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Abstract: For various kinds of parabolic and elliptic partial differential and differential-difference
equations, results on the stabilization of solutions are presented. For the Cauchy problem for parabolic
equations, the stabilization is treated as the existence of a limit as the time unboundedly increases. For
the half-space Dirichlet problem for parabolic equations, the stabilization is treated as the existence of
a limit as the independent variable orthogonal to the boundary half-plane unboundedly increases. In the
classical case of the heat equation, the necessary and sufficient condition of the stabilization consists
of the existence of the limit of mean values of the initial-value (boundary-value) function over balls as
the ball radius tends to infinity. For all linear problems considered in the present paper, this property
is preserved (including elliptic equations and differential-difference equations). The Wiener Tauberian
theorem is used to establish this property. To investigate the differential-difference case, we use the
fact that translation operators are Fourier multipliers (as well as differential operators), which allows
one to use a standard Gel’fand-Shilov operational scheme. For all quasilinear problems considered in
the present paper, the mean value from the stabilization criterion is changed: It undergoes a monotonic
map, which is explicitly constructed for each investigated nonlinear boundary-value problem.
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1. Introduction

The stabilization property of solutions of the Cauchy problem for the heat equation has been well
known since the middle of the previous century: The long-time behavior of the solution is determined
by the limit properties of means of the initial-value function.

The following pioneering result in this research direction was obtained in [1]: If u(x, t) is the
classical bounded solution of the Cauchy problem for the heat equation with a bounded initial-value
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function, then, for each x, its limit as t → ∞ exists (and we say that the stabilization of the solution
takes place) if and only if the mean of the initial-value function over balls centered at the origin has
a limit as the radius of the balls tends to infinity; moreover, if these limits exist, then they are equal
to each other. In particular, this means that, though solutions of such problems are functions of n + 1
variables, they cannot have nonconstant limits as t → ∞.

During the last half of century, this remarkable fundamental result was substantially generalized in
various directions. The consideration is extended to various equations with variable coefficients (see,
e.g., [2–5] and references therein). Proximity (asymptotical closeness) theorems were obtained
in [6–9] (see references therein as well). Theorems of such kind establish the decay of the difference
u(x, t) − v(x, t), where u(x, t) is the investigated solution, while v(x, t) is the so-called “etalon function”
with known qualitative properties (such as the solution of the heat equation with a prescribed trace
on the initial hyperplane). The advantage of proximity theorems compared with stabilization ones
is as follows: The knowledge about the behavior of the solution is provided even in the case where
there is no stabilization. The case of unbounded initial-value functions is investigated in [2, 3, 10] (see
references therein as well). The fundamental novelty of this case is that the stabilization of solutions
to nonconstant limits is possible now.

Several important extensions are the concern of the present review.
Section 3 is devoted to the Cauchy problem for differential-difference equations (i.e., equations

containing translation operators apart from differential ones) of the parabolic type. The worldwide
interest in differential-difference equations (and to the more general object called functional-differential
equations) is caused both by their numerous applications not covered by classical models of
mathematical physics and by purely theoretical reasons: The nonlocal problem of such equations
generates qualitatively new phenomena not arising in the classical case of differential equations, while
various research methods proved to be efficient for the theory of differential equations turn out to be
inapplicable to functional-differential ones (e.g., this refers to all methods based on the maximum
principle because, unlike differential equations, the investigated equation links values of the desired
function at different points); hence, qualitatively new methods are to be developed (see [11–14] and
references therein).

In Section 4, the stabilization phenomenon is considered for elliptic equations. Though all
independent variables are spatial in the elliptic case, the term “stabilization” is reasonable for the
Dirichlet problem in half-spaces for elliptic equations: Once we violate the domain isotropy, leaving
only one half of Rn, the independent variable selected this way (i.e., the only independent variable
varying along the semiaxis) becomes qualitatively different from all other ones: The resolving operator
of the specified problem possesses the semigroup property with respect to the spatial variable y, and the
solution of the specified problem is represented by the convolution of the boundary-value function with
a function qualitatively similar to the Poisson kernel of the Cauchy problem for the heat equation (it
vanishes at infinity sufficiently fast to ensure the convergence of the specified convolution for each
bounded boundary-value function). This causes the stabilization of solutions of elliptic problems (as
y→ ∞), and this holds not only for differential parabolic equations but for differential-difference ones
as well.

