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1. Introduction

It is well known that λ is a continuous linear functional on the space of Henstock-Kurzweil
integrable functions on [a, b] if there exists a function ϑ : [a, b] → R of essentially bounded variation
such that

λ( f ) = (HK)-
∫ b

a
ϑ f , (1.1)

(see [1]). For example, in [2, Theorem 12.7] it is proved that

inf
ϑ1=ϑ a.e

Var[ϑ1; [a, b]] ≤ 2‖λ‖

where Var[ϑ1; [a, b]] denotes the total variation of ϑ1.
We present a new method to show that the space of essentially bounded variation functions is in fact

isometric to the dual space of Henstock-Kurzweil integrable functions:

inf
ϑ1=ϑ a.e

Var[ϑ1; [a, b]] = ‖ [ϑ1] ‖BVm = ‖λ‖,
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where [ϑ1] is an element of the quotient space, BVm, of BV with given equivalence relation. It comes
out that

A′ = BVm

is an isometric isomorphism. A′ denotes the dual space of the Henstock-Kurzweil integrable functions
normed with the Alexiewicz norm. For details, see Theorem 3 of this article. In fact, Theorem 1 of [3]
shows that the functionals in the space of Henstock-Kurzweil integrable functions are of the form

(HK)-
∫ b

a
fϑ

where ϑ is a bounded variation function. Modification of the function ϑ on a null set gives rise to the
same continuous linear functional. So, the correspondence between linear functionals and bounded
variation functions is not a bijection. In this paper we show that the dual space of the Henstock-
Kurzweil integrable functions is isometrically isomorphic to the space of essentially bounded variation
functions seen as a quotient space.

We mention also that this result is related to James’ theorem, (see [4, 5]), which assures that in a
non-reflexive space like the one in question not every continuous functional reaches its supremum. But
rather, there must always be values arbitrarily close to the norm of the functional.

Furthermore, in this paper we build the Henstock-Kurzweil integral (abbreviated HK-integral), via
the limit of integrals of functions that are Lebesgue integrable, thanks to the fact that L1[0, 2π] is dense
in the space of Henstock-Kurzweil integrable functions. In fact, on C[0, 2π] we can define the positive
linear form

λ( f ) = lim
n→∞

∫ 2π

0
fn(x)dx,

with the integral in the sense of Riemann and ( fn) converging to f in L1-sense. This leads to the Daniell-
Stone integral and the spaceL1(λ) of integrable functions in this sense. It contains the Riemann integral
and coincides with the usual Lebesgue space L1[0, 2π], (see [6, Theorem 1.1]).

Following a similar idea we can extend the notion of integration, inheriting naturally the properties
of the previous integration theory on which it is based but adding new features. Our proofs of important
results in this theory as the multiplier Theorem are elementary and easy.

2. Extension of the Lebesgue integral

For a given f ∈ L1[0, 2π] one can define the positive linear form

m( f ) :=
∫ 2π

0
f ,

which easily leads to ∣∣∣ m( f )
∣∣∣≤ sup

0≤x≤2π

∣∣∣∣ ∫ x

0
f
∣∣∣∣ . (2.1)

The supremum is known as the Alexiewicz norm of f , denoted as ‖ f ‖A. The linear space L1[0, 2π] with
the Alexiewicz norm is normed but not complete. A basic result is the following:

Lemma 1. The space (L1[0, 2π], ‖ · ‖A) is a normed space.
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Definition 1. The completion of the space L1[0, 2π] under the norm ‖ · ‖A is denoted byA.

The map m can be extended over functions out of L1[0, 2π]. The extension of the linear form m on
A is denoted by the same symbol.

Definition 2. The Henstock-Kurzweil integral is defined onA by

(HK)-
∫ 2π

0
f (t)dt := m( f ) = lim

n→∞
m( fn),

where fn → f in theA-norm.

The prefix (HK) makes it clear that it is not a Lebesgue integral.

Remark 1. Definition 2 agrees with the classical integral of Henstock-Kurzweil (see [7]).

