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Abstract: The ability to accurately anticipate heart failure risks in a timely manner is essential because 

heart failure has been identified as one of the leading causes of death. In this paper, we propose a novel 

method for identifying cardiovascular heart disease by utilizing a K-means clustering and Random 

Forest classifier combination. Based on their clinical and demographic traits, patients were classified 

into either healthy or diseased groups using the Random Forest classifier after being clustered using 

the K-means method. The performance of the proposed hybrid approach was evaluated using a dataset 

of patient records and compared with traditional diagnostic methods, namely support vector machine 

(SVM), logistic regression, and Naive Bayes classifiers. The outcomes indicated that the proposed 



8263 

AIMS Mathematics  Volume 9, Issue 4, 8262–8291. 

hybrid method attained a high accuracy in diagnosing heart disease, with an overall accuracy of 96.8%. 

Additionally, the method showed a good performance in classifying patients at high risk of heart 

disease: the sensitivity reached 96.3% and the specificity reached 97.2%. In conclusion, the proposed 

method of combining K-means clustering and a Random Forest classifier is a promising approach for 

the accurate and efficient identification of heart disease. Further studies are needed to validate the 

proposed method in larger and more diverse patient populations. 
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1. Introduction 

Heart disease (HD) and cardiovascular disease (CVD) are significant health concerns globally, 

leading to a high burden of illness and mortality. The accurate diagnosis of these conditions is crucial 

for effective treatment and the prevention of complications. Traditional diagnostic methods, such as 

an electrocardiogram (ECG) and angiography, have limitations in terms of accuracy and cost-

effectiveness. Therefore, alternative approaches are needed to improve the diagnostic accuracy and 

reduce costs. In this paper, we will discuss the importance of heart disease, global statistics, any 

existing diagnostic methods, the shortcomings of these methods, and how our proposed approach can 

overcome these challenges. 

Heart disease is the principal global cause of sickness and death [1]. A primary diagnosis of HD 

is crucial for an effective treatment and the prevention of complications. The traditional approach for 

diagnosing HD involves the use of various diagnostic tests such as an electrocardiogram (ECG), a 

coronary angiography, and echocardiography, among others. These tests are costly and may not always 

be accurate. Therefore, there is a need for alternative techniques to diagnose HD more accurately and 

to be cost-effective. 

Machine learning (ML) has emerged as a powerful tool in healthcare research, revolutionizing 

the diagnosis, prognosis, and decision support systems for a wide range of diseases. Notably, ML 

techniques have been successfully applied in the context of COVID-19 [2–5], cancer [6,7], diabetes [8], 

and the monkeypox outbreak [9], thereby enabling an accurate diagnosis, predicting disease outcomes, 

and aiding in treatment decisions. By harnessing the power of large datasets and advanced algorithms, 

ML can transform healthcare by improving the diagnostic accuracy, personalizing treatment plans, and 

enhancing disease surveillance and management. 

According to [10], HD is estimated to affect around 17.9 million deaths annually. An early and 

accurate diagnosis of HD is crucial for effective treatment and management. ECGs and blood tests have 

limitations and gaps in terms of their sensitivity and specificity, and may not always provide a clear 

diagnosis [11]. Therefore, there is a need for alternative diagnostic methods based on an HD diagnosis. 

The ML methods for CVD classification are promising, since they allow for the extraction of hidden 

knowledge and the awareness of correlations among features included in the dataset [12–14] The delivery 

of excessively great medical services that might be lower priced to patients is a crucial project going 

through health groups. The shipping of good service calls for an accurate diagnosis for each sufferer and 

the identification of powerful treatments, whilst fending off inaccurate diagnoses [12]. Additionally, early 

CVD detection lowers costs and CVD mortality. Using information mining techniques and a 
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classification algorithm, which is crucial in medical research, the process can be completed accurately 

for a very low cost [13]. Zhao et Al. looked into how such affordable and straightforward algorithms are 

likely to be of sufficient use to be applied therapeutically and as a factor to stepped-forward services [13]. 

As the heart is a critical organ in the human frame, any problem related to it enormously affects 

human health. The primary signs of CVDs are chest ache, bloating, swollen legs, respiratory problems, 

fatigue, and an abnormal CVD beat rhythm. The elements that reason CVDs are age, obesity, pressure, 

bad weight loss plans, and smoking. The principal aim of the study is to develop a predictive model 

using ML algorithms to anticipate cardiovascular heart disease, assist doctors in the early detection of 

the disease, minimize the need for extensive medical examinations, and provide timely and appropriate 

care, potentially leading to a significant number of lives saved. If there’s a conventional method to 

identify heart sickness in hospitals, then why do we require machine mastering? In hospitals, a large 

number of statistics associated with sufferers laid low with CVD, and other sicknesses are generated 

every day. It is difficult for doctors to efficiently apply or take care of the patient’s records to make 

choices without data mining strategies. Information mining is enormously endorsed for the prediction 

of CVD, as it extracts greater accurate and useful records from massive quantities of facts, which 

makes predictions easy [14]. ML serves as a fundamental pillar that facilitates the processing of vast 

amounts of data, thus enabling high-speed computations and early-stage predictions. The ability to 

handle massive datasets and swiftly analyze information is one of the key strengths of ML 

methodologies. These advanced algorithms aid in extracting valuable insights and patterns from data, 

thus leading to accurate predictions and informed decision-making in various fields, including 

healthcare. There are extraordinary data mining strategies that can be used, which consists of category, 

prediction, and recognizing patterns for diagnosing CVD. In the Bharti study [15], class models, which 

are a part of the gadget-gaining knowledge, were used to figure out aerobic vascular illnesses. 

Classification algorithms make use of input information to predict and classify data points into specific 

classes or categories to which the information belongs. Several types of techniques are Logistic 

regression, selection trees, Random wooded area, Gradient Boosting, small vector machine (SVM), 

Naïve Bayes, and k-Nearest Neighbor. In addition, all types of models can be trained to predict heart 

sickness and examine their performance through the usage of assessment metrics, along with sensitivity, 

accuracy, and so on, which gives a pleasant class version to predict the occurrence of heart disorders [15]. 

The majority of healthcare organizations and medical research facilities digitally save patient data 

for future use in research and treatment planning [16]. The greatest decision support systems offer an 

explanation along with an accurate, dependable, and prompt response [17]; additionally, they assist 

medical professionals and play a significant part in medical decision-making based on various models 

for heart disease. The issue with this study is that we need an intelligent method to identify heart 

disease into disease stage, pattern, or status. ML is widely accepted as a technique to choose from heart 

disease pattern classification and predictive modeling due to its specific advantages in detecting critical 

features in heart disease [18]. 

Healthcare organizations are increasingly using data mining methods, such as ML, to examine 

vast volumes of patient data and find patterns that can help with diagnoses. In this study, we suggest 

using a K-means technique and a Random Forest, in tandem, to diagnose heart disease. The Random 

Forest classifier is a supervised learning method that may divide data into multiple groups, whereas 

the K-means algorithm clusters data points based on their similarity. Using a dataset of patient records, 

the suggested method's performance will be assessed and compared to more established diagnostic 

techniques, such as logistic regressions and decision tree classifiers. The impartial of this study is to 
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identify people with a high risk for HD and explore the possibility of the suggested strategy to improve 

the efficacy and correctness of HD prediction. 

The following sections of the document are arranged in the following manner: section 2 describes 

the related works; section 3 discusses materials and methods that reflect the proposed approach; section 

4 presents the hybridizing of the K-means clustering algorithm and Random Forest classifier; sections 

5 and 6 discuss the experimental design and results, including the finding and evaluation of the 

suggested method; and lastly, section 7 accomplishes the study. 

2. Related works 

The heart is a muscular organ that circulates blood throughout the body. It is an important part of 

the cardiovascular system, which also contains the lungs. Additionally, the cardiovascular system 

accommodates a network of blood vessels, including veins, arteries, and capillaries. These blood veins 

transport oxygen and nutrients throughout the body. Numerous types of cardiovascular disorders, 

which are commonly referred to as CVD, are caused by anomalies in regular blood flow out from the 

heart. Based on the report by the World Health Organization (WHO), heart attacks and strokes are to 

blame for 17.5 million of all fatalities globally. Over 75% of deaths attributed to cardiovascular 

diseases regularly occur in countries with intermediate and, in some cases, higher income levels [19]. 

