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1. Introduction

Similar to how fractional exponents evolve from integer exponents, classical calculus concepts like
integral and derivative operators serve as the foundation for fractional calculus [1,2]. Many people are
aware that depending on the geometrical and physical factors, integer-order derivatives and integrals
have different meanings. This assumption, however, is disproved when dealing with fractional-order
integration and differentiation, which covers a constantly expanding domain in both theory and
practical applications to real-life challenges [3]. The study of fluid flow, rheology, diffusive transport,
electrical networks, electromagnetic theory, probability, and research on viscoelastic materials are just
a few of the scientific and engineering domains where it has lately been employed [4–6]. Fractional
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differential equations (FDEs) have drawn attention from several researches as a result of its frequent
occurrence in disciplines such as physics, chemistry, and engineering. The commonly used Laplace
transform approach, the iterative method, the Fourier transform technique, and the operational method
are just a few of the strategies developed to deal with FDEs [7–9]. The majority of these techniques,
however, are only relevant to a few types of FDEs, particularly those that are linear and have constant
coefficients. The existence of solutions for fractional semilinear differential or integrodifferential
equations is one of the theoretical fields being investigated by many authors. There has been a
significant development in nonlocal problems for FDEs or inclusions [10, 11]. Reimann-Liouvile
fractional derivative-based linear FDEs with variable coefficients have been solved using the
decomposition approach. FDEs have recently received a lot of attention from academics. This is
because FDEs are frequently used in engineering and science, including in the study of diffusion in
porous media, nonlinear earth oscillation, fractional biological neurons, traffic flow, polymer
rheology, modeling of neural networks, and viscoelastic panels in supersonic gas flow [12–16].

In the real world, there may be situations that cannot be fully captured by either wholly continuous
or entirely discrete phenomena. In these cases, we require a shared domain to adequately support
both conditions. In order to unify continuous and discrete calculus, Stefan Hilger created a usual state
known as time scale T [17–19]. This domain is based on the unification of these requirements [20–23].
To solve this type of model, which combines differential and difference equations, dynamic equations
on a time scale were developed [24, 25]. Many scholars worked on dynamic equations that involve
local beginning and boundary conditions and might be either linear or nonlinear. Because fractional
calculus is accurate and has an advantage in the physical interpretation, several authors have studied
the dynamic equation using this method [26–28].

We have seen a number of equations in the real world where the systems are permitted to experience
a brief disturbance, the length of which may be insignificant compared to the overall process duration.
In this situation, jump discontinuities may appear in the solution of these equations at time ς1 < ς2 <

ς3 < · · · , given in the form
p(ς+k ) − p(ς−k ) = Ik(ςk, p(ς−k )).

Impulsive dynamic equations are dynamic equations with jump discontinuities as solutions [29–31].
Dynamic impulsive equations on time scales have caught the attention of many academics recently.
However, there are very few publications that investigate impulsive dynamic equations using fractional
calculus on time scales with nonlocal initial conditions [32, 33].

Neutral differential equations [34, 35] appear when max{n1, n2, · · · , nk} = n. The past and present
values of the function are determined by Neutral differential equations, which differs from retarded
differential equations in that they depend on derivatives with delays. Elastic networks are simulated by
neutral type differential equations in high speed computers for the express purpose of joining switching
circuits [36]. Due to their extensive use in practical mathematics, neutral differential equations have
recently attracted a lot of attention [37, 38]. Many scientists have sought to create neutral differential
systems, taking note of varied fixed point strategies, mild solutions, and nonlocal situations. Also,
in recent years, neural networks have been extensively studied and have been applied in many fields,
such as combinatorial optimization, multiagent systems, fault diagnosis, and industrial automation.
However, the practical applications of neural networks have been limited due to some inherent dynamic
properties, such as the information latching phenomenon [39–41].

While the authors of [24, 25] used the tools of the delta (Hilger) derivative to investigate the
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fractional dynamic equation with local initial condition and instantaneous and non-instantaneous
impulses, authors of [42] investigated the nonlocal initial condition’s impulsive dynamic equation.
In [43], the authors have discussed the impulsive fractional dynamic equation on time scales with a
nonlocal initial condition. The exploration and elucidation of results pertaining to a generalized
neutral fractional impulsive dynamic equation over time scales, specifically incorporating nonlocal
initial conditions, is the main contribution of the this study.