The following results are well known, (see [8, Theorems 1 and 3] and [9, Theorems 2.5.1 to 2.5.12]).

Theorem 1.

(a) The Henstock-Kurzweil integral contains the Lebesgue integral in the sense that

(HK)-
∫ 2π

0
f =

∫ 2π

0
f (∀ f ∈ L1[0, 2π]).

(b) For given f1, f2 ∈ A, and β ∈ R, the equality

(HK)-
∫ 2π

0
( f1 + β f2) = (HK)-

∫ 2π

0
f1 + β(HK)-

∫ 2π

0
f2

is valid.
(c) If f ∈ A and ( fn) ⊂ L1[0, 2π] converges to f inA-norm, then

fχ[0,t] := lim
n→∞

fnχ[0,t] ∈ A,

and F(t) := (HK)-
∫ t

0
f := (HK)-

∫ 2π

0
fχ[0,t] is continuous on [0, 2π].

Definition 3. Let v be a real valued function over R. It is said v is a bounded variation function over
[0, 2π] if

Var[v, [0, 2π]] := sup
n∑

i=1

|v(xi) − v(xi−1)| < ∞

where the supremum is taken over all partitions on [0, 2π].

The space of functions that have finite variation on [0, 2π] is denoted by BV[0, 2π]. In the space
BV[0, 2π] we introduce a norm by

‖v‖BV := |v(2π)| + Var[v, [0, 2π]].

Note that this norm is equivalent to the one in [10, Theorems 2.2.1 and 2.2.2]. Thus BV[0, 2π] with the
given norm is a Banach space.
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In order to give a characterization of the dual space (A)′, we use

L1[0, 2π] ⊆ A ⇒ (A)′ ⊆ L1[0, 2π]′ = L∞[0, 2π].

This allows us to precisely see not only an element of (A)′ as an element in L∞[0, 2π], but also as
an element in the dual space of C[0, 2π]. In fact, C[0, 2π]′ is characterized by Borel measures, which
in turn are related to the space of functions of bounded variation BV[0, 2π], (see [11, Theorem 7.1.1]
and [12, Theorem 6.3.3]).

The multiplier theorem for functions onA is well known, but for the convenience of the reader, we
give a new proof in our context.

Theorem 2. If f ∈ A and ϑ ∈ BV[0, 2π], then fϑ ∈ A. Its integral is given by

(HK)-
∫ 2π

0
f ϑ = ϑ(2π)F(2π) −

∫ 2π

0
F dϑ (2.2)

where F(t) = (HK)-
∫ t

0
f and the integral on the right side of the equation is in the Riemann-Stieltjes

sense.

Proof. First suppose that f ∈ L1[0, 2π]. Since ϑ is a bounded measurable function, then fϑ ∈ L1[0, 2π].
Due to [13, Theorem 3.135], for given f ∈ L1[0, 2π], we can choose a sequence of functions ( fn) ∈
C[0, 2π] converging to f in L1-norm. If Fn(t) :=

∫ t

0
fn, then

‖Fn − F‖∞ = sup
0≤x≤2π

∣∣∣∣ ∫ x

0
fn − f

∣∣∣∣≤ ‖ fn − f ‖L1 → 0. (2.3)

The integration by parts formula for the Riemann-Stieltjes integral and [12, Theorem 6.2.8] imply that∫ 2π

0
ϑdFn exists due to

∫ 2π

0
Fndϑ existing.

Therefore, by the fundamental theorem of calculus and [14, Theorem 7.8] we get∫ 2π

0
fnϑ =

∫ 2π

0
F′nϑ =

∫ 2π

0
ϑdFn = ϑ(2π)Fn(2π) −

∫ 2π

0
Fndϑ. (2.4)

From [15, Corollary H.4] we get∣∣∣∣ ∫ 2π

0
Fndϑ −

∫ 2π

0
Fdϑ

∣∣∣∣≤ ‖Fn − F‖∞ ‖ϑ‖BV → 0.

