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Abstract: This paper proposed a stochastic toxin-dependent competition model to investigate the
impact of environmental noise on species interaction dynamics. First, a survival analysis was
conducted to establish the sufficient conditions for population extinction and persistence. Second,
we proved the existence of a unique ergodic stationary distribution. Finally, the spatial arrangement of
random states near the deterministic attractor was investigated using the stochastic sensitivity functions
technique. This analytical approach facilitates constructing confidence ellipses and estimating critical
noise intensity corresponding to the onset of transition. Both theoretical and numerical findings
demonstrated that significant levels of noise experienced by one species lead to its extinction while
promoting persistence in its competitor; conversely, negligible levels of noise did not alter the original
competition outcomes in the deterministic model. However, when both species encounter moderate
levels of noise, various modifications can occur in competition outcomes. These findings have
significant implications for preserving ecosystem diversity.
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1. Introduction

The earth’s ecosystems are extensively affected by chemical contaminations resulting from a
multitude of anthropogenic activities and natural phenomena, which significantly impacts the survival
of diverse species and human health, particularly accelerating the extinction of endangered species [1].
To safeguard the ecological environment and maintain ecological equilibrium, it is imperative to
accurately evaluate the risk posed by environmental toxins on exposed populations. In recent decades,
mathematical models have gained widespread recognition as a powerful tool for assessing the risks
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of chemical contamination. Currently, the majority of population ecological models related to
environmental pollution are based on the assumption that population growth rates adhere to the logistic
equation [2–5]. However, these models fail to quantitatively analyze the impact of environmental
toxins on population capacity. To address this limitation, Thieme [6] proposed using the Beverton-
Holt equation instead of the logistic equation to describe the population growth rate. This approach
can effectively differentiate between various toxins in terms of food uptake, conversion efficiency, and
biomass acquisition. Taking into account the influence of toxins on population mortality, [7] built a
toxin-dependent aquatic ecosystem model based on Thieme’s approach and utilized available data to
evaluate mercury’s effect on rainbow trout.

The aforementioned models are all single-species models, assuming that populations solely absorb
toxins from their environment. To investigate the impact of environmental toxins on species
interactions, some scholars have extended these single-species models into multi-species ones [8–12].
For instance, [13] established a prey-predator model considering the simultaneous exposure of
both prey and predator to environmental toxins, revealing counterintuitive results suggesting that
intermediate toxin concentrations could actually increase prey biomass. Peace et al. [14] successfully
captured the phenomenon known as somatic growth dilution by developing a stoichiometric toxicant-
mediated predator-prey model. Recently, Shan and Huang [15] proposed a toxin-dependent model to
investigate the direct and indirect impacts of environmental toxins on two competing populations:

dxi

dt
=
αi max{0, 1 − βiyi}

1 + γixi
xi − (kiyi + mi)xi − cix1x2,

dyi

dt
= aiT − σiyi −

αi max{0, 1 − βiyi}

1 + γixi
yi + cix jyi,

(1)

where the subscript i represents species i, with i, j = 1, 2, and i , j; xi denotes the concentration
of population biomass; yi denotes the body burden; αi corresponds to the maximum growth rate; βi

indicates the impact of toxin on population gain; γi captures the crowding effect; ki reflects the influence
of toxin on mortality; mi stands for natural mortality rate; ci is the competition coefficient; ai denotes
the uptake coefficient; and σi measures toxin elimination rate, while T refers to environmental toxin
concentration.

Considering the significantly higher rate of population metabolism compared to population growth,
model (1) can be approximated as a two-dimensional model. To be specific, we introduce the following
dimensionless quantities, x̃i = γixi, ỹi = βiyi, t̃ = α1t, k̃i = ki

βiα1
, m̃i = mi

α1
, α̃ = α2

α1
, T̃ =

β1a1T
σ1

, c̃i =
ci
α1γ j

, ã =
β2a2
β1a1

, σ̃ = σ2
σ1
, ε = α1

σ1
, then drop the tildes, so that model (1) becomes

dx1

dt
= {

max{0, 1 − y1}

1 + x1
− k1y1 − m1}x1 − c1x1x2,

dx2

dt
= {α

max{0, 1 − y2}

1 + x2
− k2y2 − m2}x1 − c2x1x2,

ε
dy1

dt
= T − y1 − ε

max{0, 1 − y1}

1 + x1
y1 + εc1x2y1,

ε
dy2

dt
= aT − σy2 − εα

max{0, 1 − y2}

1 + x2
y2 + εc2x1y2.