As a result of the work described above, we assert that it’s important to investigate the impulsive
neutral fractional dynamic equation with nonlocal initial condition of the type:

CDw[u(ς) − g(ς, u)] = L(ς, u(ς), CDwu(ς)), ς ∈ I , ς , ςk

u(ς+k ) − u(ς−k ) = Ik(ςk, u(ς−k )), k = 1, 2, · · · ,m
u(0) = φ(u),

(1.1)

where k ∈ N ∪ {0} and
I = [0,T ] ∩ T

for T ∈ T. Let the left dense(ld) continuous function be

L : I ×R ×R → R

and CDw is Caputo nabla derivative (C∇D). We assume that

0 < ςo < ς1 < ς2 < ς3 < · · · < ςn < ςn+1 = T ,

which indicates the impulse at specific time, and the terms

u(ς+k ) = limd→0+u(ςk + d)

and
u(ς−k ) = limd→0+u(ςk − d)

represent the function’s right and left limits u at ς = ςk in relation to time scales. Ik are continuous
real valued functions on R ∀ k = 1, 2, · · · ,m, and Ik(ςk, u(ς−k )) are the action of impulses on the time
scale interval I .

2. Preliminaries

Definition 2.1. [44] A function ρ: T→ R defined by

ρ(ς) = in f {θ ∈ T : θ < ς}

is said to be a backward jump operator. Any ς ∈ T is said to be ld if ρ(ς) = ς and if ρ(ς) = ς − 1, then
ς is said to be a left scattered point on T.

Remark 2.2. If T is a minimum right scattered point y, then set Tυ = T\{y}, otherwise Tυ = T.

Definition 2.3. [42] A function
x : T ×R ×R → R

is said to be an ld continuous function, if x(·, p, q) is ld continuous on T for each ordered pair (ς, θ) ∈
R ×R and x(ς, ·, ·) is continuous on R ×R for fixed point ς ∈ T.
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Proposition 2.4. [17] Assume g is an increasing continuous function on [0,T ]∩T. IfG is an addition
to g in [0,T ], T ∈ R, one can obtain

G(ς) =
{

g(ς), if ς ∈ T,
g(θ), if ς ∈ (ς, ρ(ς)) < R,

then, ∫ t

s
g(ς)∇ς ≤

∫ t

s
g(ς)dς, (2.1)

for s, t ∈ [0,T ] ∩ T, such that s < t.

Definition 2.5. ([44], Higher order nabla derivative) Consider an ld continuous function H: Tυ → R
over T. Here, H∇ is differentiable over T(2)

υ = Tυυ along

H
(2)
∇
= (H)∇ : T(2)

υ → R,

where H∇∇ = H
(2)
∇

is the second order nabla derivative. Also, proceeding upto nth order, one can get

H
(n)
∇

: T(n)
υ → R.

Definition 2.6. [44] Consider ld continuous function H: T(n)
υ → R, such that H(n)

∇
(ς) (nth order of

nabla derivative) appears, then the C∇D is

CDwaH(ς) =
1

Γ(n − w)

∫ ς

a
(ς − ρ(θ))n−w−1

H
n
∇(θ)∇θ.

If w ∈ (0, 1), we obtain

CDwaH(ς) =
1

Γ(1 − w)

∫ ς

a
(ς − ρ(θ))−wH∇∇θ.

Definition 2.7. [44] On the set Tυ, consider H to be any ld continuous function, then the Riemann-
Liouville nabla derivative (RL∇D) is

Dwςo
x(t) =

1
Γ(1 − w)

( ∫ ς

ςo

(ς − ρ(θ))−wx(θ)∇θ
)∇
.

Definition 2.8. [17] Assume H: IJ → R, then the RL∇D fractional integral of H is

D−wςo
H(ς) = Iwςo

H(ς) =
1
Γ(w)

∫ ς

ςo

(ς − ρ(θ))w−1
H(θ)∇θ.

The RL∇D integral always satisfies the condition

Iwςo
Iuςo
H(ς) = Iw+u

ςo
H(ς).

Lemma 2.9. [17] Assume the ld continuous function is u(ς), then{
DuIwıp(ς) = u(ς),
DuIwıp(ς) = Iw−uu(ς).
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Theorem 2.10. [25] Assume D ⊂ C(T,R). Let D be bounded and equicontinuous simultaneously,
then it is relatively compact.

Theorem 2.11. [42] A function H(B) is relatively compact in A for H: A → B, which is completely
continuous.