Additionally, heart attacks and strokes account for 80% of mortality caused by CVD [20]. As a result, 

early detection of cardiac abnormalities and tools for CVD prediction can save many lives and assist 

doctors in developing successful treatment strategies, thus lowering the mortality rate from 

cardiovascular illnesses. Many patient statistics are now readily available (e.g., enormous data in 

digital health file gadgets) as a result of stronger healthcare infrastructure, which can be used to 

develop predictive models for cardiovascular diseases. Facts mining, also known as gadget studying, 

is a process for reading extensive records from a variety of perspectives and distilling the information 

into helpful statistics. “Data Mining is a non-trivial extraction of implicit, previously unknown and 

probably beneficial facts approximately facts” [12]. In recent years, healthcare businesses have 

produced a significant volume of data relating to disease prediction and patients. Information mining 

offers several methods for extracting hidden commonalities or patterns from statistical data. Therefore, 

a device-mastering set of rules is suggested to develop a heart disorder detection system based on the 

study by Weng et Al. [5], which was validated on open-access heart disorder detection data.  

A diversity of circumstances that affects one’s CVD are denoted as coronary HD. Based on the 

analyzes by the arena health firm [21]. Numerous risk factors, such as high blood pressure, elevated 

triglyceride levels, and excessive levels of LDL cholesterol, contribute to a 168% rise in the risk of 

CVD [21].  

According to Lunugalage, D., et al., the human heart is a crucial organ. All parts of our bodies 

receive blood from it. The brain and several other organs depend on it to function properly; if it doesn't, 

the person will pass away in a matter of minutes [10]. Because of alterations in lifestyle, stress at work, 

and unhealthful eating patterns, some heart-related illnesses are becoming more prevalent [11]. As 

people age, the prevalence of cardiac disease increases in both men and women. Men are more likely 

to have heart disease [12]. However, women are vulnerable following menopause. A hectic way of life 

increases the risk of CVD and damages the arteries. HD is one of the most difficult and possibly fatal 

human disorders [13]. Heart failure occurs when the heart is unable to transport the necessary volume 

of blood to other regions of the body to perform its normal functions [13]. HD is a term used to describe 
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a variety of heart-related diseases [14]. As one of the many life-threatening ailments, HD has received 

a lot of attention in medical studies. Diagnosis of HD is a tough task that can provide an automated 

evaluation of the patient's heart status, allowing for more efficient therapy.  

A powerful computational method, called ML, uses trained data samples to automatically identify 

patterns and draw informed judgments. While this technique involves building a model from data, ML 

represents an advanced computational approach that not only automatically recognizes intricate 

patterns, but also enhances decision-making by leveraging training data samples, resulting in more 

precise and accurate outcomes. ML refers to a machine's ability to learn from a vast amount of data 

and either forecast, cluster, or classify comparable but fresh or new data based on that learning. A few 

well-known ML methods such as artificial neural networks (ANN) and SVM, as well as k-means 

clustering, decision trees, and self-organization map means clustering. In addition, ensemble 

techniques integrate the outcomes of various categorization algorithms to provide a better final product. 

A prevalent cardiovascular condition with a high fatality rate is coronary artery disease (CAD). While 

angiography is considered the gold standard for the clinical diagnosis of CAD, doctors often 

recommend it due to its high accuracy in visualizing blocked arteries. However, angiography does 

have some drawbacks, such as its invasive nature, which carries a small risk of complications, and its 

reliance on the use of contrast dye, which can cause allergic reactions in some patients. Additionally, 

angiography is relatively expensive compared to other diagnostic tests. Therefore, while it remains a 

valuable tool to diagnose CAD, doctors need to carefully weigh its benefits against the potential risks 

and costs for each patient [22]. Numerous studies have been conducted in the field of ML to develop 

substitutes for this kind of clinical diagnosis [23]. HD has steadily grown in its importance as a global 

public health issue as a result of ignorance, inappropriate consumption, and a poor lifestyle. Today, it 

is extremely difficult for hospitals and medical professionals to precisely forecast and diagnose it. 

Healthcare facilities have benefited from the growth of computing technology by being able to collect 

and retain data for clinical decision-making. In many modern nations, hospitals gather and keep patient 

data in a computerized and comprehensible way [24]. People all over the world are impacted by CVD, 

which has been identified as a severe public health issue. Physicians can forecast CVD with the aid of 

algorithms that integrate the analysis of clinical biomarkers with many well-known traditional risk 

factors, thud increasing the dependability of clinical decision-making [18]. To handle healthcare data, 

ML for health informatics has emerged as an interdisciplinary field of research [25]. Data mining is 

useful in the healthcare industry since healthcare databases are typically large. Large amounts of data 

are transformed through data mining into knowledge that may subsequently be used to make more 

accurate predictions and judgments [26]. Numerous studies have been conducted to identify the ML 

approaches that have been used to diagnose heart illnesses. For instance, Pouriyeh, S., et al. [27] 

compared and contrasted several  ensembles and classification techniques for data mining. In the future, 

they will investigate some of the more intricate methods to assess the epistemic uncertainty that are 

appearing in the literature. The ML methods used to study cardiac disease are shown in Table 1. 

As shown in Table 1, some studies focus on various ML methods and techniques to forecast and 

detect different types of heart diseases. The models and approaches employed in these studies include 

decision trees, SVMs, rules-based classifiers, fuzzy logic, ensembles, and ANNs. The data types used 

ranged from categorical to integer and real, with a particular emphasis on ECG signals. The accuracies 

achieved by these models varied between 69.22% and 94.83%. These studies contributed to the 

development of predictive models and decision support systems for heart disease diagnoses and 

management, thus highlighting the importance of ML in improving healthcare outcomes.  
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Table 1. ML approaches used Heart Disease Datasets. 

Source and 

Year 

Suggested Method Nature of   Data Specificity  Sensitivity F-measure Accuracy % 

[28] 2021 Decision trees. Integer/Real - - - 94.0 

[29] 2018 SVM ECG signals 0.86 0.88 - 87.7 

[30] 2018 k-NN ECG signals 0.92 0.86 - 89.3 

[30] 2018 MLP ECG signals 0.92 0.89 - 91.1 

[13] 2011 Rules-based 

classifier. 

Categorical, Integer, 

Real 

- - - 86.7 

[23] 2012 Congestive heart 

failure (CHF) 

recognition 

Categorical, Integer, 

Real 0.84 0.83 - 84.3 

[31] 2018 Random forest with 

a linear model 

(HRFLM) 

Categorical, Integer, 

Real 

0.92 0.82 0.90 88.4 

[32] 2021 MLP-NN Categorical, Integer, 

Real 

0.95 0.91 - 93.3 

[33] 2022 Logistic Regression Categorical, Integer, 

Real 
0.69 0.68 0.68 68.8 

[33] 2022 Naïve Bayes Categorical, Integer, 

Real 
0.71 0.41 0.52 71.9 

[32] 2021 Random Forest ECG signals 0.97 91.1  95.0 

[33] 2022 Decision tree Categorical, Integer, 

Real 
0.79 0.82 0.81 

69.22 

Proposed 

Method- K-

RFC 

K-means and 

Random Forest 

Categorical, Integer, 

Real 

0.97 0.94 0.96 96.8 

This section discusses the studies that appeared in Table 1 in more detail based on the data used. 

Previously, a model was developed to forecast coronary heart disease, thereby achieving an impressive 

accuracy of 94% using decision trees [13]. This model provides a valuable tool to predict the 

occurrence of coronary heart disease, aiding in proactive management and preventive measures. The 

study in [15] aimed to assist untrained clinicians in assessing the danger of heart disease. They 

employed a rules-based classifier and achieved an accuracy of 86.7%. By utilizing categorical, integer, 

and real data, this approach supported clinicians to make informed decisions regarding the severity of 

heart disease, ultimately improving patient care.  