Section 5 is devoted to nonlinear generalizations of the stabilization theory. We consider quasilinear
equations with nonlinearities of the Kardar-Parisi-Zhang type (KPZ-type), i.e., equations containing
the term |∇u|2. Equations of this kind, studied since the pioneering paper [15], arise in numerous
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applications not covered by the linear theory (see, e.g., [16] and references therein). On the other
hand, such nonlinearities attract the attention of worldwide researchers from the purely theoretical
viewpoint: It is known (see, e.g., [17–19]) that the second power is the greatest one such that Bernstein-
type conditions for the corresponding boundary-value problem guarantee the validity of a priori L∞-
estimates of first-order derivatives of the solution via the L∞-estimate of the solution itself. Stabilization
theorems are valid for both parabolic and elliptic equations with KPZ-nonlinearities.

2. Cauchy problem for heat equation

The following fact is well known as a corollary of the Wiener Tauberian theorem (see, e.g., [20,
p. 1003–1004]):

Let f ∈ L∞(0,∞) and there exist ψ0 from L1(0,∞) such that its Mellin transform

∞∫
0

τixψ0(τ)dτ has no

real zeroes, and

lim
t→∞

1
t

∞∫
0

ψ0

(
τ

t

)
f (τ)dτ = 0.

Then, lim
t→∞

1
t

∞∫
0

ψ
(
τ

t

)
f (τ)dτ = 0 for each ψ from L1(0,∞).

To explain (on a simple visual sample) how to use it, consider the Cauchy problem for the equation

∂u
∂t

= ∆u (2.1)

with an initial-value function u0(x, t) =: u0(x1, . . . , xn, t) belonging to L∞(Rn) ∩C(Rn).
Its (unique classical bounded) solution u(x, t) obeys the famous Repnikov-Eidel’man alternative,

the most essential part of which reads as follows (see [1]):

lim
t→∞

u(x, t) = 0 ⇐⇒ lim
R→∞

1
|{|y| < R}|

∫
{|y|<R}

u0(x + y)dy = 0

for each x from Rn.

The hardest (at least, historically) part of the proof is the necessity.

To prove this, fix an arbitrary x and assume that lim
t→∞

u(x, t) = 0. Then, lim
t→∞

u
(
x,

t2

4

)
= 0, i.e.,

0
∞←t
←−

1
tn

∫
Rn

e−
|ξ−x|2

t2 u0(ξ)dξ =

∫
Rn

e−|η|
2
u0(x + tη)dη

=

∞∫
0

∫
{|η|=ρ}

e−|η|
2
u0(x + tη)dσηdρ =

∞∫
0

e−ρ
2

∫
{|η|=ρ}

u0(x + tη)dσηdρ.
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Change the variable as follows: tη := y. Then, dσy = tn−1dση, and, therefore,

0
∞←t
←−

1
tn−1

∞∫
0

e−ρ
2

∫
{|y|=tρ}

u0(x + y)dσydρ = const

∞∫
0

e−ρ
2
ρn−1F(x; tρ)dρ,

where F(x; r) is the mean value of u0 over the sphere of radius r centered at x.
Denoting tρ by τ, obtain that

lim
t→∞

1
t

∞∫
0

e−(
τ
t )

2
(
τ

t

)n−1
F(x; τ)dτ = 0.

Assign f (r) := F(x; r) ∈ L∞(0,∞) and ψ0(r) := e−r2
rn−1 ∈ L1(0,∞).

Now, let us check the Mellin transform of the function e−r2
rn−1 for zeroes:

∞∫
0

τixe−τ
2
τn−1dτ =

1
2

∞∫
0

z
n+ix

2 −1e−zdz =
1
2

Γ

(n + ix
2

)
;

indeed, if x is real, then there are no real zeroes.

It remains to represent
1

|{|y| < R}|

∫
{|y|<R}

u0(x + y)dy as

const
Rn

R∫
0

∫
{|y|=r}

u0(x + y)dσydr =
const

Rn

R∫
0

rn−1F(x; r)dr.

This is equal to
const

R

∞∫
0

ψ
( r
R

)
f (r)dr,

where ψ(r) =

rn−1 if r ≤ 1,
0 otherwise

, i.e., ψ ∈ L1(0,∞).

Thus, the above corollary of the Wiener Tauberian theorem is applicable, and, therefore, the
necessity is proved.