Theorem 2.12. ([24], Nonlinear alternatives Leray-Schauder’s type) Let C ⊂ X be closed and convex
and X be as Banach space. Let G: U → C be a compact map andU be a relatively open subset of C
with 0 ∈ U, then

(i) G has a fixed point inU; or

(ii) there is a point u ∈ δU and γ ∈ (0, 1) with u = γG(u).

Theorem 2.13. [42] For w ∈ (0, 1), u is a solution for L: IJ ×R ×R → R, then

CDwu(ς) = L(ς, u(ς), CDwu(ς)), u(ς)|ς=0 = φ(u),

if u is the solution of equation

u(ς) = φ(u) +
1
Γ(w)

∫ ς

ςo

(ς − ρ(x))w−1
L(x, u(x), CDwu(x))∇x. (2.2)

Definition 2.14. [45] Let X be a Banach space and

A = {L(t) ∈ L (X ) : t ≥ 0},

where L (X ), a family of linear, bounded operators L (X ): X → X for all t ≥ 0. A is called a
semigroup if, and only if,

L(0) = I and L(s + t) = L(s)L(t), ∀t, s ≥ 0.

3. Analysis between RL∇D and C∇D

Proposition 3.1. Let m − 1 < w < m,m ∈ N for any w ∈ R, such that CDwςo
G(ς) exists over time scale

T, then

CDwςo
G(ς) = Im−wςo

G(m)
∇

(ς).

Proof. The proof is evident from Theorems 2.12 and 2.13. □

Theorem 3.2. For m = [w + 1] and for any ς ∈ Tvn , the C∇D and RL∇D satisfies:

CDwαG(ς) = Dwα (G(ς) −
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α)),

for a fixed point α ∈ T. Taylor’s theorem defined in [27] proves this theorem.
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Proof. Assume ld continuous function G , then ∀ fixed α ∈ T and m ∈ N ∪ {0},m < n. One can obtain

G(ς) =
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α) +
1
Γ(m)

∫ ς

α

(ς − ρ(θ))∇θ

=

m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α) + ImαG
(m)
∇

(ς). (3.1)

Taking the Riemann-Liouville derivative Dwα in each side of Eq (3.1), Lemma 2.9 and Proposition 3.1
are used below:

DwαG(ς) = Dwα
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α) + Dwα I
m
αG

(m)
∇

(ς)

= Dwα
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α) + Im−wα G(m)
∇

(ς)

= Dwα
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α) + CDwαG(ς). (3.2)

From the above equation, we obtain

CDwαG(ς) = DwαG(ς) − Dwα
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α)

= Dwα (G(ς) −
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α)). (3.3)

□

Proposition 3.3. If w ∈ (0, 1), then m = 1. Hence, from the Eq (3.3),

CDwα (ς) = Dwα (G(ς) − G(α)).

Case 1. If G(α)→ 0, as α→ 0, then

CDwα (ς) = DwαG(ς). (3.4)

Hence, C∇D and the Riemann-Liouville derivative coincide with each other.

Case 2. If w ∈ N, by applying Eq (3.1) in Eq (3.2) and applying Lemma 2.9, one can get

CDwαG(ς) = Dwα (G(ς) −
m−1∑
v=0

(ς − α)v

Γ(v + 1)
G(v)
∇

(α))

= Dwα I
m
αG

(m)
∇

(ς)
= G(m)(ς).

∴ C∇D coincides with the nabla derivative.
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4. Existence and uniqueness of impulsive neutral fractional dynamic equation

A population dynamics model featuring a stop-start phenomenon can be used to compare the
dynamic Eq (1.1) to that model. If we take into account a negative impact on that particular species,
we can observe the population change, that the C∇D CDwu(ς) presents (at the initial stage of time),
with respect to ς on

I = [0,T ] ∩ T.

We investigate a scenario in specific times ς1, ς2, ς3, · · · such that

0 < ς1 < ς2 < ς3, · · · , ςm < ςm+1 = T , limk = ∞.

Impulse effects have an impact on people “ momentarily,” so there is a surge in the population u(ς),
and u(ς+k ) and u(ς−k ) show the species population at the time ςk before and after the impulsive effect.

