),(0.5,0.1)) ((0.2,0.8),(0.5,0.1)) 

Step 2. Use the CIFDOWA operator to obtain the collected CIF combined decision matrix Ɗ displayed 

in Table 7. 

Table 7. Collective CIF decision matrix Ɗ under CIFDOWA operator. 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 (
(0.717,0.693),
(0.217,0.266)

) (
(0.654,0.548),
(0.259,0.363)

) (
(0.654,0.590),
(0.259,0.302)

) (
(0.612,0.729),
(0.346,0.153)

) 

𝜅2 (
(0.741,0.613),
(0.139,0.283)

) (
(0.650,0.572),
(0.197,0.277)

) (
(0.574,0.721),
(0.281,0.200)

) (
(0.447,0.374),
(0.369,0.362)

) 

𝜅3 (
(0.734,0.409),
(0.115,0.451)

) (
(0.633,0.553),
(0.141,0.245)

) (
(0.582,0.574),
(0.346,0.246)

) (
(0.271,0.403),
(0.631,0.305)

) 

𝜅4 (
(0.719,0.763),
(0.125,0.226)

) (
(0.510,0.725),
(0.186,0.123)

) (
(0.544,0.335),
(0.174,0.295)

) (
(0.590,0.325),
(0.369,0.241)

) 

𝜅5 (
(0.638,0.661),
(0.173,0.246)

) (
(0.578,0.402),
(0.249,0.495)

) (
(0.476,0.665),
(0.389,0.197)

) (
(0.252,0.693),
(0.445,0.132)

) 

Step 3. Apply CIFWA operator to each row Ɗ𝑖 of the collective matrix Ɗ, to determine the preference 

values (𝜅𝑖) of the alternative 𝜅𝑖, where 𝑖 = 1, 2, … , 𝑚. The collective matrix Ɗ is presented in Table 

8. 

Table 8. Preference values of alternatives under CIFWA operator. 

 𝜅𝑖 

𝜅1 ((0.674,0.643),(0.251,0.285)) 

𝜅2 ((0.654,0.614),(0.203,0.264)) 

𝜅3 ((0.637,0.499),(0.191,0.310)) 

𝜅4 ((0.611,0.644),(0.170,0.203)) 

𝜅5 ((0.553,0.603),(0.260,0.270)) 

Step 4. Calculate the scores Ƈ(𝜅𝑖), for all 𝑖 = 1,2,3,4,5, of the overall CIF preference values 𝜅𝑖  in 

order to rank all the alternatives 𝜅𝑖. 

Ƈ(𝜅1) = 0.683, 

Ƈ(𝜅2) = 0.679, 

Ƈ(𝜅3) = 0.644, 

Ƈ(𝜅4) = 0.657, 

Ƈ(𝜅5) = 0.593. 

Step 5. Since Ƈ(𝜅1) > Ƈ(𝜅2) > Ƈ(𝜅4) > Ƈ(𝜅3) > Ƈ(𝜅5) , therefore, the alternatives are ranked as 

follows: 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5. 
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Similarly, the aforementioned MADM problem, within the context of CIFDOWG operator, is 

resolved in the following manner: 

Step 1. In order to obtain the CIF permuted decision matrices 𝑅𝜎(𝑡𝑘) = (𝜅𝜎(𝑖𝑗(𝑡𝑘)))
𝑚×𝑛

=

((г𝜎(𝑖𝑗(𝑡𝑘)), 𝜃𝜎(𝑖𝑗(𝑡𝑘)) ), (К𝜎(𝑖𝑗(𝑡𝑘)), 𝜑𝜎(𝑖𝑗(𝑡𝑘)))), we adopt the following two stages: 

1) Obtain the score values of all 𝜋𝑗(𝑗 = 1,2,3,4) , corresponding to each alternative 𝜅𝑖(𝑖 =

1,2,3,4,5) of each matrix 𝑅𝑡𝑘
 at time periods 𝑡𝑘(𝑘 = 1,2,3) by means of Definition 10. 