The next step is to prove that

lim
R→∞

 1
|{|y| < R}|

∫
{|y|<R}

u0(x + y)dy −
1

|{|y| < R}|

∫
{|y|<R}

u0(y)dy

 = 0

for each x.
To do that, it suffices to note that the measure of the geometrical difference between the sets

{|y| < R} ∪ {|y − x| < R} and {|y| < R} ∩ {|y − x| < R} is estimated from above by
const
Rn−1 .

It remains to change the zero limit for an arbitrary real constant l. To do that, the initial-value
function u0(x) is changed for u0(x)− l; this changes the solution for the function u(x, t)− l (because the
problem is linear and the solution is unique).
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This yields the Repnikov-Eidel’man alternative (see [1]):
either the solution tends to a constant as t → ∞, or its limit as t → ∞ exists for no x from Rn.

Numerous extensions of this fundamental result to cases where the elliptic operator in Eq (2.1) is
generalized in various directions are obtained though the restriction for the initial-value function to be
bounded is, in a way, unimprovable (see, e.g., [3] and references therein).

3. Parabolic differential-difference equations

The above phenomenon takes place for equations of the kind

∂u
∂t

= ∆u +

n∑
j=1

m j∑
k=1

a jku(x + bjkh j, t), (3.1)

where h j = (h j1, . . . , h jn) are mutually orthogonal (for j = 1, n) in Rn unit vectors, while a jk and b jk are
real constants and of the kind

∂u
∂t

= L(n)u := ∆u +

n∑
i=1

mi∑
j=1

ai j
∂2u
∂x2

i

(x1, . . . , xi−1, xi + bi j, xi+1, . . . , xn, t), (3.2)

where ai j and bi j are real constants.
The following property is used: Translation operators are Fourier multipliers. Using this property,

one can apply the Gel’fand-Shilov operational scheme of [21] to construct solutions of the Cauchy
problem (again, with continuous and bounded initial-value functions) for the specified equations in
the form

1
(2π)n

∫
Rn

E(x − ξ, t)u0(ξ)dξ, (3.3)

where

E(x, t) =

∫
Rn

e−tG1(ξ) cos
[
x · ξ − tG2(ξ)

]
dξ, (3.4)

G1(ξ) = |ξ|2 −

n∑
j=1

m j∑
k=1

a jk cos b jkh j · ξ and G2(ξ) =

n∑
j=1

m j∑
k=1

a jk sin b jkh j · ξ for the case of Eq (3.1), and

G1(ξ) =

n∑
k, j=1

ak jξ
2
k cos bk jξ j and G2(ξ) =

n∑
k, j=1

ak jξ
2
k sin bk jξ j for the case of Eq (3.2).

For the said problem for Eq (3.1), the function u(x, t) defined by (3.3) is the unique classical solution
bounded in the layer {0 ≤ t ≤ T } for each positive T, and this solution is infinitely smooth outside
the initial-value hyperplane without any additional restriction for a jk and bjk. To establish its long-
time behavior, we have to impose such restrictions. To do that, we have to introduce the notion of
differential-difference operators strongly elliptic in the whole space (cf. [11, § 8] for bounded domains).

Definition 3.1. A Fourier multiplier is said to be strongly elliptic if the real part of its symbol is
bounded from above by −C|ξ|2, where C is a positive constant.
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Considering the case of Eq (3.1), assume (without loss of generality) that the (finite) number
sequence {ajk}

m j

k=1, j = 1, n, does not decrease. For any j ∈ 1, n, denote min
ajk>0

k by m0
j ; if j is such

that ajk < 0 for any k ∈ 1,m j, then denote m j + 1 by m0
j . Denote the differential-difference operator at

the right-hand part of Eq (3.1) by L. Also, introduce the operator L acting as follows:

Lu = ∆u +

n∑
j=1

∑
k<m0

j

a jku(x + bjkh j, t).

The following assertion is valid for the case of Eq (3.1).

Theorem 3.1. Let the operator L −
n∑

j=1

∑
k<m0

j

a jkI be strongly elliptic. Then,

lim
t→+∞

e−t
n∑

j=1

m j∑
k=1

a jk
u(x, t) − w

(
x1 + q1t

p1
, . . . ,

xn + qnt
pn

, t
) = 0 (3.5)

for each x from Rn, where w(x, t) is the bounded solution of the Cauchy problem for Eq (2.1) with the
initial-value function u0(p1x1, . . . , pnxn),

p j =

√√
1 +

1
2

m j∑
k=1

a jkb2
jk, and q j =

m j∑
k=1

a jkb jk, j = 1, n.