(2)

Let ε → 0 in (2), then y1 = T , y2 = aT
σ

. Substituting them into the first two equations in model (2) leads
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to the following quasi-steady system:

dx1

dt
= x1[

1 − T
1 + x1

− c1x2 − (k1T + m1)],

dx2

dt
= x2[

α(1 − pT )
1 + x2

− c2x1 − (k2 pT + m2)].
(3)

Throughout this paper, we consistently assume that

m1 < 1, m2 < α and T < min{1,
1
p
},

where p = a
σ

. Otherwise, the study would be meaningless. Under these assumptions, the authors
of [15] studied the complete dynamics of model (3), revealing that competition outcomes can be
influenced in various counterintuitive ways by both the level of toxins and the distinct vulnerabilities
exhibited by the two species toward toxins.

In practice, ecosystems typically exist within a stochastic environment. Intuitively, when subjected
to relatively minor perturbations, random trajectories tend to exhibit small-amplitude oscillations
around deterministic attractors; however, the presence of significant disturbances can potentially lead to
the collapse of the entire system [16–20]. More importantly, intermediate noise intensity can give rise
to certain counterintuitive phenomena that lack counterparts in the corresponding deterministic model,
such as stochastic resonance [21], noise-induced transition [22], and noise-enhanced stability [23].
The underlying reason for this mainly lies in the multi-stability and high sensitivity of attractors.
Research on the effect of noise on multi-stable system can be traced back to [24] and has been
followed by many researchers recently. Bashkirtseva’s team conducted a comprehensive investigation
into noise-induced switching and transformation phenomena in multi-stable systems [25–28]. Yuan
and his collaborators analyzed the stochastic sensitivity of competitive or predator-prey population
models [29–31]. Spagnolo’team studied stochastic and coherence resonances in ecology and other
fields [32–35].

Motivated by the above facts, this paper aims to investigate how environmental noise affects the
dynamics of toxin-dependent competition model (3). To achieve this objective, we initially utilize the
approach proposed in [36, 37] to develop a stochastic version of model (3) as follows:dx1 = x1 f1(x1, x2)dt + σ1x1dB1(t),

dx2 = x2 f2(x1, x2)dt + σ2x2dB2(t),
(4)

where

f1(x1, x2) =
1 − T
1 + x1

− c1x2 − (k1T + m1),

f2(x1, x2) =
α(1 − pT )

1 + x2
− c2x1 − (k2 pT + m2),

and where Bi(t) are mutually independent standard Brownian motions, and σi are the white noise
intensities, i = 1, 2.

The impact of noise on competition outcomes between two species will be investigated by
conducting survival and sensitivity analyses for stochastic model (4). Specifically, a survival analysis
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will establish sufficient conditions for population extinction and persistence. Furthermore, we will
prove the existence of a unique ergodic stationary distribution using Khasminskii’s theory in Section 2.
Next, we will study the spatial arrangement of random states near the deterministic attractor through
applying the stochastic sensitivity function (SSF) technique in Section 3. Lastly, our study concludes
with a concise discussion presented in Section 4. Our analysis results show that (i) large noise is
harmful to two competing species and can lead to their extinction; (ii) small noise does not alter
the original competition outcomes observed in the model without random disturbance; and (iii)
intermediate noise can significantly influence competition outcomes in various ways. In other words,
increasing noise intensity may have a positive impact on one species while negatively affecting another.
Moreover, increasing noise intensity may enhance coexistence between two species and maintain
species diversity by reducing the persistence of dominant species. These findings have significant
implications for maintaining ecosystem diversity.

2. Survival analysis

The initial presentation of fundamental properties is essential for the investigation of the dynamics
of model (4).

Lemma 2.1. The given initial valve (x1(0), x2(0)) ∈ R2
+ ensures that model (4) possesses a unique

solution (x1(t), x2(t)) for t ≥ 0. Moreover, it can be guaranteed with probability one that the solution
will always remain in R2

+, i.e., (x1(t), x2(t)) ∈ R2
+ for all t ≥ 0 almost surely.

Proof. The coefficients of (4) satisfy the local Lipschitz condition but fail to meet the linear growth
condition. Consequently, given an initial value (x1(0), x2(0)) ∈ R2

+, a unique local solution (x1(t), x2(t))
exists for t ∈ (0, τe], where τe is commonly referred to as the explosion time [38]. To prove τe = ∞

a.s., following the approach in [39, Theorem 3.1], it suffices to construct a nonnegative C2-function
V1(x1, x2) that satisfies LV1 ≤ K, where L is a differential operator and K is a constant. To this end,
we define the function V1 as follows:

V1(x1, x2) = x1 − n1 − n1 ln
x1

n1
+ n2(x2 − 1 − ln x2),

where n1 = m2n2
c1

and n2 = m1
c2

. Applying Itô’s formula, we obtain

LV1 =(x1 − n1)[
1 − T
1 + x1

− c1x2 − (k1T + m1)] +
1
2
σ2

1

+ n2(x2 − 1)[
α(1 − pT )

1 + x2
− c2x1 − (k2 pT + m2)] +

1
2

n2σ
2
2

≤1 − m1x1 + c1n1x2 + (k1T + m1)n1 +
1
2
σ2

1

+ n2[α − m2x2 + c2x1 + (k2 pT + m2)] +
1
2

n2σ
2
2

=1 + (k1T + m1)n1 + αn2 + (k2 pT + m2)n2 +
1
2
σ2

1 +
1
2

n2σ
2
2

,K.