2) Obtain the CIF permuted decision matrices (see Tables 9–11) by arranging the computed values 

from above stage of all criteria 𝜋𝑗  corresponding to each alternative 𝜅𝑖  of each matrix 𝑅𝑡𝑘
 at time 

periods 𝑡𝑘. 

Table 9. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡1). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.6,0.7),(0.3,0.3)) ((0.6,0.5),(0.4,0.4)) ((0.6,0.6),(0.4,0.3)) ((0.5,0.5),(0.4,0.3)) 

𝜅2 ((0.6,0.7),(0.1,0.2)) ((0.7,0.6),(0.1,0.2)) ((0.7,0.7),(0.1,0.1)) ((0.4,0.6),(0.3,0.1)) 

𝜅3 ((0.7,0.7),(0.2,0.3)) ((0.6,0.6),(0.2,0.2)) ((0.5,0.8),(0.3,0.1)) ((0.3,0.4),(0.5,0.6)) 

𝜅4 ((0.6,0.6),(0.3,0.4)) ((0.4,0.9),(0.2,0.1)) ((0.8,0.1),(0.1,0.4)) ((0.6,0.6),(0.3,0.1)) 

𝜅5 ((0.6,0.9),(0.1,0.1)) ((0.7,0.6),(0.3,0.3)) ((0.6,0.6),(0.2,0.2)) ((0.3,0.4),(0.6,0.4)) 

Table 10. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡2). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.6,0.8),(0.2,0.2)) ((0.6,0.8),(0.3,0.2)) ((0.6,0.3),(0.3,0.6)) ((0.5,0.7),(0.4,0.2)) 

𝜅2 ((0.7,0.7),(0.3,0.2)) ((0.5,0.5),(0.3,0.3)) ((0.4,0.9),(0.5,0.1)) ((0.1,0.3),(0.6,0.5)) 

𝜅3 ((0.8,0.3),(0.1,0.5)) ((0.7,0.6),(0.2,0.2)) ((0.6,0.6),(0.3,0.2)) ((0.2,0.7),(0.8,0.2)) 

𝜅4 ((0.8,0.3),(0.1,0.6)) (((0.4,0.8),(0.5,0.2)) ((0.5,0.5),(0.2,0.1)) ((0.3,0.1),(0.6,0.3)) 

𝜅5 ((0.8,0.6),(0.1,0.2)) ((0.6,0.4),(0.1,0.5)) ((0.5,0.3),(0.4,0.6)) ((0.3,0.6),(0.3,0.1)) 

Table 11. CIF permuted decision matrix acquired from 𝑅𝜎(𝑡3). 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 ((0.8,0.6),(0.2,0.3)) ((0.7,0.4),(0.2,0.5)) ((0.7,0.7),(0.2,0.2)) ((0.7,0.8),(0.3,0.1)) 

𝜅2 ((0.8,0.5),(0.1,0.4)) ((0.7,0.6),(0.2,0.3)) ((0.6,0.5),(0.3,0.4)) ((0.6,0.3),(0.3,0.5)) 

𝜅3 ((0.7,0.3),(0.1,0.5)) ((0.6,0.5),(0.1,0.3)) ((0.6,0.4),(0.4,0.4)) ((0.3,0.1),(0.6,0.3)) 

𝜅4 ((0.7,0.9),(0.1,0.1)) ((0.6,0.5),(0.1,0.1)) ((0.4,0.3),(0.2,0.5)) ((0.7,0.3),(0.3,0.3)) 

𝜅5 ((0.5,0.5),(0.3,0.4)) ((0.5,0.3),(0.4,0.6)) ((0.4,0.8),(0.5,0.1)) ((0.2,0.8),(0.5,0.1)) 

Step 2. Employ the CIFDOWG operator to obtain the collected CIF permuted decision matrix Ɗ given 

in Table 12. 
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Table 12. Collective CIF decision matrix Ɗ under CIFDOWG operator. 