Assume a collection of every ld continuous function C(I ,R). Put Io = [0, ς1] and Ik = [ςk, ςk+1]
for each k = 1, 2, · · · ,m. Let

PC(I ,R) = {u : Ik → R, u ∈ C(I ,R) and u(ς+k ) and u(ς−k ) exist with u(ς−k ) = u(ςk), k = 1, 2, · · · ,m}

and
PC

1(I ,R) = {u : Ik → R, u ∈ C1(I ,R), k = 1, 2, · · · ,m},

where PC1(I ,R) is collection of every function from Ik to R, i.e., ld continuously ∇ differentiable
function.

The set PC(I ,R) is a Banach space

||u||PC = supς∈I |u(ς)|.

Definition 4.1. A function u ∈ PC1(I ,R) is a solution of the Eq (1.1), if u satisfies the Eq (1.1) on I
having

u(ς+k ) − u(ς−k ) = Ik(ςk, u(ς−k )) and u(0) = φ(T ).

Lemma 4.2. Assume an ld continuous function H : I → R, such that solution (1.1) is
CDw[u(ς) − g(ς, u)] =H (ς), ς ∈ I , ς , ςk

u(ς+k ) − u(ς−k ) = Ik(ςk, u(ς−k )), k = 1, 2, 3, · · · ,m
u(0) = φ(u),

(4.1)

where the integral equation specifies

u(ς)


φ(u) + g(ς) + g(0)

Γ(w)

∫ ς
0

(ς − ρ(θ))w−1H (θ)∇θ, ς ∈ Io,

φ(u) + g(ς) + g(0)
Γ(w)

∑k
i=1

∫ ςi

ςi−1
(ςi − ρ(θ))w−1H (θ)∇θ

+
g(0)
Γ(w)

∫ ς
ςk

(ς − ρ(θ))w−1H (θ)∇θ +
∑k

i=1 Ii(ςi, u(ς−
i
)), ς ∈ Ik.

(4.2)

Proof. If ς ∈ Io, then the solution of the Eq (4.1) is given by

u(ς) = φ(p) + g(ς) +
g(0)
Γ(w)

∫ ς

0
(ς − ρ(θ))w−1H (θ)∇θ. (4.3)
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For ς ∈ I1, the problem {
CDw[u(ς) − g(ς, u)] =H (ς),
u(ς+1 ) − u(ς−1 ) = I1(ς1, u(ς−1 )),

holds the solution

u(ς) = u(ς+1 ) + g(ς) +
g(0)
Γ(w)

∫ ς

ς1

(ς − ρ(θ))w−1H (θ)∇θ. (4.4)

Again,

u(ς+1 ) − u(ς−1 ) = I1(ς1, u(ς−1 )). (4.5)

Applying Eq (4.5) in Eq (4.4), then

u(ς) = u(ς−1 ) + I1(ς1, u(ς−1 )) + g(ς) +
g(0)
Γ(w)

∫ ς

ς1

(ς − ρ(θ))w−1H (θ)∇θ,

which follows that

u(ς) =φ(p) + I1(ς1, u(ς−1 )) + g(ς) +
g(0)
Γ(w)

∫ ς

ς1

(ς − ρ(θ))w−1H (θ)∇θ

+
g(0)
Γ(w)

∫ ς

0
(ς − ρ(θ))w−1H (θ)∇θ, ς ∈ I1.

Using the idea of mathematical induction and generalizing in this way for ς ∈ Ik, k = 1, 2, · · · ,m, one
can say,

u(ς) =φ(u) + g(ς) +
g(0)
Γ(w)

∫ ς

0
(ς − ρ(θ))w−1H (θ)∇θ

+
g(0)
Γ(w)

k∑
i=1

∫ ςi

ςi−1

(ςi − ρ(θ))w−1H (θ)∇θ +
k∑

i=1

Ii(ςi, u(ςi)), k = 1, 2, 3, · · · ,m.

□

The following hypotheses are necessary in order to prove the existence and uniqueness of the
solution to Eq (1.1):

(A1) L: I × R × R → R is ld continuous and there should be a constant K > 0 and 0 < G < 1,
which contents

|L(ς, θ1, θ2) − L(ς, ζ1, ζ2)| ≤ K|θ1 − ζ1| + G |θ2 − ζ2|, ∀ς ∈ I,

θi, ζi ∈ R for i = 1, 2.

(A2) There exist constantsA > 0,F > 0, and 0 < E < 1, such that

|L(ς, θ, ζ)| ≤ A + F |θ| + E|ζ |, ∀θ, ζ ∈ R.
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(A3) Ik(ς, u) is continuous ∀ k = 1, 2, · · ·m and contents:
(i) There exists a “+” ve constant Mk for k = 1, 2, · · · ,m such that

|Ik(ς, u)| ≤Mk, ∀ς ∈ Ik, u ∈ R.