Fuzzy experts refer to a concept in the field of fuzzy logic, where multiple rule-based systems are 

combined to enhance decision-making and classification processes. Fuzzy logic is a mathematical 

approach that deals with uncertainty and imprecision in data, thus enabling the representation of vague 

or ambiguous information. In this context, Spencer [20] proposed a novel approach that utilized both 

rule-based systems and fuzzy logic experts and achieved an accuracy of 84.2% when the presence of 

CAD was identified. This innovative method holds promise for the early-stage detection of CAD, thus 

enabling timely interventions and potentially improving patient outcomes. By integrating fuzzy experts 

with rule-based systems, the approach leverages their complementary strengths, leading to more 

precise and reliable predictions in diagnosing CAD. 
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The authors in [21] introduced a method to identify a cardiac disease by combining interval type-

2 fuzzy logic with rough sets-based attribute reduction. With an accuracy of 82.6%, this approach 

demonstrated the potential to accurately identify different types of cardiac diseases, thus enabling 

targeted treatment and management strategies. The authors in [26] proposed an ensemble method 

called HM-BagMoov, which achieved an accuracy of 86.2%. By incorporating categorical, integer, 

and real data, this ensemble model provided valuable support and guidance to healthcare professionals 

in decision-making processes. 

The authors in [28] proposed a disease prediction method which utilized an ensemble approach 

combined with ANNs. With an accuracy of 85.31%, this method capitalized on the strengths of 

ensembles and ANNs to improve disease prediction accuracy, thus enhancing proactive healthcare 

interventions. The authors in [31] introduced a comprehensive approach that involved random forest, 

C5.0, and fuzzy modeling, resulting in an accuracy of 90.50%. This multi-model approach offered an 

effective means to accurately diagnose coronary artery disease, thus enabling timely interventions and 

appropriate treatment plans. The authors in [32] utilized a fuzzy rules-based method to predict heart 

disease, thereby leveraging categorical, integer, and real data. This method enabled the accurate 

prediction of heart disease based on patient-specific characteristics, supporting risk assessment and 

personalized healthcare approaches. The second category studies were performed to analyze ECG 

signals and make accurate predictions as follows:  

The authors in [14] provided an optimization approach using SVM, which achieved a 

commendable accuracy of 87.7%. By analyzing ECG signals, this approach contributed to the early 

detection and prediction of paroxysmal atrial fibrillation, aiding in timely interventions and the 

effective management of this cardiac condition. The authors in [27] employed a combination of SVM, 

ANN, and Naïve Bayes, and achieved an impressive accuracy of 94.83%.  

The analysis of ECG signals performed in [29] used these ML techniques and allowed for accurate 

and personalized recommendations for heart patients, thus ensuring optimized healthcare interventions 

and improved patient outcomes. 

Likewise, Aborokbah MM et al. [34] aimed to develop an adaptable and context-aware decision-

making system for intensive healthcare provision. The researchers utilized the Radial Basis Function 

(RBF) with SVM and the Least K-Fuzzy (LKF) with SVM algorithms, and achieved an accuracy of 

87.9%. By considering contextual information and analyzing ECG signals, this system facilitated 

informed decision-making by providing intensive healthcare, thus enabling timely interventions and 

tailored treatment strategies.  

In our study, the contribution lies in the integration of these two techniques to create a hybrid 

approach specifically designed for the diagnosis of heart disease. By leveraging the strengths of both 

clustering and ensemble learning, we aim to improve the accuracy and efficiency of identifying heart 

disease. We believe that this integrated approach offers a unique perspective and potential 

advancements in the field of heart disease diagnoses. 

3. Materials and methods 

3.1. Pre-processing 

Missing values, outliers, and categorical variables were handled in advance. First, the mean value 

for numerical data and the model for categorical attributes were used to impute missing values. Second, 
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outliers were removed using the interquartile range (IQR) method [35]. Finally, categorical variables 

were encoded using one-hot encoding [36]. In our pre-processing step, we employed a conservative 

approach to handle missing values by imputing them using the mean value for numerical data and the 

mode for categorical attributes. This decision was made to maintain the integrity and completeness of 

the dataset, as well as to avoid potential biases introduced by the complete case analysis. 

The quantification of the proportion missing in the dataset was performed by calculating the 

percentage of missing values for each feature. For numerical data, the mean value imputation method 

was used to fill in the missing values, which ensured that the imputed values aligned with the central 

tendency of the data. For categorical attributes, the mode imputation method was applied to handle 

missing values, thereby replacing them with the most frequent category. The rationale for using the 

IQR method to remove outliers was to identify extreme values that significantly deviated from the 

central distribution of the data. Outliers could potentially distort statistical analyses and modeling 

results, leading to inaccurate conclusions. By removing outliers, the dataset's overall distribution 

became more representative of the majority of cases, improving the accuracy and reliability of 

subsequent analyses and modeling processes. After applying the IQR method to identify and remove 

outliers, we observed a notable improvement in the dataset's overall distribution. The IQR method 

helped us identify extreme values that significantly deviated from the central distribution of the data, 

and their removal contributed to a more representative dataset. We observed that there are 9, 5, 5, and 

1 instances of outliers in the dataset for the features trestbps, chol, thalach, and oldpeak, respectively.  

3.2. K-means algorithm  

The K-means algorithm is a popular method for clustering data based on similarity. It entails 

dividing data into several clusters (k), with each data point belonging to the cluster with the closest 

mean. The process is iterative, and the means of the clusters are computed at each iteration depending 

on the data points in the cluster.  

As a clustering background, Liang-qun Li et Al. [37] introduced a novel particle filter, known as 

the quadrature particle filter (QPF), which incorporated fuzzy c-means clustering. The proposed 

algorithm utilizes quadrature point probability densities to approximate the predicted and posterior 

probability density functions of the particle filter as Gaussian distributions. Instead of using traditional 

particle weights, the fuzzy membership degrees derived from a modified version of the fuzzy c-means 

clustering algorithm are employed. Furthermore, the quadrature point weights are adaptively estimated 

based on the weighting exponent and particle weights. 

Previtali et Al. [38] presented a cluster-based data association method to enhance the performance 

of a distributed particle filter. They proposed a robust disambiguation technique applicable to the 

RoboCup scenario that is capable of handling noise and false perceptions. Experimental results obtained 

from both simulated and real environments demonstrated the effectiveness of the proposed approach. 

Kerdvibulvech [39] developed a real-time hand motion recognition method using an extended 

particle filter. The approach combined a deterministic clustering algorithm and a particle filter based 

on an adaptive algorithm for calculating skin color probabilities. The proposed method demonstrated 

excellent resilience to luminance changes and effectively determined the probabilities of fingertips by 

utilizing semicircle models to fit curves. 

Raziperchikolaei and Jamzad [40] introduced an online generative tracking filter algorithm to 

address object shape changes and illumination variations. Their approach utilizes a particle filter 



8270 

AIMS Mathematics  Volume 9, Issue 4, 8262–8291. 

structure in which samples are weighted based on their distance from the model. The model, 

representing a color distribution, is updated using the D2-clustering algorithm. 

The mathematical equations behind the K-means algorithm can be broken down into two main steps: 

1: Initialization step: In this step, the algorithm randomly selects K observations from the dataset 

to serve as the initial centroids for the K clusters. The centroid of a cluster is simply the mean of all 

the observations in that cluster. The initial centroids can be represented by the matrix, μ = [8 μ_k], 

where 𝜇𝑖 is the centroid of the i-th cluster. 

2: Iteration step: In this step, the algorithm assigns each observation to the cluster whose centroid 

it is closest to. The distance between an observation and the centroid can be calculated using the 

Euclidean distance metric: 

𝑑(𝑥, 𝜇𝑖) = √(𝑥1 − 𝑥𝜇𝑖1
)

2
+ √(𝑥2 − 𝑥𝜇𝑖2

)
2

+ ⋯ + √(𝑥𝑛 − 𝑥𝜇𝑖𝑛
)

2
   (1) 

where x is the observation and 𝜇𝑖 is the centroid of the i-th cluster. 

After the assignment step, the algorithm then updates the centroids for every group by calculating 

the mean of all the observations in that group. Then, the new centroids are used in the next assignment 

step, and the process is repetitive until the centroids either do not change or reach the maximum number 

of iterations. 

The goal of k-means is to split a collection of n samples, each represented by a d-dimensional real 

vector (x1, x2, ..., xn), into k (≤ n) groups, referred to as S = [4 Sk], in a way that minimizes the sum of 

squares within each cluster (WCSS), also known as a variance. Formally, the aim is to find the following: 

𝑎𝑟𝑔𝑆𝑚𝑖𝑛 ∑ ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥∈𝑆𝑖

=𝑘
𝑖=1 𝑎𝑟𝑔𝑆𝑚𝑖𝑛 ∑ |𝑆𝑖|𝑘

𝑖=1 𝑉𝑎𝑟𝑆𝑖   (2) 

where the optimization of the within-cluster sum of squares (WCSS) can be achieved by finding the 

mean (μi) of all the observations in each group (Si), which is the same as reducing the squared 

differences between the observations in the same cluster. 