This inequality and (2.3) yield, after taking limits on both sides of formula (2.4),∫ 2π

0
f ϑ = ϑ(2π)F(2π) −

∫ 2π

0
F dϑ (∀ f ∈ L1[0, 2π]). (2.5)

On the other hand, we can define for ϑ ∈ BV[0, 2π] the multiplication operator

Tϑ : L1[0, 2π]→ A; Tϑ( f ) := ϑ f .
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From (2.5) we get that Tϑ is a bounded operator:

‖Tϑ( f )‖A ≤ c‖ f ‖A (∀ f ∈ L1[0, 2π]), (2.6)

where c is a positive constant. It follows from the Bounded Linear Transformation Theorem [16,
Theorem 1.7] that Tϑ extends uniquely to a bounded operator from the completion of (L1[0, 2π], ‖ · ‖A)
to (A, ‖ · ‖A). Denoting by the same symbol the extension of the operator onA, one has

Tϑ( f ) := ϑ f ≡ fϑ = lim
n→∞

Tϑ( fn) ∈ A

whenever ( fn) converges to f ∈ A. Now, using (2.5) and (2.6) and a sequence L1[0, 2π] 3 fn → f in
theA-norm, we get the validity of the formula for all f ∈ A. This proves the theorem. �

3. Duality and non-reflexivity in the spaceA

In the case of the classical space L1(X; dµ), with X an arbitrary measure space of positive measure µ,
its dual space is the quotient space L∞(X; dµ) = L∞ (X; dµ) /W, where L∞ (X; dµ) denotes the space
of bounded measurable real functions defined in X and

W = { f : X → R : f = 0 a.e.} .

The norm is defined on L∞(X; dµ) as:

‖ f ‖∞ = inf
{
M ≥ 0 : | f | χ[M,∞) ∈ W

}
.

The map g −→ Fg ( f ) =
∫

X
f gdµ is an isometric isomorphism of L∞(X; dµ) onto L1(X; dµ)′ when

(X; dµ) is σ-finite, (see [17, page 375]). We will show an analogous result for the space A. We
introduce the Banach space defined by the quotient space

BVm := BV/Z,

where Z := {v ∈ BV[0, 2π] : v(x) = 0 a.e.}.

Lemma 2. BVm is a Banach space of equivalence classes [v] := { v′ ∈ BV[0, 2π] : v − v′ ∈ Z }, with
the norm given by

‖ [v] ‖BVm := inf
v′∈Z
‖v − v′‖BV .

Proof. We will show that Z is a closed subspace of BV[0, 2π]. Then the statement of the lemma is
implied by a classical result in Functional Analysis [17, Theorem 4.2]. Given a Cauchy sequence
(vn) ⊂ Z in the norm of BV[0, 2π] with limit v, we have that for each n ∈ N, there exists a measurable
set Υn ⊂ [0, 2π] with

vn

∣∣∣
Υn
≡ 0, such that γ(Υc

n) = 0.

Here γ is denoting the Lebesgue measure. Therefore, due to convergence in BV[0, 2π] implying in
particular pointwise convergence, we get

v(x) = lim
n→∞

vn(x) = 0
(
∀ x ∈

⋂
m∈N

Υm

)
.
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Furthermore,
γ
( (
∩m∈NΥm

)c
)
≤

∑
m

γ(Υc
m) = 0.

This proves that the limit v belongs to Z. �

In [18, page 241] the normalized functions are defined. For our purposes we slightly modify that
concept.

Definition 4. Let v ∈ BV[0, 2π]. For x ∈ [0, 2π) we define

v+(x) := lim
t→x+

v(t),

and v+(2π) = 0. We will say that v+ is the normalization in the Alexiewicz sense of the function v. The
set of all such functions will be denoted by NABV[0, 2π].

Lemma 3. Let v ∈ BV[0, 2π]. Then there exists a unique element v+ ∈ [v] belonging toNABV[0, 2π].