 𝜋1 𝜋2 𝜋3 𝜋4 

𝜅1 (
(0.693,0.675),
(0,221,0.271)

) (
(0.648,0.515),
(0.274,0.403)

) (
(0.648,0.526),
(0.274,0.367)

) (
(0.592,0.700),
(0.352,0.174)

) 

𝜅2 (
(0.628,0.592),
(0.165,0.307)

) (
(0.633,0.568),
(0.213,0.281)

) (
(0.548,0.638),
(0.335,0.265)

) (
(0.323,0.345),
(0.408,0.438)

) 

𝜅3 (
(0.729,0.355),
(0.121,0.465)

) (
(0.628,0.548),
(0.151,0.252)

) (
(0.579,0.519),
(0.352,0.291)

) (
(0.266,0.237),
(0.660,0.349)

) 

𝜅4 (
(0.706,0.597),
(0.144,0.349)

) (
(0.490,0.648),
(0.263,0.131)

) (
(0.491,0.281),
(0.181,0.381)

) (
(0.526,0.248),
(0.408,0.264)

) 

𝜅5 (
(0.597,0.594),
(0.206,0.291)

) (
(0.565,0.376),
(0.301,0.522)

) 
(0.464,0.563), 
(0.420,0.311) 

(
(0.245,0.639),
(0.471,0.170)

) 

Step 3. Apply CIFWG operator to each row Ɗ𝑖 of the collective matrix Ɗ, to determine the preference 

values (𝜅𝑖) of the alternative 𝜅𝑖, where 𝑖 = 1, 2,3,4,5. The collective matrix Ɗ is presented in Table 

13. 

Table 13. Permuted values of alternatives under CIFWG operator. 

 𝜅𝑖 

𝜅1 ((0.657,0.587),(0.264,0.329)) 

𝜅2 ((0.569,0.564),(0.251,0.304)) 

𝜅3 ((0.595,0.427),(0.267,0.353)) 

𝜅4 ((0.561,0.464),(0.220,0.290)) 

𝜅5 ((0.504,0.515),(0.322,0.365)) 

Step 4. Calculate the scores Ƈ(𝜅𝑖) of the overall CIF preference values 𝜅𝑖, to rank all the alternatives 

𝜅𝑖. 

Ƈ(𝜅1) = 0.664, 

Ƈ(𝜅2) = 0.607, 

Ƈ(𝜅3) = 0.550, 

Ƈ(𝜅4) = 0.553, 

Ƈ(𝜅5) = 0.544. 

Step 5. Since Ƈ(𝜅1) > Ƈ(𝜅2) > Ƈ(𝜅4) > Ƈ(𝜅3) > Ƈ(𝜅5) , therefore, the alternatives are ranked as 

follows: 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5. 

The above discussion shows that technology of advanced III–V thin layer with tracking systems 

for solar concentration is the best approach for the selection of solar cells. 

6.3. Sensitivity analysis 

In order to ascertain the effects of modifications in decision-making data on the outcomes of the 

rankings, it is necessary to conduct a sensitivity analysis. This analysis offers valuable insights into the 

outcomes of various possible circumstances and ascertains the impact of potential input data alterations 

on the desirability of the proposed solutions. A sensitivity analysis shows how outcomes might change 
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as a result of external factors, in addition to giving decision-makers deeper insights and a wider 

perspective on the problem at hand.  

Table 14 displays the rankings obtained by the CIFDOWA and CIFDOWG operators, after 

systematically removing one attribute at a time from the given situation. Upon removing attribute 𝜋1, 

which had the highest weight in the problem, the ranking order of the alternatives underwent moderate 

deviations. The new order of demand for the decision alternatives is 𝜅2 > 𝜅1 > 𝜅4 > 𝜅5 > 𝜅3 , 

whereas the original ranking obtained through the proposed method was 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5. It 

is important to mention that the removal of attribute 𝜋4  did not impact the ranking of the choice 

possibilities. The elimination of attributes 𝜋2 and 𝜋3 resulted in noticeable minor alterations. 