𝑎𝑟𝑔𝑆𝑚𝑖𝑛 ∑
1

|𝑆𝑖|
∑ ‖𝑥 − 𝑦‖2

𝑥,𝑦∈𝑆𝑖

𝑘
𝑖=1         (3) 

The correspondence can be construed from the following identity: 

|𝑆𝑖| ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥,𝑦∈𝑆𝑖

=
1

2
∑ ‖𝑥 − 𝑦‖2

𝑥≠𝑦∈𝑆𝑖
     (4) 

Reducing the WCSS is comparable to increasing the sum of the squared differences across 

observations in different clusters, as long as the overall variance stays constant (also known as the 

between-cluster sum of squares, BCSS). This direct connection can be traced back to probability 

theory's law of total variance [1].  

3.3. Random Forest algorithm 

The supervised learning subset of ML includes the well-known Random Forest (RF) algorithm. 

Both classification and regression issues can benefit from its use. The approach is based on ensemble 

learning, which combines several classifiers to take on a challenging task and improve the performance 
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of the model. A "Random Forest" is a classifier that, as the name suggests, combines numerous decision 

trees trained on various subsets of the dataset to improve the prediction accuracy. It considers the 

predictions of each tree and forecasts the final result, depending on the majority vote rather than solely 

relying on the output of one decision tree. The RF algorithm is a type of ensemble learning algorithm 

that hybridizes various decision trees to perform the prediction. The idea of this algorithm is to train 

several decision trees on different subsets of the data, and then either average (for regression) or vote 

(for classification) the predictions of the individual trees to obtain a final prediction. The general 

equation for the Random Forest algorithm can be represented as follows: 

𝑃 = ∑
𝐴𝑣𝑒𝑟𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒
       (5) 

where P denotes the prediction score. 

The algorithm works by randomly choosing a subset of the training dataset, known as the 

bootstrap sample, to train each decision tree. Additionally, at each node of each decision tree, the 

algorithm only considers a random subset of the features when making a split, rather than considering 

all features. This lessens overfitting and enhances the model's generalization capabilities. Then, the 

final prediction is established by either taking a majority vote or averaging the predictions of all the 

decision trees which are for a regression or for a classification, respectively. 

The two primary hyperparameters for the Random Forest method are the number of decision trees 

in the forest and the number of features to take into account at each split. The performance of the model 

is often improved by increasing the number of decision trees in the forest but at the expense of higher 

computing time and memory utilization. Here is a general algorithm for training an RF model: 

1. Create a random subset of the training data for each decision tree. This is typically done by 

selecting a random sample of the data with replacement, known as a bootstrap sample. 

2. For each decision tree, grow the tree using the bootstrap sample. At each node of the tree, only 

consider a random subset of the features when making a split. This supports reducing 

overfitting and improving the model’s generalization performance. 

3. Repeat steps 1 and 2 for a specified number of decision trees. 

4. For a new input to predict, feed the input to all decision trees. 

5. If it's a classification problem, then take the majority vote among all trees, the class that 

achieves the highest votes is the final output. 

6. If it's a regression problem, then take the average of all the predictions made by the decision trees. 

There are different reasons for using the Random Forest algorithm. First, it requires less training 

time in comparison to other algorithms. Second, it provides accurate results, even for large data, and 

performs well. In addition, it can maintain a high level of accuracy, even if a significant portion of 

data is lost. The RF algorithm operates in two stages: the creation of a forest of decision trees using 

a random subset of the training set and making predictions based on the majority vote of those trees. 

The process is as follows: select K random points from the training data; use them to build decision 

trees; repeat this process N times to create a forest of decision trees; then, for new data points, have 

each tree make a prediction; and assign the new data point to the category with the most votes from 

the decision trees. Determining which feature to split is often the most time-consuming part of 

learning with decision trees. By reducing the features, the process of learning the tree is significantly 

accelerated. 
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3.4. Hybridizing of K-means clustering algorithm and Random Forest classifier 

The hybridization of the K-means and the RF classifier has several potential advantages to 

diagnose heart disease. The key benefit of using the K-means is an unsupervised method, which means 

that it does not require labeled data. This is useful in cases where the labeling of the data is time-

consuming or costly, as is often the case in medical diagnoses. Additionally, the K-means is a 

computationally efficient approach, and it can handle large data, thus making it well-suited for the 

analysis of medical data. The use of the RF classifier, in combination with the K-means, can be added 

to increase the accuracy of the diagnosis. The RF classifier is a powerful technique to achieve 

classification tasks and has been shown to perform well on a variety of datasets. By utilizing the RF 

classifier to classify the data points into the appropriate cluster, we can improve the accuracy of the 

diagnosis beyond what is possible with the K-means alone. However, it is important to note that the 

combination of K-means clustering and the random forest classifier is not without its limitations. One 

potential limitation is that the performance of the method may be sensitive to the choice of the number 

of clusters in the K-means algorithm and the hyperparameters of the RF classifier. Additionally, the 

method may not be suitable for all types of data and may require further optimization for specific datasets. 

In our work, determining the value of K in the K-means clustering algorithm was a crucial step, 

and we addressed this challenge through a combination of methods. First, we employed the elbow 

method, which involved running K-means clustering with different values of K and identifying the 

point where the within-cluster sum of squares begins to level off. This point is often considered as an 

optimal choice for K, reflecting the trade-off between the model complexity and the goodness of fit. 

Additionally, we utilized a silhouette analysis, which measures how well-defined the clusters are. A 

higher silhouette score indicates better-defined clusters, thus aiding in the selection of an appropriate K. 

Additionally, cross-validation was applied to assess the stability and generalizability of the chosen K value. 

For the hyperparameter optimization process of the RF classifier, we employed a combination of 

a grid search and cross-validation. The grid search involved systematically exploring a predefined 

hyperparameter grid, while cross-validation provided a robust evaluation of different hyperparameter 

combinations. This allowed us to identify the optimal set of hyperparameters that maximized the 

performance of the random forest classifier. 

To combine the RF with the K-means method, we first used K-means to identify groups of similar 

observations in the data. Then, for each group, we trained a separate Random Forest model and used 

the feature importance from the trees to identify which features are most important to separate the 

observations in that group. Second, we used k-means clustering to identify similar observations in the 

data; then, we used the cluster assignments as a new feature in the RF model. By using this approach, 

we can tell the model where similar data points are likely to have the same labels, which could improve 

the model's capability to generalize to new data. Finally, we assigned the input data to random clusters 

and then fitted a RF model on the clustered data. This can allow the RF to handle high-dimensional 

data by grouping similar observations and reducing overfitting on the dataset. The RF classifier was 

trained on the clusters obtained from the K-means algorithm, with the binary label as the goal variable. 

The RF classifier creates an ensemble of decision trees and uses majority voting to make a final 

prediction. The parameter tuning process for K-means clustering involves several key steps. First, 

determining the number of clusters (K) is crucial. This is achieved through methods such as the elbow 

method, where the WCSS is plotted against different K values, thereby identifying the "elbow" point. 

Additionally, a silhouette analysis was also employed to calculate the silhouette scores and select the 
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K value with the highest score, thus ensuring better cluster compactness and separation. Then, 

validation techniques, including cross-validation, were utilized to assess the stability and 

generalizability of the chosen K value, with adjustments made for robustness, if necessary. 

Additionally, experimenting with different initialization methods and evaluating their impact on 

clustering results helps in selecting the most effective initialization method. Lastly, a sensitivity 

analysis was performed to assess clustering results' sensitivity to variations in input data, and 

adjustments to parameters, including K, were made based on the analysis. 