Proof. Let u,w ∈ [v] and x ∈ [0, 2π). By [10, Corollary 2.1.23] the limits u+(x),w+(x) exist. Let ε > 0
be given. There exists δ1(ε) > 0, such that if s ∈ (x, x + δ1(ε)) , then

|u+(x) − u(s)| <
ε

2
.

Also, there exists δ2(ε) > 0 such that if s ∈ (x, x + δ2(ε)), then

|w+(x) − w(s)| <
ε

2
.

On the other hand, there necessarily exists y ∈ (x, x + δε) such that

u(y) = w(y)

where δε = min{δ1(ε), δ2(ε)}. So,

|u+(x) − w+(x)| ≤ |u+(x) − u(y)| + |w+(x) − w(y)| < ε

and since ε is arbitrary, we obtain

u+(x) = w+(x) ∀x ∈ [0, 2π]. �

Lemma 4. Given v ∈ BV[0, 2π] its normalization in the Alexiewicz sense v+ belongs to BV[0, 2π].

Proof. Let w ∈ [v]. For an arbitrary partition {x j}
n
j=0 of [0, 2π], let {x′j}

n
j=0 such that x j < x′j < x j+1 for

0 ≤ j ≤ n − 1 and x′n = xn. Given ε > 0, we choose x′j sufficiently close to x j such that

|v+(x j) − w(x′j)| <
ε

2 j

for all j = 0, 1, ..., n − 1. Therefore,
n∑

j=1

|v+(x j) − v+(x j−1)| ≤
n∑

j=1

|v+(x j) − w(x′j)|
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+

n∑
j=1

|w(x′j) − w(x′j−1)| +
n∑

j=1

|v+(x j−1) − w(x′j−1)|

≤ |w(2π)| +
n−1∑
j=1

|v+(x j) − w(x′j)| +
n∑

j=1

|w(x′j) − w(x′j−1)|

+

n∑
j=1

|v+(x j−1) − w(x′j−1)|

≤ |w(2π)| +
n−1∑
j=1

ε

2 j +

n∑
j=1

|w(x′j) − w(x′j−1)| +
n∑

j=1

ε

2 j−1 .

Now, taking the supremum over all partitions on [0, 2π] we get

‖v+‖BV ≤ 3ε + ‖w‖BV .

Since ε is arbitrary, we conclude

‖v+‖BV ≤ ‖w‖BV (∀ w ∈ [v]). �

Corollary 1. If v ∈ BV[0, 2π], then ‖ [v] ‖BVm = ‖v+‖BV .

Theorem 3. The spaces (A)′ and BVm are isometrically isomorphic:

(a) (A)′ = BVm.

(b) For every λ ∈ (A)′, there exists a unique [v] ∈ BVm such that

‖λ‖A′ = ‖ [v] ‖BVm .

Proof. (a) Let l ∈ (A)′. For given f ∈ L1[0, 2π], we take

F0(t) :=
∫ t

0
f ∈ C0[0, 2π] ⊂ C[0, 2π], (3.1)

where C0[0, 2π] consists of the continuous functions vanishing at zero. We define

n(F0) = l(F′0). (3.2)

It follows that,
|n(F0)| = |l(F′0)| ≤ c‖F′0‖A = c‖F0‖∞.

We get a continuous linear functional defined on a subspace of C[0, 2π]. From the Hahn-Banach
Theorem there exists an extension on the space C[0, 2π] with the same norm. We denote this extension
by the same symbol n. Riesz Theorem [19, Theorem 2.14] assures that there exists a unique finite
signed measure ρ so that

n(F0) =

∫ 2π

0
F0 dρ (∀ F0 ∈ C0[0, 2π]).
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By the Jordan Decomposition [11, Theorem 5.1.8] each finite signed measure ρ is the difference of two
measures µ1 and µ2, implying

n(F0) =

∫ 2π

0
F0(t)dµ1 −

∫ 2π

0
F0(t)dµ2.

Substitution in this equation of the equality (3.1) and application of Fubini’s Theorem yield

n(F0) =

∫ 2π

0
f (s)ds

∫ 2π

s
dµ1 −

∫ 2π

0
f (s)ds

∫ 2π

s
dµ2

=

∫ 2π

0
f (s)(µ1([s, 2π] − µ2([s, 2π]))ds (3.3)

=

∫ 2π

0
f (s)v+(s)ds.