Table 14. Impact of attribute exclusion on CIFDOWA and CIFDOWG rankings. 

Framework Ranking 

CIFDOWA-Original 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

CIFDOWA-Removing 𝜋1 𝜅2 > 𝜅1 > 𝜅4 > 𝜅5 > 𝜅3 

CIFDOWA-Removing 𝜋2 𝜅1 > 𝜅4 > 𝜅2 > 𝜅3 > 𝜅5 

CIFDOWA-Removing 𝜋3 𝜅1 > 𝜅2 > 𝜅3 > 𝜅4 > 𝜅5 

CIFDOWA-Removing 𝜋4 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

CIFDOWG-Original 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

CIFDOWG-Removing 𝜋1 𝜅2 > 𝜅1 > 𝜅4 > 𝜅5 > 𝜅3 

CIFDOWG-Removing 𝜋2 𝜅1 > 𝜅4 > 𝜅2 > 𝜅3 > 𝜅5 

CIFDOWG-Removing 𝜋3 𝜅1 > 𝜅2 > 𝜅3 > 𝜅4 > 𝜅5 

CIFDOWG-Removing 𝜋4 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

The sensitivity study demonstrates that the decision-making process displays both robustness and 

sensitivity, with some features leading to moderate shifts in rankings. This highlights the need of 

carefully considering important factors when formulating decisions. 

6.4. Comparative analysis 

In this section, we consider various developed dynamic operators in IF and CIF environments to 

investigate the validity and authenticity of our proposed operators. The Tables 15 and 16 depicting the 

aggregated values obtained from different operators and the ranking of the alternatives show the 

comparison between our techniques and IFDWA, IFDWG, CIFDWA, and CIFDWG strategies. 

Table 15. Aggregated values obtained from various dynamic aggregation operators. 

 IFDWA [55] IFDWG [56] CIFDWA [38] CIFDWG [38] 

𝜅1 (0.602,0.332) (0.522,0.388) ((0.666,0.661),(0.275,0.246)) ((0.644,0.613),(0.291,0.289)) 

𝜅2 (0.606,0.231) (0.510,0.298) ((0.606,0.595),(0.231,0.276)) ((0.509,0.514),(0.298,0.349)) 

𝜅3 (0.604,0.236) (0.530,0.367) ((0.594,0.475),(0.246,0.310)) ((0.521,0.376),(0.365,0.359)) 

𝜅4 (0.612,0.176) (0.554,0.241) ((0.612,0.623),(0.176,0.216)) ((0.554,0.415),(0.241,0.301)) 

𝜅5 (0.528,0.265) (0.458,0.331) ((0.528,0.608),(0.265,0.254)) ((0.458,0.525),(0.331,0.347)) 
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Table 16. Score values and ranking of alternatives under existing and newly proposed 

dynamic aggregation operators. 

Operators 𝜅1 𝜅2 𝜅3 𝜅4 𝜅5 Ranking 

IFDWA [55] 0.272 0.393 0.368 0.436 0.296 𝜅4 > 𝜅2 > 𝜅3 > 𝜅1 > 𝜅5 

IFDWG [56] 0.134 0.212 0,163 0.313 0.127 𝜅4 > 𝜅2 > 𝜅3 > 𝜅1 > 𝜅5 

CIFDWA [38]  0.494 0.417 0.329 0.475 0.378 𝜅1 > 𝜅4 > 𝜅2 > 𝜅5 > 𝜅3 

CIFDWG [38] 0.432 0.264 0.182 0.286 0.228 𝜅1 > 𝜅4 > 𝜅2 > 𝜅5 > 𝜅3 

CIFDOWA 0.683 0.679 0.644 0.657 0.593 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

CIFDOWG 0.664 0.607 0.550 0.553 0.544 𝜅1 > 𝜅2 > 𝜅4 > 𝜅3 > 𝜅5 

Comparison 1. The strategies outlined in this article exhibit a greater degree of generalizability in 

comparison to other established methodologies, as evidenced by the preceding discourse. As a result, 

when information is lost within the current IF framework, the optimal preference varies. Nevertheless, 

this issue is effectively resolved by the CIF dynamic aggregation operators. Notably, Zeshui Xu and 

G. W. WEI proposed operators [55,56] that are special cases of these operators by disregarding the 

permuted factor and holding the second dimension constant. 

