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Abstract: This paper was mainly concerned with the stability analysis of a class of fractional-
order neural networks with S-type distributed delays. By using the properties of Riemann-Liouville
fractional-order derivatives and integrals, along with the additivity of integration intervals and
initial conditions, fractional-order integrals of the state function with S-type distributed delays were
transformed into fractional-order integrals of the state function without S-type distributed delays.
By virtue of the theory of contractive mapping and the Bellman-Gronwall inequality, the sufficient
conditions for finite-time stability and global Mittag-Leffler stability were obtained when certain
conditions were satisfied. Moreover, the correctness and realizability of the conclusion were verified
through the presentation of two illustrative numerical simulation examples.
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1. Introduction

The study of neural networks (NNs) with time delays is crucial for addressing practical problems.
Time delays can be generally categorized as discrete delays, leakage delays, and distributed delays.
Fractional-order calculus extends the order of nonlinear system models from integer-order to fractional-
order. The control problem of fractional-order nonlinear systems has been a prominent and challenging
research area in control theory and numerous research results have been obtained in this field.
In [1], a novel decentralized non-integer order controller applied on the nonlinear fractional-order
composite system was proposed, and some novel results for the asymptotic stabilization were obtained.
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In [2], a variable structure adaptive fuzzy control scheme was designed to solve the unknown dead-
zone input nonlinearities which are considered in the Riemann-Liouville and Caputo fractional-order
nonlinear systems. The authors in [3] proposed some novel stabilization methods and investigated
the gradient control of a nonlinear fractional-order system. An adaptive composite dynamic surface
control scheme was first proposed for nonlinear fractional-order systems subject to delayed input
in [4]. In [5], the authors introduced a composite learning adaptive backstepping fuzzy control
method for functional uncertainties of fractional-order nonlinear systems. In [6], the event-triggered
predefined-time output feedback control problem was investigated for fractional-order nonlinear
systems with input saturation. In the past decade, fractional-order neural networks (FNNs) with
time delays have attracted wide and considerable attention because incorporating fractional-order
derivatives into NNs can well describe the dynamical behavior of neurons, holding significant relevance
across a broad spectrum of applications. Therefore, the study of the dynamical properties of FNNs
with time delays has received considerable attention among many scholars and there have been
numerous results, such as bifurcation properties [7, 8], Mittag-Lefller synchronization [9, 10], finite-
time stability and synchronization [11-15], asymptotical stability [16-21], multistability [22], quasi-
uniform stability [23], and synchronization control [24,25].

In 2002, Wang and Xu firstly introduced S-type distributed delays into bidirectional associative
memory (BAM) NNs [26], which comprises discrete delays and continuously distributed delays in
terms of Lebesgue-Stieltjes integral. The emergence of S-type distributed delays has aroused the
interest of numerous scholars, leading investigations into the stability problems of NNs with S-type
distributed delays (SDNNs), including global asymptotic stability [26], robust stability [27], global
exponential robust stability [28,29], global exponential stability [30,31], and some solution problems
of SDNNSs, such as mild solution [32] and periodic solution [33].

However, to the best of our knowledge, research on the dynamical properties of fractional-order
neural networks with S-type distributed delays (FSDNNs) has not been found. Therefore, the
investigation of finite-time stability (FTS) and global Mittag-Leffler stability (GMLS) of FSDNNs in
this paper is more interesting and meaningful in both theoretical development and practical application.
The main contributions of this paper are summarized as follows.

e FSDNNSs incorporating discrete delays and continuously distributed delays as S-type distributed
delays in the sense of Lebesgue-Stieltjes integral are established.

e Fractional-order integrals of the state function with S-type distributed delays are transformed into
fractional-order integrals of the state function without S-type distributed delays.

e Sufficient conditions for FTS and GMLS of FSDNNs are obtained when certain conditions are
satisfied. This provides a new basis for further expanding NNs research and practical applications.

The paper is structured as follows: In Section 2, the FSDNNs formulation and some preliminaries
contents are presented. In Section 3, some criteria for FTS and GMLS of FSDNNs are derived.
In Section 4, two numerical simulations examples are presented to illustrate the correctness and
realizability of our conclusion. In the end, a conclusion is drawn in Section 5.
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2. Preliminaries

We consider a class of FSDNNs described by

n n 0
Dpxi(t) = —dixi(t) + ) aiifi(x,0) + Y bijfi( f Xt +0dw @)+ L, i=1-.n (21
= 1

with initial condition
xi(t) = ¢i(t), € (—00,0].