Where, v(s) = µ1([s, 2π])−µ2([s, 2π]) for all s ∈ [0, 2π] is a bounded variation function [15, page 104],
and v+ ∈ NABV[0, 2π] is the normalization of v. It yields

l( f ) = l(F′0) = n(F0) =

∫ 2π

0
f v+, (3.4)

where

F0(s) =

∫ s

0
f , (∀ f ∈ L1[0, 2π]).

For f ∈ A, we can take a sequence ( fn) ∈ L1[0, 2π] such that ( fn) converges to f in the A-norm.
Continuity of l ∈ A′ together with (3.4) give

l( f ) = lim
n→∞

∫ 2π

0
v+ fn = (HK)-

∫ 2π

0
v+ f (∀ f ∈ A). (3.5)

Due to v+ ∈ BV[0, 2π] and Lemma 3, we obtain (A)′ ⊂ BVm. The other contention is a consequence
of item (a). In fact, if v ∈ BV[0, 2π], then

λ( f ) = (HK)-
∫ 2π

0
f v+

defines a continuous functional on A, and is associated with a unique element of the quotient space
BVm by Lemma 3. (b) Let λ ∈ (A)′, and from (a) we know that there exists v+ ∈ [v] representing λ.
Corollary 1 and (2.2) imply

‖λ‖A′ ≤ ‖v+‖BV = ‖ [v] ‖BVm . (3.6)

We now prove the reverse inequality. Let {x
′

i}
n
i=1 be a partition such that

n∑
i=1

|v+(x
′

i) − v+(x
′

i−1)| ≥ ‖ [v] ‖BVm − ε.
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We pick up points {xi}
n
i=0 of [0, 2π] as follows: Let x0 = x

′

0 = 0 and xn = x
′

n = 2π. Since v+ has a
countable number of discontinuities, we can find points x

′

i < xi < x
′

i+1 such that v+ is continuous at
every xi. Moreover, we choose each xi close enough to x

′

i so that

|v+(x
′

i) − v+(xi)| ≤
ε

2i , for i = 1, 2, 3, ..., n − 1.

Now we consider the partition {ξi}
2n−1
i=0 = {xi}

n−1
i=1 ∪ {x

′

i}
n
i=0. Note that ξ0 = x0, ξ1 = x

′

1, ξ2 = x1, ξ3 = x
′

2,
ξ4 = x2, ... , ξ2i−1 = x

′

i, ξ2i = xi, ... , ξ2n−3 = x
′

n−1, ξ2n−2 = xn−1, ξ2n−1 = xn.

Let δ > 0 such that δ < min{|ξi − ξi−1|, i = 1, ..., 2n − 1} and consider Fδ,i : [0, 2π] → R, to be a
continuous function defined by

Fδ,i(x) =


0 i f x ≤ xi or x ≥ x

′

i+1 + δ
1
δ
(x − xi) i f xi < x < xi + δ

1 i f xi + δ ≤ x ≤ x
′

i+1
1 − 1

δ
(x − x

′

i+1) i f x
′

i+1 < x < x
′

i+1 + δ

for i = 0, 1, 2, ..., n − 2. So,

λ( fδ,i) = (HK)-
∫ 2π

0
fδ,iv+,

where fδ,i = F′δ,i ∈ A is defined almost everywhere. Now, it is clear that

(HK)-
∫ 2π

0
fδ,iv+ = −

∫ 2π

0
Fδ,idv+

= −

∫ xi+δ

xi

( x − xi

δ

)
dv+ −

∫ x
′

i+1

xi+δ

dv+

−

∫ x
′

i+1+δ

x′i+1

(
1 −

x − x
′

i+1

δ

)
dv+.