Remark 3.1. The positivity of the last radicand is guaranteed by the strong ellipticity of the operator

L −

n∑
j=1

∑
k<m0

j

a jkI .

Note that Theorem 3.1 is an asymptotical closeness theorem. In general, assertions of such a kind
are stronger than stabilization ones: Unlike stabilization theorems, they provide the information even
in the case where the etalon function w has no limit. In particular, Theorem 3.1 implies the following
stabilization result:

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied, l ∈ R1, and a j⊥b j for any j ∈ 1, n,
where a j = (a j1, . . . , a jm j) and b j = (b j1, . . . , b jm j). Then,

lim
t→∞

e
−t

n∑
j=1

m j∑
k=1

a jk
u(x, t) = l for any x ∈ Rn

if and only if

lim
t→∞

nΓ( n
2 )

2π
n
2 tn

n∏
j=1

p j

∫
 n∑

j=1

x2
j

p2
j
<t2


u0(x)dx = l. (3.6)
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For the Cauchy problem for Eq (3.2), under the assumption that the operator −L(n) is strongly elliptic
in Rn, the function u(x, t) defined by (3.3) is the unique solution in the sense of generalized functions,
and it is infinitely smooth outside the initial-value hyperplane without any additional restriction for a jk

and bjk.
Unlike the case of Eq (3.1), no additional restrictions are imposed in assertions on asymptotical

properties. The main result on asymptotical properties is as follows:

Theorem 3.3. If the operator −L(n) is strongly elliptic, then

lim
t→+∞

[u(x, t) − w(x, t)] = 0 (3.7)

for each x from Rn, where w(x, t) is the bounded solution of the Cauchy problem for the parabolic
differential equation

∂u
∂t

=

n∑
i=1

pi
∂2u
∂x2

i

, (3.8)

where pi = 1 +

mi∑
j=1

ai j, i = 1, n, with the initial-value function u0(x1, . . . , xn).

Remark 3.2. The positivity of each coefficient pi is guaranteed by the strong ellipticity of the operator
−L(n). Thus, Eq (3.8) is parabolic and, therefore, the specified function w(x, t) is well defined.

As above, the stronger result on the asymptotical closeness implies the stabilization criterion:

Theorem 3.4. If the operator −L(n) is strongly elliptic, and l ∈ R1, then lim
t→∞

u(x, t) = l for any x ∈ Rn if
and only if (3.6) is satisfied.

The principal technical distinction of the differential-difference case is that the Wiener Tauberian
theorem is applied to prove the sufficiently fast decay of the Poissonian kernel E(x, t) (and, therefore,
the well-definiteness of its convolutions with bounded functions) as well (more exactly, the author is
not aware of any proof not using the Wiener Tauberian theorem). This is visibly illustrated on the
sample case of the prototype equation

∂u
∂t

=
∂2u
∂x2 +

m∑
k=1

aku(x − hk, t), (3.9)

i.e., Eq (3.1) with one spatial variable.
In this case, the function E(x, t) can be decomposed into its even and odd (with respect to x) terms
E1(x, t) and E2(x, t):

E1(x, t) =

∞∫
0

e
−t(ξ2−

m∑
k=1

ak cos hkξ)
cos xξ cos

t m∑
k=1

ak sin hkξ

 dξ

and

E2(x, t) =

∞∫
0

e
−t(ξ2−

m∑
k=1

ak cos hkξ)
sin xξ sin

t m∑
k=1

ak sin hkξ

 dξ.
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Change the variable as follows: η = xξ. This yields the relation

E1(x, t) =
1
x

∞∫
0

e−t( ηx )
2

e
t

m∑
k=1

ak cos hkη
x cos

t m∑
k=1

ak sin
hkη

x

 cos η dη =
1
x

∞∫
0

ψ
(
η

x

)
f (η)dη,

where

f (τ) = cos τ ∈ L∞(R1
+),

ψ(τ) = e−tτ2
e

t
m∑

k=1
ak cos hkτ

cos

t m∑
k=1

ak sin hkτ

 ∈ L1(R1
+).

Denoting e−tτ2
by ψ0(τ), we see that ψ0(τ) ∈ L1(R1

+). Further, the Mellin transform of the function ψ0(τ)
is defined on the real axis, and it has no real zeros; indeed,

∞∫
0

τixψ0(τ)dτ =
1

2t
1+ix

2

∞∫
0

z
ix−1

2 e−zdz =
Γ( 1+ix

2 )

2t
1+ix

2

.