Thus, the desired outcome is achieved by employing a similar discourse as presented in [39]. �
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Lemma 2.2. (see [40]) Let ϕi(t) (i = 1, 2) be the solution of the stochastic equation

dϕi(t) = (bi − diϕi(t))dt + σiϕi(t)dBi(t) (5)

with ϕi(0) = xi(0) ∈ R+, where

b1 = 1 − T, b2 = α(1 − pT ), d1 = k1T + m1, d2 = k2 pT + m2.

then, ϕi(t) satisfies that

lim
t→∞

1
t

∫ t

0
ϕi(s)ds =

bi

di
, i = 1, 2.

Remark 2.1. From model (4), we know that

dxi(t) ≤ (bi − dixi(t))dt + σixi(t)dBi(t), i = 1, 2,

which follows from the stochastic comparison theory that xi(t) ≤ ϕi(t) a.s.

2.1. Extinction and persistence

In this subsection, survival of the two species will be discussed, including extinction and persistence
in mean. i.e., the following result is valid based on Lemmas 2.1 and 2.2.

Theorem 2.1. For model (4), denote

λ1 = 1 − T − (k1T + m1 +
1
2
σ2

1),

λ2 = α(1 − pT ) − (k2 pT + m2 +
1
2
σ2

2).

(i) If max
i=1,2
{λi} < 0, both species 1 and species 2 go to extinction.

(ii) If λi < 0, λ j > 0, i , j, i, j = 1, 2, species i is extinct and species j is persistent in mean.
(iii) If min

i=1,2
{λi−ϑi} > 0, both species 1 and species 2 are persistent in mean, where ϑ1 = c1b2

d2
, ϑ2 = c2b1

d1
.

Remark 2.2. (i) Theorem 2.1 implies that sufficiently small noise will not change the survival of
species, while sufficiently large noise will force the entire system to go extinct. Ecologically
speaking, large noise is not conducive to maintaining biodiversity.

(ii) Denote
λd

1 = 1 − T − (k1T + m1), λd
2 = α(1 − pT ) − (k2 pT + m2).

Clearly, λd
i < λi (i = 1, 2), implying the possibility that λd

i < 0 < λi due to the continuity
of λi in Ii. Biologically, this means that when species i is persistent in deterministic model (3)
(see [15, Theorem 3.8]), it may be extinct with probability one in stochastic model (4) due to the
effect of noise. In other words, noise may influence the competition outcomes of two species.

Proof. By Itô’s formula to (4), we have

1
t

ln
x1(t)
x1(0)

= −(k1T + m1 +
1
2
σ2

1) +
1
t

∫ t

0
(

1 − T
1 + x1

− c1x2)ds +
M1

t
, (6)
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1
t

ln
x2(t)
x2(0)

= −(k2 pT + m2 +
1
2
σ2

2) +
1
t

∫ t

0
(
α(1 − pT )

1 + x2
− c2x1)ds +

M2

t
, (7)

where Mi = σiBi(t), i = 1, 2, and lim
t→∞

Mi
t = 0 a.s. by strong law of large numbers.

(i) When λ1 < 0, Eq (6) implies that

lim sup
t→∞

1
t

ln
x1(t)
x1(0)

≤1 − T − (k1T + m1 +
1
2
σ2

1) < 0 a.s.

That is, species 1 converges to 0 at an exponential rate. Similarly, species 2 goes to extinction under
the condition λ2 < 0.

(ii) Without loss of generality, we consider the case where i = 1 and j = 2, then, species 1 is an
obvious extinction by case (i), i.e., lim

t→∞
x1(t) = 0 a.s. Hence, for arbitrary 0 < ε1 < 1, there exists a set

Ωε1 ⊂ Ω with P(Ωε1) ≥ 1 − ε1 and a constant T1 = T1(ε1) such that 1
t

∫ t

0
c2x1ds < ε1, for ω ∈ Ωε1 and

t > T1. By Eq (7), one gets

1
t

ln
x2(t)
x2(0)

≥ − (k2 pT + m2 +
1
2
σ2

2 + ε1) +
1
t

∫ t

0

α(1 − pT )
1 + x2

ds +
M2

t

≥α(1 − pT ) − (k2 pT + m2 +
1
2
σ2

2 + ε1) −
1
t

∫ t

0
α(1 − pT )x2ds +

M2

t
.