(ii) There exists a “+” ve constatnt Lk, for k = 1, 2, 3, · · · ,m such that

|Ik(ς, u) − Ik(ς, h)| ≤ Lk|u − h|, ∀ς ∈ Ik, u, h ∈ R.

(A4) There must be a non “-” ve increasing function µ: R+ → R+ such that

|φ(ς) − φ(θ)| ≤H |ς − θ|, ∀ς ∈ I ,

and a “+” ve constant H such that

|φ(ς) − φ(θ)| ≤H |ς − θ|, ∀ς, θ ∈ I .

(A5) For ς ∈ Io in a time scale interval, let the function u(ς) be

u(ς) = φ(p) + g(ς) +
g(0)
Γ(w)

∫ ς

0
(ς − ρ(θ))w−1

L(ς, u(ς), CDwu(ς))∇θ.

The Banach contraction theorem forms the basis of the following theorem.

Theorem 4.3. If all conditions (A1)–(A4) and

m∑
i=1

Li +H + g(ς) +
g(0)KT w(m + 1)

(1 − G )(w + 1)
< 1

hold, then Eq (1.1) must contain a solution on I .

Proof. Assume
CDw[u(ς) − g(ς, u)] = h(ς).

Let Π ⊆ PC(Ik,R) such that

Π = {u ∈ PC1(Ik,R) : ||u||PC ≤ ω}

and χ: Π → Π such that

(χu)(ς) = φ(u) + g(ς) +
g(0)
Γ(w)

∫ ς

0
(ς − ρ(θ))w−1

L(ς, u(ς), CDwu(ς))∇θ,

for ς ∈ Io, and

(χu)(ς) =φ(u) + g(ς) +
g(0)
Γ(w)

k∑
i=1

∫ ςi

ςi−1

(ς − ρ(θ))w−1
L(ς, u(ς), h(ς))∇θ +

k∑
i=1

Ii(ςi, u(ς−i ))

+
g(0)
Γ(w)

∫ ς

ςk

(ς − ρ(θ))w−1
L(ς, u(ς), CDwu(ς))∇θ,
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for ς ∈ Ik, then k = 1, 2, 3, · · · ,m.

Case 1. Let ς ∈ Ik, then u ∈ Π ,

|(χu)(ς)| =|φ(u)| + |g(ς)| + |
g(0)
Γ(w)

k∑
i=1

∫ ςi

ςi−1

(ς − ρ(θ))w−1
h(θ)∇θ| + |

k∑
i=1

Ii(ςi, u(ς−i ))|

+ |
g(0)
Γ(w)

∫ ς

ςk

(ς − ρ(θ))w−1
h(θ))∇θ|,

where h ∈ Π , ς ∈ I . By Eq (1.1), one can get

h = L(ς, u, h),

and

|h| = |L(ς, u, h)|
≤ A + F |u(ς)| + E|h(ς)|

≤
A + Fω

1 − E
. (4.6)

Again, taking the norm of PC(I ,R) in (4.6),

||u||PC ≤
α + Fω

1 − E
,

where
||A||PC = α.

Using the condition of Case 1 and Proposition 2.4, we obtain

||χ||PC =supς∈I|χu(ς)|

≤ µ|u| + g(ς) +
m∑

i=1

Mi +
g(0)[A + F |u|]

(1 − E)Γ(w)

[ m∑
i=1

∫ ςi

ςi−1
(ς − θ)(w−1)dθ +

∫ ς

ςk

(ς − θ)(w−1)dθ
]

≤ µω + g(ς) +
m∑

i=1

Mi +
g(0)T w(α + Fω)(m + 1)
Γ(w + 1)(1 − E)

≤ ω, (4.7)

where

ω =

∑m
i=1 Mi + g(ς) + g(0)(m+1)T wα

Γ(w+1)(1−E)

1 − µ + (m+1)T wF g(0)
Γ(w+1)(1−E)

.