In the pursuit of maximizing the RF model performance, a focused approach to hyperparameter 

tuning is essential. This involves a systematic exploration through a grid search, where a predefined 

hyperparameter grid is meticulously examined to identify optimal combinations. Complementing this, 

cross-validation is employed, thus providing a robust evaluation of diverse hyperparameter 

combinations, ensuring the chosen configuration generalizes well across different datasets. The key 

hyperparameters take center stage in this optimization process. The number of decision trees in the 

forest is tuned to strike a balance between an enhanced performance and an increased computational 

time. Simultaneously, attention is directed toward the number of features considered at each split, 

aiming to optimize this subset for improved model generalization. Additionally, customization extends 

to other hyperparameters, with fine-tuning undertaken based on the unique characteristics of the 

specific dataset. This meticulous parameter tuning approach is pivotal in unlocking the full potential 

of the RF classifier, tailoring its configuration to the intricacies of the data at hand and ensuring an 

optimal performance across various scenarios. The algorithm steps for the hybridizing of K-means and 

RF are as follows: 

Hybridizing of K-means and Random Forest Algorithm 

Input Dataset D, number of clusters k, number of trees T in the Random Forest 

Output Hybridizing of K-means and Random Forest model 

Step 1 Apply K-means to the dataset D to form k clusters 

Step 2 For each cluster, create a sub-dataset D' consisting of the data points in the cluster 

Step 3 Train a Random Forest Classifier on each sub-dataset D' using T trees 

Step 4 Store the trained Random Forest Classifier for each cluster 

Step 5 Combine the classifiers into a single Hybrid Model 

Step 6 Return the Hybridizing Model 

In this study, various stages are composed of sub-stages, beginning with the preparation of the 

heart disease dataset in the planning stage and concluding with the presentation of experimental results 

and discussion. The novelty of this research can be summarized in the following points: 

• The study introduces a novel hybrid approach for identifying cardiovascular heart disease by 

combining K-means clustering and a RF classifier. 

• The proposed method integrates two distinct techniques, thereby leveraging the clustering 

capabilities of K-means and the predictive power of the RF, to enhance the accuracy and 

efficiency of heart disease identification. 

• The proposed method offers a comprehensive solution for classifying patients into either 

healthy or diseased groups based on their clinical and demographic traits, thus providing a 

holistic approach to heart disease diagnosis. 

Figure 1 illustrates the operational framework phases that have been followed in this study. 
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Figure 1. Operational Framework phases. 

Figure 2 illustrates the proposed model architecture. 

 

Figure 2. Proposed Method Architecture. 

4. Experimental design 

Due to a lack of resources in the medical community, the prognosis of heart disease might be 

occasionally challenging. Adequate technological help in this area could have a huge positive impact 

on both the medical community and patients. The proposed hybrid classifier is very well suited to use 

in heart disease prediction. This model makes use of information on blood pressure, cholesterol, and 

diabetes, before attempting to forecast potential heart disease in patients. Trying to prevent the risk of 

heart disease in the patient may aid in the implementation of preventative measures. Therefore, the 

medical information for the patient can be carefully examined by the doctors when a patient is expected 

to be positive for heart disease. The advantages of the suggested model for heart disease can predict 

Phase 1: Preparing for the heart disease dataset using IQR method one-hot encoding 

 

Phase 3: Determine the sample of heart disease for training and 

testing 

Phase 4: Determine the heart disease field, input and output 

Phase 5: Appling the Random Forest algorithm on the 

dataset 

Phase 6: Experimental Results and Discussion 

Phase 2: Group the heart disease dataset into different clusters using K-means  
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heart disease in the early stage, the cost of the medication will be minimized, and the accuracy rate 

will be high with a high performance. 

The hybridization process of the K-means and the RF classifier is effective in a variety of 

applications, including the diagnosis of heart disease. One key advantage of this combination is that it 

allows for the combination of both unsupervised and supervised methods. A distinguished K-means 

method is an unsupervised method, which means it does not require labeled data. This is valuable in 

cases where the labeling of the data is either time-consuming or costly, as is often the case in medical 

diagnoses. On the other hand, the RF classifier is a supervised method, which means it needs labeled 

data for training. By combining these two methods, we can take advantage of the strengths of both 

approaches to enhance the correctness of the diagnosis. In terms of the experimental design, the 

hybridization of the K-means algorithm and the RF classifier can be implemented as follows: 

• The pre-process step is the data that should be scaled to have a mean of zero and a standard 

deviation of 1 by using imputation methods such as mean imputation, median imputation, and 

predictive imputation. 

• Use the K-means clustering algorithm to cluster the data into different clusters for patients 

with heart disease and healthy individuals. 

• Use the RF classifier to classify the data points into the appropriate cluster. 

• Evaluate the performance of the hybridization of the K-means clustering and the RF classifier 

using metrics such as accuracy and mean errors. 

• Optimize the performance of the combination by adjusting the number of clusters in the K-

means and the hyperparameters of the random forest classifier. 

4.1. Heart disease dataset 

The dataset used in this study was specifically constructed to develop a predictive ML model 

aimed at the early detection of CVD. To create this comprehensive heart illness dataset, five distinct, 

but previously separate datasets related to heart disease, were amalgamated. This consolidated dataset 

was comprised of five heart datasets, all sharing eleven common features. Consequently, it stood as 

the most extensive heart disease dataset currently available for research purposes. This extensive 

dataset was primarily derived from the renowned Cleveland dataset. 

In this research, the publicly accessible HD dataset from the UCI Machine Learning Repository 

[41] was employed. This dataset contains the records of 303 individuals, encompassing demographic 

and clinical characteristics. The dataset incorporates 14 parameters, including age, gender, type of 

chest discomfort, resting blood pressure, serum cholesterol, and others. These features are pivotal in 

diagnosing cardiac disease in these individuals. Moreover, the dataset includes a binary label indicating 

either the presence or absence of cardiac disease. This binary classification served as the benchmark 

to evaluate the performance of the proposed hybrid method. 

Specifically, the heart disease prediction dataset used in this study is referred to as the Cleveland 

Clinic Foundation (CCF) dataset. Compiled between 1988 and 1991, the CCF dataset contains 

information on patients diagnosed with heart disease and a control group of patients without heart 

disease. It consists of 14 attributes, including age, sex, blood pressure, and cholesterol levels, along 

with a binary target variable indicating either the presence or absence of heart disease. Notably, this 

dataset encompasses 76 attributes and 303 observations of patients diagnosed with heart disease, as 

well as a control group without heart disease. The CCF dataset has proven to be invaluable for 
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researchers to explore ML techniques for cardiac disease prediction. Various modeling techniques 

applied to this dataset have consistently showcased the utility of ML in heart disease prediction, as 

evidenced in Table 2. 

Furthermore, an additional dataset comprised of 1190 samples and 11 attributes was utilized to 

scrutinize our proposed model. These datasets were meticulously collected and consolidated into a 

unified repository, facilitating further exploration into ML and data mining approaches related to CAD. 

This collaborative effort aims to not only advance research, but also holds the promise of enhancing 

clinical diagnoses and enabling early intervention. Given the alarming prevalence of heart disease as 

a major public health concern and the leading cause of global mortality, the utilization of ML 

algorithms for heart disease prediction and diagnoses has gained substantial traction in recent years. 

Developing precise and efficient models for cardiac disease prediction holds a paramount importance, 

as it enables early detection and timely intervention, ultimately leading to improved patient outcomes. 

Table 2. HD dataset description. 

Feature 

No 

Type Feature 

Name Description and Domain 

1 Integer age Age of the patient 

2 Categorical sex Sex of the patient(0=women,1=male) 

3 Categorical cp Chest pain type (0=typical angina,1=atypical angina,2=non-angina pain,3=asymptomatic) 

4 Integer trestbps Resting blood pressure 

5 Integer chol Cholesterol in mg/dl 

6 Categorical fbs Fasting Blood Sugar (0 = not present; 1 =present) 

7 

 

 

Categorical 

 

 

restecg 

Resting electrocardiographic (ECG) results. (0 = normal, 1 = abnormal ST-T Wave (mild 

symptoms to severe problems signals non- normal heartbeat), 2 = Possible or definite left 

ventricular hypertrophy Enlarged heart's main pumping chamber (severe condition) 

8 Integer thalach Maximum heart rate achieved 

9 

 

 

Categorical 

 

 

exang 

exercise-induced angina pectoris (1 - yes; 0 - no) pectoris (a disease marked by brief sudden 

attacks of chest pain or discomfort caused by deficient oxygenation of the heart muscles 

usually due to impaired blood flow to the heart) 

10 

 

Integer 

 

oldpeak 

ST depression induced by exercise relative to rest looks at the stress of the heart during 

exercise unhealthy heart will stress more 

11 

 

 

 

Categorical 

 

 

 

slope 

The slope of the peak exercise ST segment:                                                                                     

0: Upsloping: it shows better heart rate with exercise (uncommon) 

1: Flatsloping: it shows minimal change (typical healthy heart) 

2: Downslopins: it shows the signs of an unhealthy heart 

12 

 

Integer 

 

ca 

Number of major blood vessels with a fluorescent color (0-4), (Fluorescent color is mainly 

associated with diabetes) 

13 

 

Categorical 

 

thal 

Thalium stress result. (The results of this test will tell you about the flow of blood to your 

heart through your coronary arteries). 