By [41, Lemma 4] and the arbitrariness of ε1, we obtain

lim inf
t→∞

1
t

∫ t

0
x2ds ≥

α(1 − pT ) −
(
k2 pT + m2 + 1

2σ
2
2

)
α(1 − pT )

=
λ2

α(1 − pT )
> 0 a.s.,

which means that species 2 is persistent in mean.
(iii) By Lemma 2.2, one has lim

t→∞
1
t

∫ t

0
ϕ2(s)ds = b2

d2
a.s. In other words, for any arbitrary 0 < ε2 < 1,

there exists a set Ωε2 ⊂ Ω withP(Ωε2) ≥ 1−ε2 and a constant T2 = T2(ε2) such that 1
t

∫ t

0
ϕ2(s)ds < b2

d2
+ε2

holds for all ω ∈ Ωε2 and t > T2. On the other hand, by Eq (6) and Remark 2.1,

1
t

ln
x1(t)
x1(0)

≥1 − T − (k1T + m1 +
1
2
σ2

1) −
1
t

∫ t

0
(1 − T )x1ds −

1
t

∫ t

0
c1x2ds +

M1

t

≥1 − T − (k1T + m1 +
1
2
σ2

1) −
1
t

∫ t

0
(1 − T )x1ds −

1
t

∫ t

0
c1ϕ2ds +

M1

t

≥1 − T − (k1T + m1 +
1
2
σ2

1) − c1(
b2

d2
+ ε2) −

1
t

∫ t

0
(1 − T )x1ds +

M1

t
.

(8)

In conjunction with [41, Lemma 4] and the arbitrariness of ε2, this implies that

lim inf
t→∞

1
t

∫ t

0
x1ds ≥

λ1 − ϑ1

1 − T
> 0 a.s.

Similarly, for species 2, we have lim inf
t→∞

1
t

∫ t

0
x2ds ≥ λ2−ϑ2

α(1−pT ) > 0 a.s. Consequently, both species 1 and
species 2 are persistent in mean. �
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2.2. Existence of ergodic stationary distribution

In the following, the existence of ergodic stationary distribution will be investigated, which reflects
the long-term stochastic dynamics of model (4). Let us first denote

ν1 =
(b2 + c1)b2

d2
, ν2 =

(b1 + c2)b1

d1
.

Using [42, Theorem 4.1], one can prove the following theorem.

Theorem 2.2. Assuming that min
i=1,2
{λi − νi} > 0, a unique and ergodic stationary distribution exists for

model (4) given any initial value (x1(0), x2(0)) ∈ R2
+.

Proof. To complete the proof of Theorem 2.2, based on [42, Theorem 4.1], we need to construct a
nonnegative C2-function V2 and a bounded closed U% such that LV2 ≤ −C for (x1, x2) ∈ R2

+\U%, where
C is a positive constant.

Let us first define a C2-function V2 as

V2(x1, x2) = − ln x1 − ln x2 +
b1 + c2

d1
x1 +

b2 + c1

d2
x2,

where bi and di (i = 1, 2) are defined as in Lemma 2.2. Obviously, V2(x1, x2) is continuous and

lim inf
R→∞,(x1,x2)∈R2

+\UR

V2(x1, x2) = +∞,

where UR = ( 1
R ,R) × ( 1

R ,R), which implies that V2(x1, x2) achieves a lower bound at a point (x̄1, x̄2) in
the interior of R2

+. Define the nonnegative C2-function V2 : R2
+ → R+ as

V2(x1, x2) = V2(x1, x2) − V2(x̄1, x̄2).

By Itô’s formula, one has

LV2 = −
1 − T
1 + x1

+ k1T + m1 + c1x2 +
1
2
σ2

1 −
α(1 − pT )

1 + x2
+ k2PT

+ m2 + c2x1 +
1
2
σ2

2 +
(b1 + c2)x1

d1
[

1 − T
1 + x1

− (k1T + m1) − c1x2]

+
(b2 + c1)x2

d2
[
α(1 − pT )

1 + x2
− (k2PT + m2) − c2x1]

≤ − (1 − T ) + (1 − T )x1 + k1T + m1 + c1x2 +
1
2
σ2

1

− α(1 − pT ) + α(1 − pT )x2 + k2PT + m2 + c2x1 +
1
2
σ2

2

+
(b1 + c2)x1

d1
[
1 − T

x1
− (k1T + m1) − c1x2]

+
(b2 + c1)x2

d2
[
α(1 − pT )

x2
− (k2PT + m2) − c2x1]

= − [λ1 −
(b2 + c1)b2

d2
] − [λ2 −

(b1 + c2)b1

d1
]
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− [
(b1 + c2)c1

d1
+

(b2 + c1)c2

d2
]x1x2 , Θ(x1, x2).