In system (2.1), D is an a-order (0 < a < 1) Riemann-Liouville derivative, f;(x;(t)) denotes activation
function, a;; and b;; represent the weight between the jth neuron and the ith neuron, /; is an input signal
introduced from outside to the ith neuron, d; > 0 denotes the rate of the ith neuron returning to resting
state without any connection, and the past effect of the jth neuron on the ith neuron is given by the
Lebesgue-Stieltjes integral f_ Ooo x;(t + 6)dw () with nondecreasing bounded variation function w;(6)
and satisfies f_(lo dwi@)=k;>0,j=1,---,n
The assumption that accompanies system (2.1) is given as follows:
Assumption Aj: The output functions f;(-) satisfying Lipschitz condition, i.e., exists F; > 0, which
satisfies
lfitw) = iV < Filu—v|, YuveR, i=1,---,n.

Definition 2.1. [34] The Riemann-Liouville fractional integral with order q of function f(t) is
defined as

1 t
Ilf(0) = = f (t — ) f(r)dx,
To lf F(q) o f
forallt > ty, g >0 €R, whereI'(t) = fom e dt.
Definition 2.2. [34] The Riemann-Liouville fractional derivative with order q is defined as

S
F(n q) dx” . (x=01 = et

Rl f(x) = D"( I f(x)) =

wheren—1<qg<nneZ’, geR

Definition 2.3. [34] The Mittag-Leffler function with one parameter is defined as

b k

_ <
Ea(2) = kZ:; T(ka + 1)’

where a > 0 and z € C.

Lemma 2.4. [35] If u(t) € C[0, +o0), and there exist c; > 0, ¢y > 0, which satisfy u(t) < —c1I7u(t)+cs,
then
u(t) < crE (—c1t?),

where 0 < g < 1 and E(-) denotes the one-parameter Mittag-Leffler function.
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Lemma 2.5. (Bellman-Gronwall inequality [36]) Assume that function y(t) satisfies

y(®) < a(t) + f(; B(T)y(r)dr,

with a(t) and B(t) being known real-valued positive functions. If a(t) is differentiable, then

y(t) < a(0)expl f B(r)dr] + f a(t)expl f B(rydrldr.
0 0 T

Definition 2.6. [37] The equilibrium point u* = (u},--- ,u;)" of system (2.1) is FTS with respect to
{0,e,19,J},J = [to, 1o + H],0 < H < +00, ty denoting the initial time observation of the system, 0 < § <
g,0,& € R, and any solution u(t, ty, ) with initial condition u;(s) = ¢;(s),s € (—0,0],i = 1,--- ,n, if
and only if |l¢ — u*|| < 9, implies

|u(t) —u®|| <&, Vtel,
where |l —u*|l = sup 2 li(s) — u;l, llu(®) —u*l| = Zl |uai (1) — ujl.

—o0<s<0 i=1

Definition 2.7. [35] If there exist constants p; > 0 and p, > 0, let x(t) and y(t) be two different
solutions of system (2.1) with different initial values x;(s) = ¢;(s) and y;(s) = ¥;(s), s € (—00,0]. The
solution of system (2.1) is said to be GMLS if x(t) and y(t) satisfy

llx = yll < [M(p = p)Eg(=p1#°)]*,1 2 0,

where x(t) = (xi(),-+, %O, YO = (i@, @), @6) = (@@, 0.0, Y1) =
W (), (), M(p — ) >0, M(0) = 0, E, is the Mittag-Leffler function with one parameter.

3. Main results

Theorem 3.1. For 6, &, J is defined in Definition 2.6 and 0 < 6 < . If Assumption A, and

n

1
Z 7 max{(la;;| + |b;jlk;)F;} < 1,

mi= > (lail +blk)Fi = d; >0, i=1,---,n, i =maxin},

- 1<i<n
J=1

n n 1@ b
(52 Z |bij|ijjI~(a,+ 1)8”" nt<e,

i=1 j=1
hold, then there exists a unique equilibrium point in FSDNNs (2.1), which is FTS.