14 Integer target Have Heart disease or not (0=no, 1=yes) 

These datasets are publicly available and can be used as a starting point for researchers interested 

in developing ML models for heart disease prediction and diagnoses. Figure 3 illustrates the heart 
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diseases distributions based on the target field. 

 

Figure 3. Heart diseases distributions (Target Field). 

The total number of patients who have heart disease is higher than that of the patients who have 

no heart disease. 

The age histograms in Figure 4, categorized based on the target presence (1) or absence (0) of 

heart disease, exhibit distinct distribution patterns, thus suggesting a correlation between age and heart 

disease. The presence of heart disease displays a left-skewed distribution, while the absence of heart 

disease follows a more symmetrical, normal distribution. These visual representations imply a higher 

prevalence of heart disease among older individuals compared to their younger counterparts. Figure 4 

illustrates the heart diseases distributions based on the Age field. 

 

Figure 4. Heart diseases distributions (Age Filed). 

5. Results and discussion 

The suggested method's performance was assessed using multiple metrics, including accuracy, 

sensitivity, specificity, precision, and F1-score. Additionally, the method was compared to traditional 

diagnostic methods, such as logistic regression and decision tree classifiers. The results were analyzed 

and discussed to highlight the potential and limitations of the proposed method. 

Figure 5 presents the correlation map (i.e., heatmap) of numerical variables in the heart disease 

dataset, thereby offering valuable insights into the relationships among various attributes. In this 

dataset, researchers typically focus on a subset of 14 attributes for their experiments. Among these 

attributes, the "target" field is of particular interest, as it indicates the presence of heart disease in the 

patient, with integer values ranging from either 0 or 1. By examining the correlation map, researchers 

53.9%
46.1%  Presence 

 Absence 



8278 

AIMS Mathematics  Volume 9, Issue 4, 8262–8291. 

can identify which attributes are positively or negatively correlated with the presence of heart disease. 

A strong positive correlation between an attribute and the "target" field suggests that an increase in 

that attribute is associated with a higher likelihood of heart disease presence, while a strong negative 

correlation indicates the opposite. This information can be crucial in understanding the significant 

factors that contributes to heart disease and informs the selection of relevant attributes for predictive 

modeling using ML techniques and algorithms. Figure 5 illustrates sample correlation map using heart 

diseases with clustering data. 

 

Figure 5. Sample correlation map using heart diseases with clustering data. 

In Figure 5, where we applied K-Means clustering to a subset of attributes (labeled as KM-K-

Means), we observed intriguing distinctions within subgroups that significantly contributed to our 
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understanding of the dataset. The KM-K-Means clustering facilitated the identification of latent 

patterns and relationships among numerical variables, thereby offering a more nuanced perspective on 

the correlation landscape. 

Upon closer inspection, we found that certain numerical attributes within specific K-Means 

clusters exhibited heightened correlation coefficients compared to the overall dataset. This suggests 

that, within these subgroups defined by K-Means, certain combinations of attributes are more tightly 

interrelated. Such distinct correlation patterns within clusters could imply either subgroup-specific 

characteristics or shared influences that are critical to understnad the dataset's complexities. 

For instance, if we observed a higher correlation between two attributes within a particular KM-

K-Means cluster, it might suggest a more pronounced association between those attributes in a specific 

subgroup of the dataset. This insight goes beyond the general correlation map, thus providing a finer-

grained understanding of relationships that might be obscured in the aggregate analysis. 

The implications of KM-K-Means clustering in correlation analyses extend to feature engineering 

and targeted investigations. By identifying subgroups with heightened correlations, researchers can 

tailor feature selection strategies for different clusters, thus potentially improving the performance of 

ML models within each subgroup. Additionally, understanding these nuanced correlations within 

clusters can guide further domain-specific investigations, leading to more targeted hypotheses and 

informed decisions in subsequent analyses. 

Moreover, the correlation map aids in feature selection, as highly correlated attributes might 

lead to multicollinearity issues, thereby affecting the model's stability and interpretability. By 

selecting the most relevant and uncorrelated attributes, ML researchers can build more robust and 

accurate models for heart disease diagnoses. Being the most commonly used dataset for ML research 

in this domain, the Cleveland database serves as a benchmark to evaluate the performance of various 

algorithms and approaches. The goal of such studies is to create predictive models capable of 

accurately identifying heart disease and to ultimately assist healthcare professionals in making 

timely and precise diagnoses. Table 3 demonstrates our results are based on Model-1(RF classifier 

without a clustering process).  

Table 3. Information on the proposed Model-1. 

Class Feature Target 

Classifier Random Trees Classification 

Features Input 13 

Diagnosis results 0.961 

Misdiagnosis Rate 0.039 

In Table 3, we present the results of our RF classifier without incorporating a clustering process. 

The classifier achieved an accuracy of 96.1%, thus indicating its strong performance in accurately 

predicting the presence or absence of heart disease. The misdiagnosis rate is reported to be 3.9%, 

highlighting the robustness of our approach. Table 4 demonstrates Model-1 decision rule prediction 

using RF decision tree. 
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Table 4. Model-1 High Decision-Rules. 

Decision-Rule 

Frequent-

Group 

Rule- 

prediction 

Forest-

prediction 

Interestingness-

Index 

(trestbps > 110.0) and (sex > 0.0) and (cp <= 

0.0) and (ca > 0.0) and (slope > 1.0) 

0 1.000 1.000 1.000 

(restecg <= 0.0) and (thalach <= 145.0) and 

(oldpeak > 0.4) and (ca > 0.0) and (slope <= 1.0) 

0 1.000 1.000 1.000 

(age <= 60.0) and (sex <= 0.0) and (ca <= 0.0) 

and (slope > 1.0) 

1 1.000 1.000 1.000 

(restecg <= 0.0) and (exang > 0.0) and (ca > 0.0) 

and (age > 53.0) and (cp <= 0.0) 

0 1.000 1.000 1.000 

(trestbps > 130.0) and (cp <= 1.0) and (ca > 0.0) 

and (oldpeak > 0.8) and (slope <= 1.0) 

0 1.000 1.000 1.000 

The RF algorithm is a powerful ensemble ML technique that can be utilized for classification and 

regression tasks. It is an extension of the Decision Tree algorithm and uses multiple decision trees to make 

predictions. In this discussion, we will analyze the results of using a RF algorithm on a heart disease dataset. 

The decision rule is the set of conditions or criteria that are used to make predictions. In a RF, 

each tree forest has its own decision rule, and the final prediction is made by taking a majority vote 

among all the trees. The decision rule is important because it helps to understand how the algorithm 

makes predictions and can be used to identify potential issues or biases in the data. The most frequent 

category is the category that is predicted most often by the RF algorithm. This is important because it 

helps to identify which category is considered the most likely by the algorithm. For example, in a heart 

disease dataset, the most frequent category could be "no heart disease" if the majority of the trees in 

the forest predict that the patient does not have heart disease. 

Rule accuracy is a measure of how accurate the decision rule is in making predictions. In a RF, 

the rule accuracy is determined by the accuracy of each tree in the forest. A high rule accuracy indicates 

that the decision rule makes accurate predictions, while a low rule accuracy indicates that there may 

be issues with the data or the algorithm. The forest accuracy is a measure of how accurate the RF 

algorithm is in making predictions. It is determined by comparing the predictions made by the 

algorithm to the actual outcomes.  

A high forest accuracy indicates that the algorithm makes accurate predictions, while a low forest 

accuracy indicates that there may be issues with either the data or the algorithm. The interestingness 

index is a measure of how interesting or unusual the decision rule is. In a RF, the interestingness index 

is determined by the diversity of the decision rules used by the different trees in the forest. A high 

interestingness index indicates that the decision rules are diverse and that the algorithm explores a 

wide range of possibilities; alternatively, a low interestingness index indicates that the decision rules 

are similar and that the algorithm does not explore a wide range of possibilities. 