Comparison 2. These operators can represent the relative relevance of items better than CIF dynamic 

weighted aggregation approaches [38] by letting us define the weighting order. Additionally, in 

circumstances where the relative significance of values fluctuates depending on the context, CIF 

dynamic ordered weighted aggregation operators exhibit a notable advantage over CIF dynamic 

aggregation operators by virtue of their capacity to assign weights to values in accordance with their 

order or rank. 

Comparison 3. The aggregation operators proposed by Garg and Rani [35], which are based on CIFS, 

do not incorporate time intervals and permuted factor, leading to significant data loss. The suggested 

operators effectively manage both dynamic and permuted aspects of the MADM problems. For 

instance, the data presented in Tables 1–3 was gathered from three distinct time intervals, and the CIF 

dynamic ordered weighted aggregation operators possess the ability to manage this specific kind of 

data, whereas the CIFS-based aggregation operators proposed in [35] are unable to deal the information 

shown in Tables 1–3. 

Comparison 4. The approaches presented in [36] lack dynamic features, which means they cannot be 

used in situations such as those in our investigation where the initial decision data is gathered over 

three separate time intervals. As a result, the suggested CIF dynamic ordered weighted aggregation 

operators are more flexible to handle such scenarios, while others fail. 

Comparison 5. The geometric operators described in reference [37] are unable to analyze the decision 

data presented in Tables 1–3, which is obtained from three distinct time intervals. These operators 

cannot handle the challenge of data of a dynamic nature. This drawback leads to a loss of information. 

However, the recently proposed strategies become more significant as they improve this deficiency in 

the existing literature.  

The Figure 1 illustrates the diagrammatic representation of the rating of different alternatives. 
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Figure 1. Ranking of alternatives using different operators. 

7. Conclusions 

In this article, we have endeavored to innovate novel strategies for resolving decision-making 

challenges within dynamic CIF settings. Despite the extensive development of useful operators in the 

existing literature, none have explicitly addressed time periods within the context of CIF dynamic 

ordered weighted aggregation knowledge. Consequently, utilizing a dynamic CIF environment model 

proves to be a more efficacious method for representing time-periodic difficulties, given its ability to 

handle two-dimensional data within a singular set. Considering these factors, we have introduced a 

distinct set of dynamic ordered weighted averaging and geometric aggregation operators within the 

CIF framework, enriching its functionality and applicability. We have proceeded to thoroughly 

examine the properties of these operators. Additionally, we have introduced an innovative score 

function designed for the assessment and identification of the most favorable alternative. In the scope 

of our research, we have presented an original methodology for addressing dynamic and intricate 

decision-making challenges involving multiple attributes in the CIF domain. Moreover, our decision-

making process incorporates data gathered from distinct time periods. Additionally, we have 

successfully employed these innovative strategies to select efficient solar cells in a CIF dynamic 

environment. Last, we have carried out a comparative analysis aiming to underscore the importance 

and credibility of these novel methodologies in contrast to established techniques. 

The main limitation of the current study is that the suggested operators cannot handle situations 

that are outside the scope of CIF dynamic information. In order to rectify this limitation, it is necessary 

to explore the validity of recently developed approaches in more generalized frameworks, such as 

complex Pythagorean fuzzy sets, complex Fermatean fuzzy sets, and complex q-rung orthopair fuzzy 
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sets. Our future study will focus to extend the domain of dynamic aggregation operators in various 

directions, specifically the CIF dynamic Dombi aggregation operators and the CIF Dombi exponential 

aggregation operators. 
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