Proof. Let x(t) = (x1(), -+ , x,())T € R" and define a mapping P : R" — R" by P(x) = (P,,, - , P, ),
where

n n

1 0
Px,- = _[ g al-jfj(xj) + bl]fJ(f deWj(Q)) + Ii], i=1,---,n.
1 —o0

di' £ .
b=l =
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We prove that the mapping P is contractive:
y(©) = 1(0), -+, y())T € R", which yields

IPG) = PO = X 1P, =P,
n
< zd—[zml,nﬁ(x,) fio))
i=1 U~ j=1
+jzi1 i £ [2, x50 = £ L2 ydw (6| o
< % d[2|a,,|F lx; — y]|+2|b,,|F [ = yildw(0)]
= i j=1
n o1

< X d—{nax{(laulﬂbulk DEi} 2‘1 Xj =

i=1
< lx =yl

Thus, P is the contractive mapping. In light of contractive mapping theory, there exists the unique
point u* = (uj,--- ,u;)" satisfying P(u*) = u*, P,y = uf, i =1,---,n. Thus

n

= ;[Zauf](u )+ Zbuf](f widw;(0) + 1],

L
and we have

n n 0
~du;+ Y g+ Y bt [ sy @)+ =0
= =1 e

then u* is the unique equilibrium point in FSDNNs (2.1).

We prove the unique equilibrium point «* is finite-time stable as follows.

Let y;(1) = xi(t) —u;, for 0 < 6 < £, and solution x(z, 1y, ¢) satisfies initial condition x;(s) = ¢;(s), s €
(—00,0], i =1,---,n, such that ||¢ — u*|| < 6. From FSDNNs (2.1), we have

Diyilt) = — diyi(t) + Z ayl f(x0) = fu))] + Z bij| £i( f x(t + O)dw;(0))

J=1 j=1
- fi( f widw;())],
D7 lyi(D] <sgnly ()} D7 yi(1)

n n 0
<—dilyOl + > lalFjly 0]+ ) by lF; f [yt + O)ldw;(0), (3.2)
j=1 j=1 -
Ol < = iyl + D laglF ¢y )]
j=1
n 0
+ > blF Iy f yjt + Oldw;(®), i=1,---,n. (3.3)
J=1 e
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Case (a). When —0 <0<0,t>0,t+0 <0,

7( [yt + 0)ldw;0)) [ ﬁ [ =y,

z=1+0 1 146
= f_ooo [m \L (l —-Z+ 0)

(7 + 0)|dt]dw (6)

*y(2)ldz)dw (0)

< sup i) - ,|ﬁ [ -2+ 00 dzldwi(0)  (3.4)
< _i‘l&o'%(” e Lo i®
AR e
Case (b). When —0 <0<0,t>0,t+60 >0,
I L b+ oldwi@) = [ I s bt e+ Odelas o)
= [ oy b a2+ 0y @ldzldv 0
1
f @ fg (t — z+ 0)" My;(2)ldz]dw (0)
| R
w5 b "(t—z+ 0y Iy ()ldz]dw;(60) (3.5)
< _i‘iﬁo"”(” e
00 r( o i@ = )"y (s)lds]dw;(6)
= (_iggol%(S) T + 121y 0))k;.
When —c0 < 8 <0, t > 0, it follows from (3.4) and (3.5) that
0 a
Iy f lyj(t + O)ldw () < ( Sup I (5) ~ s + Iy Ok, j=1-.n.  (36)
Substituting (3.6) into (3.3), we have
im(m < zl (- direlyiol + z i | F T2y (1)
+ 2 IbilFi(_Sup lpi(s) = 6l + i 0Dk;)
= 2(-aIiol+ g I FiZ¢1yi(0)
+ R 1byIF A Sup o) =l + 3 bl Pk Iy
j=1 o1z Ta j=1
= 2([-d+ 2(|a,l|+|b,,|k)F]I“|y,<r>|
+ 2 P ke sup ley(s) — i 1)
AIMS Mathematics
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< max{ zl<|a,,| + |bjilk) Fi — dif=— r( S =9 z [yis)lds
i<n I
+ Z Z |bij|ij] sup o;(s) — ujl
i=1 j=1 ( + 1) _eocs<0
n

= — ! _ a1 ) -
= F(a)fo(t 5) Elly,(s)lds+M(<p u),

where

7 =maxin, mi= ) (apl + blk)F; - d;

1<i<n
J=1

M=) =Y D ylF, KT S I~ ul

=1 j=1 —00<s<0

By Lemma 2.5 and from (3), we obtain

tTa_l _n_(t —_ne-lgr
Zlyl(t)|<22|b,,|F K sup lgi(s)— ') fo L ertaller e

i=1 j=1 —00<s<0
_ZzlbU”F ki sup lp;(s) — If er(a+1>(f " dr
1 =1 —00<s<0 I'(a)
=1 j=
Ta—l
< ZZ'bu”F ikj —:}ii lp;(s) — uj |eT@n"” f(; F(a)d

i=1 j=1

104

t
= Z Z BillFsk; sup lei(s) = e o

i=1 j=1 —00<s<0

< 62 Z |bl]|| J ]F( )er("’a])tﬂ <é&.

i=1 j=1

By Definition 2.6, the equilibrium point of FSDNNs (2.1) is FTS. This proves the theorem.