Using continuity in xi and right continuity in x
′

i of v+, from [10, Corollary 2.3.4, Lemma 5.1.11] it
yields

lim
δ→0

λ( fδ,i) = −[v+(x
′

i+1) − v+(xi)]

for i = 0, 1, ..., n − 2. When i = n − 1, we put

Fδ,n−1(x) =


0 i f x ≤ xn−1
1
δ
(x − xn−1) i f xn−1 < x < xn−1 + δ

1 i f xn−1 + δ ≤ x ≤ 2π
.

In any case the previous argument is valid. We can suppose that each v+(x
′

i) − v+(xi−1) is negative;
otherwise, we change the sign of each Fδ,i in the corresponding interval, so,

lim
δ→0

λ( fδ,i−1) = |v+(x
′

i) − v+(xi−1)|
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for i = 1, ..., n. On the other hand,

2n−1∑
i=1

|v+(ξi) − v+(ξi−1)| =
n∑

i=1

|v+(x
′

i) − v+(xi−1)| +
n−1∑
i=1

|v+(xi) − v+(x
′

i)|.

Therefore,
2n−1∑
i=1

|v+(ξi) − v+(ξi−1)| ≤
n∑

i=1

lim
δ→0

λ( fδ,i−1) +

n−1∑
i=1

ε

2i ≤ lim
δ→0

λ( fδ) + ε

where fδ =
∑n

i=1 fδ,i−1. Thus, there exists ρ > 0 such that

|λ( fρ)| ≥
2n−1∑
i=1

|v+(ξi) − v+(ξi−1)| − 2ε ≥
n∑

i=1

|v+(x
′

i) − v+(x
′

i−1)| − 2ε

≥ ‖ [v] ‖BVm − 3ε.

Yielding,
‖λ‖A′ · ‖ fρ‖A ≥ |λ( fρ)| ≥ ‖ [v] ‖BVm − 3ε.

It is clear that
‖ fρ‖A = 1.

From this and (3.6) we conclude
‖λ‖A′ = ‖ [v] ‖BVm . �

The following example shows that A is not a reflexive space. We recall that for given y ∈ A,
y∗ ∈ BV ′ is defined by

y∗(v) :=
∫ 2π

0
yv (∀v ∈ BV).

A is called reflexive if every element L ∈ BV ′m obeys L = y∗ for some y ∈ A.

Example 1. Let L : BVm → R be defined by

L([v]) =
1
2
(

v+(2/3) − v+(1/2)
)

+
1
2
(

v+((2/3)−
)
− v+((1/2)−

) )
.

Similar arguments as given previously show that

|L([v])| ≤ ‖ [v] ‖BVm .

So, this proves that L ∈ BV ′m. We will prove that there is no y ∈ A such that y∗ = L. Let y ∈ A and

Y(t) = (HK) −

∫ t

0
y.

We note that Y(0) = 0, and suppose that Y(t) is not the identically zero function. Continuity of Y
implies that we can find 0 < c1 ≤ 2π such that Y(c1) , 0. If 0 < c1 <

1
2 , we consider the function v+

equal to -1 on [0, c1) and 0 otherwise. It follows that

y∗(v+) = (HK) −
∫ 2π

0
yv+ = −

∫ 2π

0
Ydv+.
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By [20, Theorems 6.1.1 and 6.1.6] we have

y∗(v+) = −Y(c1) , 0 = L([v]).

In the case 1/2 ≤ c1 ≤ 2π the proof is similar. We have proved that there is no y ∈ A such that y∗ = L.

Corollary 2. The spaceA is not reflexive.

Remark 2. A Banach space X is reflexive if and only if every continuous linear functional on the space
X attains its supremum on the closed unit ball, (see [21, 22]). In fact, in the proof of Theorem 3 (b)
we showed that, for a given functional λ, there exists a function f such that the absolute value |λ( f )| is
arbitrarily close to the norm of the functional, but does not necessarily attain this value.

4. Conclusions

We have presented a new way of constructing the dual space of the space of integrable functions in
HK, which may motivate a discussion about applying this method to similar studies in related spaces.
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