Given that min
i=1,2
{λi − νi} > 0, then

lim
|x|→0

Θ(x1, x2) = −[λ1 −
(b2 + c1)b2

d2
] − [λ2 −

(b1 + c2)b1

d1
] < 0,

and lim
|x|→∞

Θ(x1, x2) = −∞, where | x |=
√

x2
1 + x2

2. Hence, there exist a positive constant C and a

sufficiently small % such that

LV2(x1, x2) ≤ −C for any (x1, x2) ∈ R2
+\U%,

where U% = [%, 1
%
] × [%, 1

%
]. In other words, for any initial value (x1(0), x2(0)) ∈ R2

+, a unique stationary
distribution exists for model (4), which is also ergodic. �

3. Sensitivity analysis

The survival analysis conducted in Section 2 can characterize to some extent how noise affects the
dynamics of species. However, these results are crude and do not well reflect the whole effects of noise
on species. In this section, some stochastic sensitivity analysis of model (4) is presented, which can fill
the gap well.

3.1. Toxin-dependent single species model

As a basis for further discussion, we first consider the case when only one species without
interspecific competition presents in a perturbed environment with toxin. Without loss of generality,
suppose that only species x1 is present, then model (4) without interspecific competition is governed
by

dx1 = x1 f1(x1, 0)dt + σx1dB1(t), (9)

where σ = σ1. When σ = 0, model (4) exists two equilibria: x0
1 = 0 (unstable) and x∗1 =

1−m1−(1+k1)T
m1+k1T

(stable), then the formula

µ =
x∗1(1 + x∗1)2

2(1 − T )
reflects the sensitivity of x∗1 (see Appendix), as depicted in Figure 1(a). We can see that the sensitivity
of x∗1 decreases as the toxin level T increases, suggesting that a higher concentration of toxins in the
environment always has a detrimental impact on species survival.

Following 3σ-rule (the fiducial probability P = 0.997), the corresponding confidence interval can
be expressed as (x∗1 − r, x∗1 + r) with r = 3σ

√
µ. Furthermore, the critical value of noise intensity can

be obtained by x∗1 − r = 0,

σ∗ =

√
2(1 − T )x∗1
3(1 + x∗1)

. (10)

As depicted in Figure 1(b), the critical value of noise intensity σ∗ exhibits a decreasing trend with
increasing toxin level T . Meanwhile, this curve σ∗(T ) divides the parameter region into two parts:
persistence (below) and extinction (above).

AIMS Mathematics Volume 9, Issue 4, 8230–8249.
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Figure 1. (a) Stochastic sensitivity of equilibrium x∗1; (b) Critical noise intensity σ∗. Here,
parameters k1 = 1 and m1 = 0.49.

In Figure 2, the time series of model (9) (blue) and the boundaries of confidence intervals (red
dashed line) are plotted for different noise intensity values. Obviously, as noise intensity increases,
the confidence interval expands and the distribution of random states is becoming more and more
dispersed. Note that here, σ∗ = 0.145. Figure 2 further shows that when σ < 0.145, the dispersion
of random states is located in the interior of the corresponding confidence interval with probability
0.997, which means that the species is persistent; while for σ > 0.145, the left boundary of confidence
interval is less than zero, suggesting that the survival of species has transformed from persistence to
extinction.

Figure 2. Stochastic trajectories of model (9) with initial value x1(0) = 0.155, parameters
k1 = 1, m1 = 0.49, and T = 0.2 for (a) σ = 0.05, (b) σ = 0.1, (c) σ = 0.15.

3.2. Two species model with interspecific competition

Taking the parameters of model (3) as in Figure 3, it follows from [15] that deterministic model (3)
has two types of bistability. As shown in Figure 3(a), exclusion equilibrium E0

1 and coexistence
equilibrium E∗l are asymptotically stable simultaneously. That is, two basins of attraction are separated
by the stable manifold (black dashed-dotted) of saddle point E∗r . Obviously, the trajectory with initial
value below the separatrix approaches E0

1, whereas the trajectory with initial value above the separatrix
converges to E∗l . Figure 3(b) shows another type of bistability, that is, both exclusion equilibria E0

1 and
E0

2 are asymptotically stable simultaneously. In this situation, two basins of attraction are separated by
the stable manifold of saddle point E∗c .

AIMS Mathematics Volume 9, Issue 4, 8230–8249.
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Figure 3. Vector field of deterministic model (3) and separatrix of two attraction domains.
Filled (open) circles denote stable (unstable). The black dashed-dotted line denotes the
separatrix of two attraction domains. Here, (a) α = 0.8, p = 1.09, k1 = 1, k2 = 1, m1 = 0.49,
m2 = 0.4, T = 0.05, c1 = 0.6, c2 = 0.4; (b) α = 0.8, p = 2.2, k1 = 1, k2 = 1, m1 = 0.49,
m2 = 0.4, T = 0.01, c1 = 0.6, c2 = 0.4.

We now focus on the sensitivity analysis of the stable equilibria E0
1 and E∗l depicted in Figure 3(a).

However, for the exclusion equilibria E0
1 and E0

2 shown in Figure 3(b), a similar analysis can be
conducted but is omitted here. The equilibrium E∗l can be analyzed in two cases.