Theorem 3.2. Under the Assumption A, , fort € [0,T], (0 < T < +), if

n = Z(la;ﬂ + |bilk)F;—d; <0,i=1,--- ,n,

J=1

the solution of FSDNNs (2.1) is GMLS.

(3.7)

(3.8)

O

Proof. Let x(t) = (x1(2), -+, x,())" and y(t) = (y1(¢),- -+, y.(1))! be two solutions of FSDNNs (2.1),

satisfying initial conditions x;(s) = ¢;(s) and y;(s) = ¢;(s), s € (—00,0].
Let z;(t) = x;(t) — yi(t),i = 1,--- ,n. From FSDNNs (2.1), we obtain

Dyzi(t) = - dizi(t) + Z ail f(x/(0) = fi ()]

3 byl f Xt + 6)dw(6) — fi f yi(t + O)dw ()],

j=1

AIMS Mathematics Volume 9, Issue 4, 8339-8352.
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Dy1zi(t)| <sgn{z;(H)}D; zi(¢)

n n 0
<—dilz @l + > laglFjlz; 0l + ) 1bijlF; f 22 + O)ldw;(6), (3.9)
j=1 j=1 o
|zi(0)] < = di T} )z:(0)| + Z laij|F 17 |z;(1)]
J=1
n 0
) |b,~,~|FjI;'(f 2,z + Oldw (), i=1,---,n. (3.10)
j=1 e

Similar to the derivation of (3.6), we can have

a

(3.11)

b

0
fi’([m Izi(t+9)ldwi(9))3( s i) = dils)l @ 1)+I;’|z,-(t)|)ki, i=1,---,

Substituting (3.11) into (3.10), we obtain

; lzi()] < Z‘ ( —diI7 (1) + ; laij|F i1 z(2)]

n a

+ 2 bylF(sup lei(s) = ()l + T7l (D)

Jj=1 —00<5<0 ( )

( d,T97:(1)| + Z |a il FiI?|z:(0)

Il
™M=

1

a

M:

|bij|F ik i :,lip< lpi(s) — (s )lr(a+ D

[—di+ Z(|aji| + 1D ilk) Fi) T8 zi(0)] + Z |bij|ij]

+ 3 bl Fiki 1z (0))

—_

J
a

sup [ip;(s) = ;(s)])

( ) —00<5<0
a

Il
M=
— 1

1
< -min{d; - Z(Iaﬂl +1bjilk) Fi} Ty - > |Zz(t)| + Z > |Dij|Fikj=———== sup lp;(s) = ¢;(s)|

1<i<n i=1 i=1 j=1 F( 1) —00<s<0

= - I¢ Zl |z;(Ol + M(¢ — ¥),
- (3.12)

where

— 1<i<n

n=min{-n}, n = Z(Ia],|+|bﬂ|k)F d, i=1,---,n,
j=1

M- =5 Y IbFk j,r( T3 S Iei(s) = Yol

=1 j=1 —00<s<0

By Lemma 2.4, it follows from (3.12) that Z |zi(D)] < M(e—¥)E(— nt") or ||x—y|| < M(¢—¥)E, (- nt“)

Moreover, M(¢ — ) > 0, M(0) = 0, where E,(-) denotes the one-parameter Mittag-Leffler function.
Thus, by Definition 2.7, the solution of FSDNNs (2.1) is GMLS. O

Remark. Theorem 3.1 presents sufficient condition for FTS of FSDNNs when

ni= Y (lal + blk)F; - d; > 0,

J=1

AIMS Mathematics Volume 9, Issue 4, 8339-8352.
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and Theorem 3.2 presents sufficient condition for GMLS of FSDNNs when

ni= ) (ajl + |blk)F; - d; <.

=1
Thus, the parameter

=y (apl +bulk)Fi = di, i=1,-.n
j=1

is the dividing quantity of two kinds of stability of FSDNNs, and we can choose the appropriate
parameter and theorem to determine the stability of FSDNNs according to the requirements of practical
applications and problems.

4. Numerical example

In this section, two numerical examples are presented to illustrate our theorems.
We consider a class of FSDNNs as follows:

2 2 0
Dy xi(t) = —dixit) + ) aiifi(x,(0) + ) bifi( f Xt +0dw @)+ I, i=1,2, (41

=1 j=1

where w;(0) is a nondecreasing bounded variation function on the interval of (—co, 0], and we set

_15 GS_ o
Wwi(0) = T j=1,2. 1,50 4.2)
0, —T~/‘<6SO. ’

Thus, we see that

0 0
f dW,(@) = 1, f Xj(l + Q)dWJ(G)) = )Cj(t - Tj).