Case 2. If ς ∈ Io, by a similar way, one can obtain

||χu||PC ≤ µω + g(ς) +
g(0)T w(α + Fω)
Γ(w + 1)

≤ ω. (4.8)
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Thus, from (4.8), ||χu||PC ≤ ω. Hence, χ(Π) is bounded. Also, for u, v ∈ Π ,

||χu − χv||PC =supς∈Ik |(χu)(ς) − (χv)(ς)|

≤

k∑
i=1

|Ii(ςi, u(ς−i )) − Ii(ςi, v(ς−i ))| + |g(ς)| +
g(0)
Γ(w)

∣∣∣∣∣ ∫ ς

ςk

(ς − ρ(θ))w−1(h(θ) − i(θ))∇θ
∣∣∣∣∣

+
g(0)
Γ(w)

∣∣∣∣∣ k∑
i=1

∫ ςi

ςi−1

(ςi − ρ(θ))w−1(h(θ) − i(θ))∇θ
∣∣∣∣∣ + |φ(u) − φ(v)|, (4.9)

where i ∈ Π , then i(ς) = L(ς, v(ς), i(ς)). For ς ∈ I , one can get

|h(ς) − i(ς)| = |L(ς, u(ς), h(ς)) − L(ς, v(ς), i(ς))|
≤ K|u(ς) − v(ς)| + G |h(ς) − i(ς)|

≤
K|u(ς) − v(ς)|

1 − G
. (4.10)

Taking the norm of PC(I ,R), (4.10) becomes

||h − i||PC ≤
K||u − v||PC

1 − G
. (4.11)

Using (4.11) in (4.9) and applying the Proposition 2.4,

||χu − χv||PC ≤

m∑
i=1

Li|u(ς−i ) − v(ς−i )| + g(ς) +
Kg(0)|u(θ) − v(θ)|

(1 − G )Γ(w)

∫ ς

ςk

(ς − θ)w−1dθ

+
Kg(0)|u(θ) − v(θ)|

(1 − G )Γ(w)

m∑
i=1

∫ ςi

ςi−1
(ς − θ)w−1dθ +H |u − v|

≤||u − v||PC
m∑

i=1

Li + g(ς) +
KT wg(0)||u − v||PC

(1 − G )Γ(w + 1)

+
mKT wg(0)||u − v||PC

(1 − G )Γ(w + 1)
+H ||u − v||PC

≤

( m∑
i=1

Li + g(ς) +
KT wg(0)(m + 1)
(1 − G )Γ(w + 1)

+H
)
||u − v||PC. (4.12)

Similarly, for ς ∈ Io,

||χu − χv||PC ≤

(
H + g(ς) +

KT wg(0)
(1 − G )Γ(w + 1)

)
||u − v||PC. (4.13)

Thus, from (4.12) and (4.13), we obtain

||χu − χv||PC ≤ U||u − v||PC,

where

U =

m∑
i=1

Li + g(ς) +
KT wg(0)(m + 1)
(1 − G )Γ(w + 1)

+H .

Here,U < 1, then χ: Π → Π is a contraction operator. According to the Banach contraction theorem,
it has a fixed point, which is the solution to Eq (1.1). □
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Equation (1.1)’s adequate condition for a solution is based on the nonlinear alternative to Leray-
Schauder’s fixed point theorem.

Theorem 4.4. If (A1) through (A4) are true and there is a positive constant β, then

µβ +

m∑
i=1

Mi + g(ς) +
(m + 1)T wg(0)(A + F β)
Γ(w + 1)(1 − E)

< β. (4.14)

Therefore, there is at least one solution to Eq (1.1) in I .

Proof. The following steps are used to demonstrate the theorem’s proof.

Step 1. χ: Π → Π is continuous.
Assume {un} is a sequence of Π such that un → u, then ς ∈ Ik, k = 1, 2, 3, · · · ,m.

||χun − χv||PC =supς∈Ik |(χun)(ς) − (χv)(ς)|

≤

m∑
i=1

|Ii(ςi, un(ς−i )) − Ii(ςi, u(ς−i ))| + |g(ς)| +
g(0)
Γ(w)

∣∣∣∣∣ ∫ ς

ςk

(ς − θ)w−1(hn(θ) − h(θ))dθ
∣∣∣∣∣

+
g(0)
Γ(w)

∣∣∣∣∣ m∑
i=1

∫ ςi

ςi−1

(ςi − θ)w−1(hn(θ) − h(θ))dθ
∣∣∣∣∣ + |φ(un) − φ(u)|, (4.15)

where hn ∈ Π , such that
hn = L(ς, un, hn),

and for ς ∈ Ik, we obtain

|hn − h| = |L(ς, un, hn) − L(ς, u, h)|
≤ K|un − u| + G |hn − h|

≤
K|un − u|

1 − G
. (4.16)

Taking the norm of PC(I ,R), (4.16) becomes

||hn − h||PC ≤
K||un − u||PC

1 − G
. (4.17)

Using (4.17) in (4.15), we obtain

||χun − χv||PC ≤ ||un − u||PC ≤
( m∑

i=1

Li + g(ς) +
KT wg(0)(m + 1)
(1 − G )Γ(w + 1)

+H
)

As n→ ∞, let un → u such that
||χun − χv||PC → 0.