(i) σ1 = σ2 = σ. As depicted in Figure 4, the stochastic trajectory of model (4) with an initial
value above the separatrix deviates from the deterministic attractor E∗l , subsequently giving rise to a
corresponding stochastic attractor. In the presence of small noise, the states of this stochastic attractor
tend to concentrate near E∗l ; whereas for relatively large noise levels, qualitative changes in dynamics
are observed in model (4). More precisely, the stochastic trajectory escapes from the attraction domain
of E∗l , subsequently traverses the separatrix, and ultimately enters the attraction domain of E0

1.

Figure 4. Phase trajectories for model (4) with initial value (x1(0), x2(0)) = (0.41, 0.23).
Here, (a) σ = 0.006 (small); (b) σ = 0.12 (large), and the other parameters are the same as
those in Figure 3(a).

The above detailed qualitative analysis can be illustrated clearly by use of SSF technique (see
Appendix). To this end, denote E∗l = (x∗1, x

∗
2) and

F =

[
f11 f12

f21 f22

]
, G =

[
g11 0
0 g22

]
,
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where
f11 = x∗1 fx1(x∗1, x

∗
2), f12 = x∗1 fx2(x∗1, x

∗
2), f21 = x∗2gx1(x∗1, x

∗
2), f22 = x∗2gx2(x∗1, x

∗
2)

and
g11 = (x∗1)2, g22 = (x∗2)2.

The stochastic sensitivity matrix

W =

[
w11 w12

w21 w22

]
,

can be derived from (A.2) in Appendix A, which satisfies the equation
2 f11w11 + f12w12 + f12w21 = −g2

11,

f21w11 + ( f11 + f22)w12 + f12w22 = 0,
f21w11 + ( f11 + f22)w21 + f12w22 = 0,
f21w12 + f21w21 + 2 f22ww22 = −g2

22.

Here, w11 and w22, respectively, describe the sensitivity of E∗ along the x1-axis and x2-axis, and w12 =

w21 denotes the covariation. The graphs of functions w11(T ) and w22(T ) are shown in Figure 5. Clearly,
w11(T ) > w22(T ) for each T ∈ [0.05, 0.07], which shows that the sensitivity of species 1 is large than
species 2. Most importantly, the two functions tend to infinity as T approaches 0.05. This signalizes
the possible about noise-induced transitions, which can be visualized by use of confidence ellipses.

Figure 5. The sensitivity of equilibrium E∗. Here, the values of all parameters except for T
are identical to those in Figure 3(a).

The confidence ellipse is a geometrical model describing the configurational arrangement of random
states near stable equilibrium. Next, we will illustrate how confidence ellipse can be used to explain the
noise-induced transition from persistence to extinction. By Eq (A.4) in Appendix, the corresponding
confidence ellipse equation of E∗l can be expressed by〈

(x1 − x∗1, x2 − x∗2)T ,W−1(x1 − x∗1, x2 − x∗2)T
〉

= 2σ2K2, (11)

where K2 = − ln(1 − P), and P is a fiducial probability. In Figure 6, the random states (blue) of
model (4) for σ = 0.006 are plotted, along with the confidence ellipse (green) representing a fiducial
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probability P = 0.95. It can be observed that the random states are distributed around E∗l and fall
within the interior of confidence ellipse with a probability P = 0.95. This observation, in conjunction
with Figure 5, further implies that the dispersion of the random states near E∗l are influenced by both
noise intensity and sensitivity.

Figure 6. Random states (blue) of stochastic model (4) and confidence ellipse (green) are
shown for σ = 0.006, with the other parameters being the same as those in Figure 3(a).

The confidence ellipses (solid) in Figure 7 represent the fixed fiducial probability P = 0.95 for
three different noise intensity values: σ = 0.004 (small), σ = 0.0069 (middle), and σ = 0.01 (large).
It can be observed that when the noise intensity is small, the entire confidence ellipse falls within the
attraction domain of E∗l . Consequently, in this scenario, the corresponding random orbit is concentrated
near E∗l as depicted in Figure 4(a). As we increase the noise intensity to a critical value, the confidence
ellipse starts expanding and eventually crosses over to occupy the attraction domain of E0

1 after crossing
the separatrix (dashed-dotted line). In this case, with a high probability, the corresponding random orbit
may leave the attraction domain of E∗l and form a stochastic attractor near E0

1 as shown in Figure 4(b).
The intersection point between the confidence ellipse and separatrix represents an approximate value
for this critical intensity denoted by σ∗. Notably, here we have approximately estimated that σ∗ ≈
0.0069. By comparing Figures 7 with 4, it can be concluded that these quantitative analysis results
are consistent with direct numerical simulations conducted earlier on this topic. Biologically speaking,
noise is not conducive to the coexistence of two species; however, it does confer benefits on the survival
of species 1.