Example 4.1. Let the parameters and the functions in FSDNNs (4.1) be: « = 0.8, d; = 0.1, d;, =
011, ayp = 001, app = 0015, ay; = —0.01, ayy = 0015, l’)]] = 0012, b12 = 002, b21
—-0.0125, by, =0.015.1; = 0.6, I, = 0.4, f;(x;(1)) = 2.5sin(x;(¥)), j=1,2.

1fi(vi) = fiupl <2.5v; —uyl,  j=1,2.

LetF;=25kj=1,j=1,2,6=0.02,6 =0.015,10 =25,H = 15,t € J = [ty, tp + H] = [2.5,4].
We can see Assumptions A, are satisfied. It can be obtained by calculation:

2
ni= D (il + bilk)Fi—d; >0, i=1,2,

j=1

2
1
Z — max{(ay;| + bilk)Fi} < 1.

P 1<)

@ max(n;) o

2 2
t
52 > bk F sy < 1€ 0 = [25,4),

AIMS Mathematics Volume 9, Issue 4, 8339-8352.
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which satisfies the conditions in Theorem 3.1. According to Theorem 3.1, there exists a unique
equilibrium point in FSDNNs (4.1), which is FTS. According to simulation, we can see the trajectories
of state variables in Example 4.1 (Figures 1 and 2).

3.5

—x,(0)=1.1
—x,(0=0.4

I I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4
t

Figure 1. Trajectories of state variable x;(¢) in Example 4.1.

—x,(0)=-0.2) B
—x,(0)=0.3

I I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4
t

Figure 2. Trajectories of state variable x,(7) in Example 4.1.

Example 4.2. Let the parameters and the functions in FSDNNs (4.1) be: « = 0.8, d; = 2.5, d,
3, an = 03, app = 05, ay = —0.4, ary = 015, bll = 02, b]z = 02, b21 = —0.25, b22 = 0.35. I] =
0.3, I = 0,2, fi(x;(1)) = 15 sin(x;(0), j = 1,2.

1 .
Ifi(vp) = fiuj| < Elvj —ujl, j=1,2.

1
LetFj:E, kj:1,j=1,2.

We can see Assumptions A, are satisfied and the parameters are
n
Z(lajil +|bjilk)F; —d; <0, i=1,2,
=1

which satisfy the conditions in Theorem 3.2. According to Theorem 3.2, FSDNNs (4.1) are GMLS.
According to simulation, we can see the trajectories of state variables in Example 4.2 (Figures 3
and 4). Obviously, the simulation and Theorem 3.2 are consistent.

AIMS Mathematics Volume 9, Issue 4, 8339-8352.
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0.25

: : : : : : : : :
0.2¥ i
0.157(

0.1 —x,(0)=0.2 B

—%,(0)=0.1
0.051 —x,(0)=-0.1

X0

-0.05 -

_ 1 1 1 1
0'10 1 2 3 4

~ao b
o
~
®
©
>

T
0.2L J
o.15rf &
0.1 —x,(0)=0.1 | |
—%,(0)=0.2
~ 0.05 —x,(0)=-0.15| |
ok i
-0.05 B
-0.1 B
N . . . . . . . . .
018 1 2 3 4 5 6 7 8 9 10
t

Figure 4. Trajectories of state variable x,(¢) in Example 4.2.

5. Conclusions

In this paper, we mainly investigate the stability of a class of FSDNNs and obtain the sufficient
conditions for FTS and GMLS of FSDNNES, i.e., Theorems 3.1 and 3.2, which comprise discrete and
continously distributed delays. Specially, when the parameter satisfies », (laj| + |bjilk)F; — d; > 0,i =

i=1

1,---,n, the solution of FSDNNs is FTS, and when the parameter satisfies ; (la;| + |b;ilk)F; — d; <
j=1

0,i = 1,---,n, the solution of FSDNNs is GMLS. The results are complementary, which provides a
new basis for further expanding NNs research and practical applications.

The conclusion is obtained by using Riemann-Liouville fractional-order derivatives in this paper.
However, our next research endeavor will involve investigating FTS and GMLS with Caputo fraction-
order derivatives. Moreover, this paper provides new useful tools and methods to investigate the
stability problem of other types of NNs with S-type distributed delays, such as the stability of
fractional-order Cohen-Grossberg NNs with S-type distributed delays and fractional-order BAM NNs
with S-type distributed delays.
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