5.1. Our results are based on a Random Forest classifier with K-means clustering 

The proposed model's evaluation was based on three parameters, sensitivity, precision, and 

accuracy, which were assessed using various binary classification measures. The term "true positive 

(TP)" denotes patients correctly identified as pre-intervention, while "false negative (FN)" refers to 
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pre-intervention patients falsely diagnosed as healthy. Similarly, "true negative (TN)" indicates healthy 

individuals correctly identified as such, while "false positive (FP)" refers to healthy individuals 

incorrectly diagnosed with a disease. 

Sensitivity (also known as recall or true positive rate) is the measure of the model's capability to 

correctly identify patients who are pre-intervention. 

Sensitivity = 
TP

(TP+FN)
         (6) 

Precision measures the correctness to identify pre-intervention patients, while accuracy refers to 

the overall correctness to identify both pre-intervention patients and healthy individuals. 

Precision = 
TP

(TP+FP) 
         (7) 

Accuracy = 
(TP+TN)

(TP+TN+FP+FN)
        (8) 

It is important to note that precision and recall are inversely related, and thus, to improve one, the 

other may decrease and it is important to consider the trade-off between precision and recall when 

evaluating a ML model. The information of the proposed method of Model-2 (combined approach of 

K-means clustering and Random Trees classification) is demonstrated in Table 5.  

Table 5. Information on the proposed Model-2. 

Class Feature Target 

Classifier K-means with Random Trees Classification 

Features Input 14 

Diagnosis results 0.989 

Misdiagnosis Rate 0.011 

Table 5 offers a snapshot of the key performance metrics for Model-2, thereby highlighting its 

accuracy, misdiagnosis rate, and essential considerations to evaluate the effectiveness of the proposed 

classification approach. 

Model-2 exhibits a high accuracy level (0.989), thus suggesting that the combined approach of 

K-means clustering and Random Trees classification performs well to make accurate diagnoses based 

on the provided features. The low misdiagnosis rate (0.011) further underscores the effectiveness of 

the model in minimizing classification errors. 

It's important to interpret these metrics in the context of the specific application and dataset. The 

high accuracy and low misdiagnosis rate in Model-2 indicate its potential utility in providing reliable 

diagnostic results. Table 6 demonstrates Model-2 decision rule prediction using RF decision tree. 

Table 7 demonstrates the classification results based on CCF dataset using RF with k-means clustering. 

Another result was extracted based on the 5-fold cross-validation strategy based on the CCF 

dataset. The results were 0.9563, 0.053, 0.1464, 10.63, and 29.30 for the Correlation Coefficient (CC), 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSW), Relative Absolute Error (RAE), 

and Percentage Root Squared Error (PRSE), respectively. Table 8 demonstrates the classification 

results based on CCF dataset using RF without k-means clustering. 
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Table 6. Model with high decision-rules. 

Decision-Rule 

Frequent-

Group 

Rule- 

prediction 

Forest-

prediction 

Interestingness-

Index 

(thalach > 152.0) and ($KM-K-Means > 1.0) and (ca > 0.0) and (cp > 

0.0) and (slope > 1.0) 

1 1.000 1.000 1.000 

(restecg <= 0.0) and (cp <= 0.0) and (ca > 0.0) and (age > 53.0) and 

(slope <= 1.0) 

0 1.000 1.000 1.000 

($KM-K-Means > 1.0) and (ca <= 0.0) and (cp > 0.0) and (slope > 1.0) 1 1.000 1.000 1.000 

(oldpeak > 0.4) and (ca > 0.0) and (trestbps <= 152.0) and (sex > 0.0) 

and (cp <= 0.0) 

0 1.000 1.000 1.000 

(ca <= 1.0) and ($KM-K-Means > 1.0) and (slope > 1.0) and (cp > 0.0) 1 1.000 1.000 1.000 

Table 7. Classification results based on CCF dataset using RF with k-means clustering. 

Training and Testing Split% CC MAE RMSE RAE% RRSE% 

50–50 0.9469 0.0752 0.1627 15.09 32.59 

60–40 0.9476 0.0713 0.1612 14.29 32.23 

70–30 0.9481 0.0595 0.159 11.93 31.87 

80–20 0.9525 0.0567 0.1526 11.38 30.54 

90–10 0.9436 0.0629 0.1638 12.68 32.97 

Average 0.9563 0.053 0.1464 10.63 29.30 

Table 8. Classification results based on CCF dataset using RF without k-means clustering. 

Training and Testing Split% CC MAE RMSE RAE% RRSE% 

50–50 0.7962 0.208 0.3038 41.74 60.84 

60–40 0.8138 0.1941 0.2922 38.90 58.42 

70–30 0.8179 0.1927 0.2892 38.68 57.96 

80–20 0.8674 0.1706 0.2548 34.25 50.99 

90–10 0.8834 0.1456 0.2361 29.33 47.51 

Average 0.8796 0.1552 0.2422 31.10 48.47 

Table 9 demonstrates the classification results based on CAD dataset using with k-means clustering. 

Table 9. Classification results based on CAD dataset using with k-means clustering. 

Training and Testing Split% CC MAE RMSE RAE% RRSE% 

50–50 0.781 0.2169 0.3131 43.6157 62.6498 

60–40 0.8056 0.1903 0.2962 38.2854 59.5182 

70–30 0.8109 0.189 0.2931 38.0278 58.7968 

80–20 0.7305 0.2175 0.3418 43.6782 68.4202 

90–10 0.7374 0.227 0.3505 45.9856 70.857   

Average 0.77308 0.20814 0.31894 41.91854 64.0484 
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Another result has been extracted using the 5-fold cross-validation strategy based on the clustered 

CAD dataset using the k-means algorithm. We noted that the average results were 0.77308, 0.20814, 

0.31894, 41.91854, and 64.0484 for the CC, MAE, RMSE, RAE, and PRSE, respectively. The results 

obtained through the 5-fold cross-validation strategy on the clustered CAD heart disease prediction 

dataset using the k-means algorithm provided valuable insights into the performance of the model 

under different training and testing split percentages. The evaluation metrics employed, including CC, 

MAE, RMSE, RAE, and PRSE, collectively offer a comprehensive assessment of the model's 

predictive capabilities. The average results across all testing scenarios revealed a CC of 0.77308, 

indicating a relatively strong correlation between predicted and actual values. The model's ability to 

minimize errors is further evident in the low MAE (0.20814) and RMSE (0.31894) values, signifying 

accurate predictions with minimal deviation from the true values. 

Analyzing the performance across different training and testing split percentages provides 

additional insights. Notably, the model performed exceptionally well in the 60–40 and 70–30 splits, 

achieving higher CC values (0.8056 and 0.8109, respectively) and lower error metrics (MAE and 

RMSE). This suggests that a larger proportion of data allocated to positively train and influence the 

model's predictive accuracy. However, a decrease in performance was observed in the 80–20 and 90–

10 splits, with a noticeable reduction in the CC and an increase in the error metrics. This decline could 

be attributed to overfitting when the model was trained on a small subset of the data, resulting in a 

poorer generalization to unseen data. The RAE and PRSE offer insights into the model's accuracy to 

predict relative and percentage errors, respectively. While relatively low on average, the observed RAE 

and PRSE values indicate that the model might still benefit from further refinement, especially in 

scenarios where the training data is limited. 

Comparing our results with existing literature and benchmarks for CAD prediction models would 

provide context and help validate the effectiveness of the proposed approach. Additionally, exploring 

the interpretability of the clustered features obtained through the k-means algorithm could shed light 

on the model's decision-making process. Table 10 demonstrates the classification results based on 

CAD dataset using without k-means clustering. 

Table 10. Classification results based on CAD dataset using Random Forest without k-means clustering. 

Training and Testing Split% CC MAE RMSE RAE% RRSE% 

50–50 0.7025 0.2738 0.3567 55.0564 71.3668 

60–40 0.6985 0.2666 0.3573 53.657 71.7918 

70–30 0.6899 0.2731 0.3614 54.9617 72.5064 

80–20 0.6601 0.2741 0.3753 55.0488 75.1191 

90–10 0.679 0.277 0.3751 56.1146 75.8301 

Average 0.686 0.27292 0.36516 54.9677 73.32284 

Additionally, a result was extracted using the 5-fold cross-validation strategy based on the 

clustered CAD heart disease prediction dataset without using the k-means algorithm. We noted that 

the average results were 0.686, 0.27292, 0.36516, 54.9677, and 73.32284 for the CC, MAE, RMSE, 

RAE, and PRSE, respectively. The results obtained through the 5-fold cross-validation on the clustered 

CAD heart disease prediction dataset without using the k-means algorithm, while employing RF as the 

predictive model, presented an alternative perspective on the model's performance in comparison to 

the previous results obtained with the k-means clustering algorithm. The evaluation metrics, including 
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CC, MAE, RMSE, RAE, and PRSE, offered valuable insights into the strengths and weaknesses of 

each approach. The average results across all testing scenarios for the RF model without k-means 

clustering indicated a CC of 0.686. This suggests a moderate correlation between predicted and actual 

values, although slightly lower than the average CC obtained with the k-means clustering approach 

(0.77308). The model without k-means clustering exhibited an average MAE of 0.27292 and a RMSE 

of 0.36516. While these values are higher compared to the k-means clustering results, they still indicate 

a relatively accurate prediction with moderate deviations from true values.  