(ii) σ1 , σ2. Noise-induced transitions under σ1 , σ2 can be analyzed by means of numerical
simulations. In Figure 8, phase trajectories of model (4) with initial value near E∗l are plotted for two
sets of different noise intensity:

(a) σ1 = 0.18, σ2 = 0.006; (b) σ1 = 0.7, σ2 = 0.9.

Comparing Figures 8(a) with 4(a), we can see that increasing the noise experienced by species 1
but still at a low level can force the state of the system to shift from near E∗l to near E0

2. This means
that noise is not conducive to the coexistence of two species, but species 2 actually benefits from
large noise. Similarly, it follows from comparison of Figures 8(b) with 4(a) that further increasing
the noise experienced by two species will destroy their coexistence and make both species extinct
simultaneously. It seems that the large noise experienced by two species is a disaster for the persistence
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of the competition system. The appropriate noise intensity can also force the system state to shift from
near E∗l to near E∗r , but its corresponding phase trajectory is not drawn due to the similarity to Figure 8.

Figure 7. Separatix (dashed-dotted) and confidence ellipses (solid) are shown for σ = 0.004
(small), σ = 0.0069 (middle), and σ = 0.01 (large), with the other parameters being the same
as those in Figure 3(a).

Figure 8. Phase trajectories for model (4) with initial value (x1(0), x2(0)) = (0.41, 0.23).
Here, (a) σ1 = 0.18, σ2 = 0.004; (b) σ1 = 0.7, σ2 = 0.9, and the other parameters are the
same as those in Figure 3(a).

In the remaining space of this subsection, we discuss the species 1-only equilibrium E0
1. It is noted

that the stochastic sensitivity of E0
1 cannot be analyzed by constructing the corresponding confidence

ellipses as in case (i). Therefore, here we numerically explore the noise-induced phenomenon. Figure 9
shows all possible phase portraits of model (4) with initial value near E0

1 for different noise intensities
except the following case: the noise-induced transition from near E0

1 to near E∗r . It can be seen from
Figure 9 that the system state can switch from near E0

1 to near any other equilibrium. It is noteworthy
that these state transitions are only related to noise intensity, but not to the stability of the equilibrium,
which is different from case (i). It can be seen from these numerical simulations that intermediate noise
intensity can promote the coexistence of two competing species by reducing the persistence level of
dominant species.
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Figure 9. Phase trajectories for model (4) with initial value (x1(0), x2(0)) = (0.77, 0.01).
Here, (a) σ1 = σ2 = 0.01; (b) σ1 = 0.08, σ2 = 0.01; (c) σ1 = 0.19, σ2 = 0.01; (d) σ1 = 1,
σ2 = 0.76, and the other parameters are the same as those in Figure 3(a).

4. Discussion

To predict the impact of toxic pollutants on aquatic ecosystems, ecologists and mathematicians have
recently established a large number of biological mathematical models from different perspectives [8,
9,13–15]. These models explicitly incorporate the effects of toxic substances on the survival of aquatic
species while not accounting for stochastic fluctuations in the external environment. The ubiquity
of environmental noises in aquatic ecosystems arises from the inherent unpredictability of weather,
temperature, and various other physical factors that are intricately intertwined within these ecosystems.
In this study, we proposed a stochastic toxin-dependent competition model (4) based on the findings of
[15]. We initially conducted survival analysis and successfully proved the existence of a unique ergodic
stationary distribution. From Theorems 2.1 and 2.2, the relationships between the noise intensity and
the survival of two species are summarized below:

• When σ2
i > ηi, i = 1, 2, two species are extinct simultaneously (see Figures 8(b) and 9(d));

• When σ2
i > ηi, σ2

j < η j, i , j, i, j = 1, 2, species i is extinct and species j is persistent in mean
(see Figures 4(b), 8(a), 9(a), and 9(c));
• When σ2

i < ηi − 2ϑi, i = 1, 2, two species are persistent in mean simultaneously (see Figures 4(a)
and 9(b));
• When σ2

i < ηi − 2νi, i = 1, 2, model (4) exists a unique ergodic stationary distribution,
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where

η1 = 2(1 − T − (k1T + m1)), η2 = 2(α(1 − pT ) − (k2 pT + m2)).

The foregoing theoretical analysis shows the impact of noise on two species and estimates the
corresponding noise intensity. Due to the limitations of Lyapunov’s method, we do not know what
happens when ηi − 2ϑi < σ2

i < ηi, i = 1, 2. For this reason, we further discussed the stochastic
sensitivity of model (4) with the help of the SSF technique and numerical method.