As a result, χ is continuous.
Also, for ς ∈ Io, the proof is similar.

Step 2. The operator χ map Π to PC(I ,R).
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Assume x1, x2 ∈ Ik, k = 1, 2, · · · ,m, such that x1 < x2, then

||χu(x2) − χv(x1)||PC =supς∈Ik |(χu)(x2) − (χv)(x1)|

≤
g(0)
Γ(w)

∣∣∣∣∣ ∫ x1

ςk

(x2 − ρ(θ))w−1 − (x1 − ρ(θ)w−1)h(θ)∇θ
∣∣∣∣∣ + |g(ς)|

+
g(0)
Γ(w)

∣∣∣∣∣ ∫ x2

x1

(x2 − ρ(θ))w−1
h(θ)∇θ

∣∣∣∣∣ + ∑
0<ςk<x2−x1

|Iςk(ςk, u(ς−k ))|

≤
g(0)
Γ(w)

∣∣∣∣∣ ∫ x1

ςk

(x2 − (θ))w−1 − (x1 − (θ)w−1)h(θ)∇θ
∣∣∣∣∣ + |g(ς)|

+
g(0)
Γ(w)

∣∣∣∣∣ ∫ x2

x1

(x2 − (θ))w−1
h(θ)∇θ

∣∣∣∣∣ + ∑
0<ςk<x2−x1

|Iςk(ςk, u(ς−k ))|

≤
(A + Fω)g(o)

(1 − E)Γ(w)

(∣∣∣∣∣ ∫ x1

ςk

(x2 − (θ))w−1 − (x1 − (θ)w−1)h(θ)∇θ
∣∣∣∣∣

+
g(0)
Γ(w)

∣∣∣∣∣ ∫ x2

x1

(x2 − (θ))w−1
h(θ)∇θ

∣∣∣∣∣) + |g(ς)| +
∑

0<ςk<x2−x1

|Iςk(ςk, u(ς−k ))|.

Since (x − (θ))w−1 is continuous, if x1 → x2, then

||χu(x2) − χv(x1)||PC → 0.

Thus, the operator χ is equicontinuous in Ik. Since the result at x1, x2 ∈ Io is comparable, the
evidence is left out.

Step 3. Let χ map Π be a bounded set of PC(I ,R).

From (4.7), it is clear that ||χ(p)|| ≤ ω for ω ∈ R. As a consequence of Steps 1–3, using the Arzela-
Ascoli theorem, one can discover that χ is entirely continuous.

Step 4. Let γ ∈ (0, 1),
k = {u ∈ PC(Ik,R) : u = γχ(u), 0 < γ < 1}

be bounded.
Also, by ς ∈ Ik, k = 1, 2, 3, · · · ,m, one can obtain

|u(ς)| = |γχ(u)ς| =
∣∣∣∣∣γ(φ(u) + g(ς) +

g(0)
Γ(w)

k∑
i=1

∫ ςi

ςi−1
(ς − ρ(θ))w−1

h(θ)∇θ

+
g(0)
Γ(w)

∫ ς

ςk

(ς − ρ(θ))w−1
h(θ)∇θ +

k∑
i=1

Ii(ςi, u(ς−i ))
)∣∣∣∣∣

≤µ||u||PC +
n∑

i=1

Miti + +g(ς)
(A + F ||u||PC)g(0)T w(m + 1)

Γ(w + 1)(1 − E)
.