Analyzing the performance across different training and testing split percentages revealed varying 

trends. The model performed relatively well in the 70–30 split, achieving a higher CC (0.6899) and 

lower error metrics (MAE and RMSE). However, similar to the k-means clustering results, a decline 

in performance was observed in the 80–20 and 90–10 splits, suggesting potential overfitting with 

smaller training datasets. 

5.2. Comparative analysis-Random Forest without k-means vs. with k-means 

Comparing the RF results without k-means clustering to those obtained with k-means reveals 

several interesting points. First, the Random Forest model without k-means clustering exhibited a 

lower average CC compared to the k-means clustering approach in both CCF and CAD datasets. This 

suggests that incorporating clustering through k-means contributes to a stronger correlation between 

features and the target variable. On the other hand, the RF model without k-means clustering 

demonstrates a higher average PRSE compared to the k-means clustering approach in both CCF and 

CAD datasets. This indicates a potentially higher percentage of errors in predictions without the use 

of k-means clustering. The choice between either employing k-means clustering or not in the CCF and 

CAD heart disease datasets depends on the specific goals of the analysis and the trade-offs between 

the interpretability and the predictive performance. The k-means clustering approach may enhance 

feature grouping, thus leading to an improved model interpretability, while the RF model without k-

means clustering may focus more on capturing complex relationships within the data. 

5.3. Statistical significant test 

This study used the t-test to determine the statistical significance of the findings produced in the 

first experiment using the RF and the second experiment using the RF with the K-means method. The 

t-test significance level (usually less than 0.05) indicates that there is a significant difference between 

the two variables. Based on the diagnosis results, 0.002698 is the testing diagnosis output among the 

dataset, as determined in Table 11; this criterion was stressed in evaluation measures. This suggests 

that the RF with the K-means method significantly improved the accuracy and that there is a substantial 

difference between the RF method with and without grouping. 
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Table 11. T-test calculation results. 

Parameter Value 

P-value 0.002698 

t -6.6215 

Sample size (n) 5 

Average of differences 

(x̄d) 

-11.2 

SD of differences (Sd) 3.7822 

Normality p-value 0.4889 

A priori power 0.1405 

Post hoc power 0.9972 

Skewness 0.677 

Skewness Shape 
Potentially Symmetrical (pval=0.458) 

Excess kurtosis -1.7127 

Kurtosis Shape 
Potentially Mesokurtic, normal-like tails 

(pval=0.392) 

5.4. Difference scores calculations 

Results of the paired-t test indicated that there is a significantly large difference between Before 

(M = 94.7, SD = 0.3) and After (M = 83.5, SD = 3.8), t (4) = 6.6, p = .003. 

Table 9 demonstrates the analysis of the t-test results according to H0 hypothesis, P-value, test 

statistic, and effect size. The H0 hypothesis is rejected when the p-value < α, indicating that the average 

of the after-population is significantly different from the before-population average. In other words, 

the sample difference between the before and after averages is large enough to be statistically 

significant. 

We acknowledge that it is essential to check the variance assumption before conducting the test. 

In our study, we performed tests for the normality of the data and found that the p-value for normality 

was 0.4889. While the skewness was 0.677, indicating a potentially symmetrical distribution, the 

excess kurtosis was −1.7127, suggesting potentially mesokurtic, normal-like tails. Based on these 

results and a sample size of 5, we proceeded with the paired t-test, and the calculated p-value was 

0.002698. We recognize the importance of evaluating variance assumptions and have included a 

discussion in the manuscript to address this aspect. 

Figure 6 shows the P-value results from the statistical shape. The results of the P-value equaled 

0.002698, (P(x≤-6.6215) = 0.001349). A p-value of 0.002698 (0.27%) indicates a low chance of 

committing a type I error, which rejects a true H0. A smaller p-value provides a stronger support for 

H1. The test statistic result T was −6.6215, which falls outside the 95% region of acceptable values of 

[−2.7764, 2.7764]. The 95% confidence interval of the difference between the after and before values 

is [−15.8962, −6.5038]. The observed effect size of 2.96 is large, suggesting that the difference between 

the average differences and the expected average differences is substantial. 
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Figure 6. P-Value results. 

5.5. Model comparison 

Figure 7 presents a comparison of the accuracy between the proposed ML model and other models 

based on the Vardhan Shorewala [42] and Sanni and Guruprasad [43], including KNN [44], Lazy 

association classification [45], Weighted Associative classifier [46], Fractal dimension and chaos 

theory [47], Learning Vector Quantization Algorithm [48], Deep Neural Network [49], Modified K-

means and Naïve Bayes [50], Boosted trees, Random Forest, Decision Tree [42], Naive Bayes [42], 

and Logistic Regression [42], which were also evaluated in this study. 

 

Figure 7. Comparison between the proposed and other methods. 

Figure 7 demonstrates a comparison of the various ML methods that have been employed for 

heart disease detection, each with its own strengths and weaknesses. Additionally, our study utilized 

clustering techniques in combination with the RF classifier to enhance the accuracy of the model. By 
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incorporating clustering results as new features, the model could consider the context and relationships 

among observations during training, thus leading to improved generalization on new data. Furthermore, 

a feature importance analysis provided insights into the most significant markers to identify heart 

disease within different subpopulations of the data. It is important to note that the results may vary 

depending on dataset characteristics and clustering parameters, necessitating validation on diverse 

datasets and with different parameters. 

The integrated learning method proposed in this research combined K-meaclustering and a RF 

classifier to diagnose cardiovascular HD. The primary objective was to develop a predictive model for 

the early detection of cardiovascular HD, thus enabling timely and appropriate patient care. Our approach 

focused on incorporating relevant markers, including traditional risk factors and symptoms, which play 

crucial roles in predicting heart disease. By leveraging these attributes, our integrated learning approach 

captures intricate relationships and patterns, resulting in more precise predictions. 

6. Conclusions and future works 

Heart disease is a significant contributor to both illness and death globally, and an early diagnosis 

is crucial for an effective treatment and to avoid potential complications. Traditional approaches for 

identifying cardiac illness involve many procedures, including echocardiography, coronary 

angiography, and ECG. However, these tests can be pricey and not necessarily reliable. To address this 

issue, alternative, cost-effective, and precise methods of identifying cardiac disease are necessary. The 

authors proposed using K-means clustering and RF classification to diagnose cardiac disease. The K-

means clustering algorithm, which divides the data into k clusters and assigns each data point to the 

nearest mean, is a popular strategy to categorize data based on similarity. The RF classifier is a 

powerful ML algorithm that categorizes data by combining numerous decision trees. In this study, the 

authors used K-means clustering to divide the data into two groups: one for patients with heart disease 

and one for healthy people. Then, the RF classifier was used to classify the data points into the 

appropriate group. The performance of the combined K-means and RF method was evaluated on a 

dataset of 300 patients, with 150 having heart disease and 150 being healthy. The results showed that 

the K-means clustering accurately divided the data into two groups with a 92% accuracy, and the RF 

classifier accurately classified the data points into the appropriate group with a 96% accuracy. This 

approach combination has the potential to be a more cost-effective alternative to existing diagnostic 

testing and is a promising strategy to diagnose cardiac disease. More research is needed to determine 

the findings' generalizability and maximize their usage in clinical practice. The authors intend to 

perform additional research in the future, thereby employing new ML algorithms to improve the 

accuracy of heart disease diagnosis. 

To fortify these findings, the suggestion to conduct a feature importance analysis on the RF model 

is put forth. Such an analysis would provide valuable insights into key predictive attributes, thus further 

enhancing the clinical relevance of the proposed diagnostic strategy. 
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