For the single species model (9), we constructed the confidence interval and estimated the critical
noise intensity σ∗. As shown in Figure 2, the critical noise intensity determines the survival of species
with probability P = 0.997. For the two species competition model (4), the noise-induced phenomena
were studied in detail by different ways. When σ1 = σ2, we constructed the confidence ellipse
by use of the SSF technique and plotted the sensitivity of attractor to toxin concentration based on
stochastic sensitivity matrix, as shown in Figures 5–7. It allows us to see clearly the configurational
arrangement of random states near stable equilibrium. Meanwhile, the critical noise intensity was
estimated numerically; see Figure 7. Information about the critical noise intensity enables us to predict
the conditions of the noise-induced transition. In this case, large noise but still at a low level can
force the system state to transform from the coexistence to the species 1-only. When σ1 , σ2,
we numerically explored the noise-induced phenomena; see Figures 8 and 9. In this case, the state
transitions are only related to the noise intensities σ1 and σ2, but not to the stability of equilibrium,
which is different from the case σ1 = σ2.

After theoretical analysis and numerical simulations, it is suggested that noise can significantly
influence competition outcomes between two species. Specifically, (i) high levels of noise are
detrimental to the competing species and can lead to their extinction, (ii) low levels of noise do not
alter the original competition outcomes in the deterministic model; in this scenario, species survival
depends on its initial population size, and (iii) intermediate levels of noise can induce various changes
in competition outcomes. Increasing noise intensity may have a positive impact on one species while
negatively affecting another due to reduced persistence level and increased resource availability for its
competitor. Moreover, higher noise intensity may promote coexistence and maintain species diversity
by reducing the persistence level of dominant species. In summary, increasing noise intensity has the
potential to reverse competition outcomes between two species. These findings are intriguing and hold
significant theoretical implications for ecological resource management.

The model proposed in this paper assumes that environmental noise follows a Gaussian white
noise distribution and is directly proportional to the variables. However, in reality, the natural growth
of species often encounters abrupt environmental disturbances such as harvesting and earthquakes.
Additionally, the growth rates of certain populations exhibit significant variations between summer
and winter seasons. These phenomena cannot be adequately captured by white noise alone. Some
scholars have proposed alternative types of environmental noise, such as Lévy noise [43] and
telephone noise [44], to better describe these complex dynamics. We acknowledge the importance
of investigating these alternatives in future research.
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Appendix

Let B(t) = (B1(t), · · · , Bl(t))T , t ≥ 0 be an l-dimensional Brownian motion defined on the complete
probability space (Ω,F ,P) adapted to the filtration {Ft}t≥0.

Consider the following stochastic system:

dx = f (x)dt + σg(x)dB(t), (A.1)

where x is an n-dimensional vector, f (x) is an n-dimensional vector function, g(x) is an n × l-matrix
function, and σ is a nonnegative scalar parameter that denotes the noise intensity. Suppose that
the corresponding deterministic system of (A.1) has an asymptotically stable equilibrium x∗. The
stochastic trajectories of (A.1) with initial values near x∗ may leave x∗ and form a corresponding
stochastic attractor with probabilistic density function ρ(x, σ), which is governed by the corresponding
Kolmogorov-Fokker-Planck (K-P) equation. For one-dimensional model, ρ(x, σ) can be solved directly
by the K-P equation, but for the multidimensional model, it is difficult to solve it. In this case, it follows
from Refs. [45, 46] that we can write an approximation of this probability distribution as follows:

ρ(x, σ) ≈
1√

(2πσ2)ndetW
exp(−

< x − x∗,W−1(x − x∗) >
2σ2 ),

where < ·, · > represents Euclidean scalar product, matrix W denotes the stochastic sensitivity function
of equilibrium x∗, σ2W is the covariance matrix, and W is a unique solution of the following equation:

FW + WFT = −S , (A.2)
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where F =
∂ f
∂x (x∗) and S = g(x∗)g(x∗)T . With the help of matrix W, the corresponding confidence

ellipsoid can be constructed as follows (see [47]):

< x − x∗,W−1(x − x∗) >= σ2K(P), (A.3)

where P is a fiducial probability. The function K(P) is an inverse function of P(K), where

P(K) =
Ψn(K)
Ψn(∞)

, Ψn(K) =

∫ √
K

0
exp(−

t2

2
)tn−1dt.

For the case n = 1,P(K) = erf(
√
K

2 ), erf(x) = 2
√
π

∫ x

0
exp(−t2)dt, then the corresponding confidence

interval is (x∗ − r, x∗ + r) with r = σ
√

2µerf−1(P), and the stochastic sensitivity µ can be determined
by µ = −

g2(x∗)
2 f ′(x∗) . It follows from 3σ-rule [48] that r = 3σ

√
µ.

For the case n = 2, P(K) = 1 − exp(−K2 ), K(P) = −2 ln(1−P), then the corresponding confidence
ellipsoid is

< x − x∗,W−1(x − x∗) >= 2σ2K2, (A.4)

where K2 = ln 1
1−P . Similarly, for n = 3, P(K) = erf(

√
K

2 ) −
√

2K
π

e−
K
2 ; and for n = 4, P(K) =

1 − exp(−K2 )(1 + 1
2K).
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