Thus,

||u||PC

µ||u||PC +
∑n

i=1 Miti + +g(ς)
(A + F ||u||PC)g(0)T w(m + 1)

Γ(w + 1)(1 − E)

≤ 1.
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From Eq (4.14), we get a “+” ve constant β such that ||u||PC , β. Consider a set

ψ = {u ∈ PC(I ,R) : ||u||PC < β},

such that
χ : ψ̃→ PC(I ,R)

is continuous and completely continuous.
Thus, no u ∈ ∂(ψ) can be found such that u = γχ(u), γ ∈ (0,1). Hence, a nonlinear alternative of

Leray Schauder’s fixed point theorem gives that the answer to Eq (1.1) is a fixed point for χ.
The outcome for ς ∈ Io is almost identical, thus it is not included. □

5. Example

Example 5.1. Take into account a nonlocal initial condition over time scale in a neutral impulsive
fractional dynamic equation

T = [0,
1
5

] ∪ [
1
4
, 1],

and we get
CD

1
4 [u(ς) − g(ς, u)] =

e−5ς[4 + g(0)(|u(ς)| + |CDwu(ς)|) + g(ς)]
25e2ς(1 + |u(ς)|)

, ς ∈ [0, 1] ∩T , ς , 1
5

u( 1
5
+) − u( 1

5
−) =

1 + u( 1
5 )

15
, ς1 =

1
5

u(0) =
u
10
.

(5.1)

We set

L(ς, u, v) =
e−5ς[4 + g(0)(|u(ς)| + |v(ς)|) + g(ς)]

25e2ς(1 + |u(ς)|)
. (5.2)

It is evident that (5.2)’s right side is continuous for u, v ∈ R in relation to time scale. Again, ∀
ς ∈ [0, 1] ∩ T and h, i ∈ R. We obtain

L(ς, u, v) ≤
4 + g(0)(|u(ς)| + |v(ς)|) + g(ς)

25e2

≤
4

25e2 +
1

25e2 |u(ς)| +
1

25e2 |v(ς)| +
2

25e2 ,

then, we get

A =
4

25e2 , F =
1

25e2 , E =
1

25e2 , g(0) = 1, g(ς) =
2

25e2 .

Next,

|L(ς, u, v) − L(ς, h, i)| ≤
1

25e2 |u − h| +
1

25e2 |v − i|,

|I1(ς, u) − I1(ς, v)| ≤
1

15
|u − h|,
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|φ(u) − φ(h)| ≤
1

10
|u − h|,

|φ(u)| ≤
1

10
.

Thus, one can obtain

K =
1

25e2 , G =
1

25e2 , L =
1

15
, H =

1
10
.

From the above data, we can say that the Eq (5.1) satisfies all the conditions of (A1)–(A4).
Again, for m = 1 we get

L + g(ς) +
KT wg(0)(m + 1)
(1 − G )Γ(w + 1)

+H ≤
1
15
+

1
10
+

1
25e2 +

4 1
25e2

(1 − 1
25e2 )Γ( 1

4 + 1)

≤ 1.

As a result, the requirements of Theorem 4.3 are met. Consequently, we came to the conclusion that
the solution to Eq (5.1) is unique.

Below Table 1 represents the numerical approach for the theoretical results.

Table 1. Variation of u(ς) value for different values of L and g.

g ↓ L=1/15 L=1/25 L = 1/35 L=1/45 L=1/55

1/50 0.6778 0.6511 0.6397 0.6333 0.6293
1/40 0.6828 0.6561 0.6447 0.6383 0.6343
1/30 0.6911 0.6645 0.6530 0.6467 0.6426
1/20 0.7078 0.6811 0.6697 0.6633 0.6593
1/10 0.7578 0.7311 0.7197 0.7133 0.7093

Figure 1 reveals a commendable correspondence between the numerical solution & exact solution
across the entire interval.

Figure 1. Graph of the approximate solution of u(ς).

AIMS Mathematics Volume 9, Issue 3, 8292–8310.
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6. Conclusions

In this article, we examine both operators in the setting of time scales and analyze the C∇D and
RL∇D. Additionally, the C∇D of the fractional dynamic equation including instantaneous impulses
and a nonlocal initial condition are also examined. Later, the numerical technique is followed by an
example based on all theoretical findings on the existence and uniqueness of the solution. A graph
using MATLAB is also represented for the example.

Futher, in modeling the spread of infectious diseases like COVID-19, a dynamic equation in time
scales can be used to capture the various stages of infection, transmission rates, and the impact of
interventions over time. Mathematical models, often expressed as differential equations or agent-based
models, can be adapted to include time scales that represent different temporal aspects of the disease
dynamics.

Similarly, in cancer modeling, incorporating a dynamic equation in time scales allows for the
consideration of the progression of the disease, the growth of tumors, and the response to treatments
over time. This can lead to more accurate predictions and insights into the evolution of the disease
and the effectiveness of different therapeutic interventions.
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