Further,
1
r

∞∫
0

ψ0

(
τ

r

)
f (τ)dτ =

√
π

2
√

t
e−

r2
4t

r→∞
−→ 0 .

Then,
1
r

∞∫
0

ψ
(
τ

r

)
f (τ)dτ

r→∞
−→ 0

due to the above corollary of the Wiener Tauberian theorem, i.e., E1(x, t) tends to zero as x → ∞ for
all fixed t > 0 and a, h ∈ Rm.

Now, consider E2(x, t).

Denote the function e−tτ2
e

t
m∑

k=1
ak cos hkτ

sin
(
t

m∑
k=1

ak sin hkτ

)
by ψ(τ) ∈ L1(R1

+). Denote the function sin τ

by f (τ) ∈ L∞(R1
+). Then,

1
r

∞∫
0

ψ0

(
τ

r

)
f (τ)dτ =

r
2t

F
(
1,

3
2
,−

r2

4t

)
r→∞
−→ 0,

where F denotes the second-kind degenerate hypergeometric function.
Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Hence, for all fixed t > 0 and

a, h ∈ Rm, we have

E2(x, t) =
1
x

∞∫
0

ψ
(
τ

x

)
f (τ)dτ

r→∞
−→ 0 .

Thus,
lim
x→∞
E(x, t) = 0

for any positive t and any a, h ∈ Rm.
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However, the obtained limit relation is not sufficient to prove the convergence of the convolution of
the Poissonian kernel with bounded initial-value functions. We have to estimate the rate of the proved
decay. To do that, we integrate the term E1(x, t) by parts:

∞∫
0

e
t(

m∑
k=1

ak cos hkξ−ξ
2)

cos(t
m∑

k=1

ak sin hkξ) cos xξdξ

=
1
x

et(
m∑

k=1
ak cos hkξ−ξ

2)
cos(t

m∑
k=1

ak sin hkξ) sin xξ
∣∣∣∣ξ=∞
ξ=0

+ t

∞∫
0

e
t(

m∑
k=1

ak cos hkξ−ξ
2)

×

(2ξ +

m∑
k=1

hkak sin hkξ) cos(t
m∑

k=1

ak sin hkξ) + sin(t
m∑

k=1

ak sin hkξ)
m∑

k=1

hkak cos hkξ

sin xξdξ


=

t
x

∞∫
0

e
t(

m∑
k=1

ak cos hkξ−ξ
2)
2ξ cos(t

m∑
k=1

ak sin hkξ) +

m∑
k=1

akhk sin(hkξ + t
m∑

k=1

ak sin hkξ)

 sin xξdξ.

Denote the derivative (with respect to ξ) of

e
t(

m∑
k=1

ak cos hkξ−ξ
2)
2ξ cos(t

m∑
k=1

ak sin hkξ) +

m∑
k=1

akhk sin(hkξ + t
m∑

k=1

ak sin hkξ)


by ψ(ξ) and integrate by parts again. We see that

E1(x, t) =
t
x2

et(
m∑

k=1
ak cos hkξ−ξ

2)
2ξ cos(t

m∑
k=1

ak sin hkξ)

+

m∑
k=1

akhk sin(hkξ + t
m∑

k=1

ak sin hkξ)

 cos xξ
∣∣∣∣ξ=0

ξ=∞
+

∞∫
0

ψ(ξ) cos xξdξ

 =
t
x2

∞∫
0

ψ(ξ) cos xξdξ,

i.e., x2E1(x, t) =
t
x

∞∫
0

ψ
(
η

x

)
cos ηdη.

Since ψ(ξ) ∈ L1(R1
+), it follows that the assumptions of the Wiener Tauberian theorem are satisfied.

Hence, x2E1(x, t)
x→∞
−→ 0 for all fixed t > 0 and a, h ∈ Rm.

In the same way, consider the second term of the Poissonian kernel.

E2(x, t) =
1
x

et(
m∑

k=1
ak cos hkξ−ξ

2)
sin(t

m∑
k=1

ak sin hkξ) cos xξ
∣∣∣∣ξ=0

ξ=∞

−

∞∫
0

e
t(

m∑
k=1

ak cos hkξ−ξ
2)
t( m∑

k=1

akhk sin hkξ + 2ξ) sin(t
m∑

k=1

ak sin hkξ)

− t cos(t
m∑

k=1

ak sin hkξ)
m∑

k=1

akhk cos hkξ

 cos xξdξ

 .
AIMS Mathematics Volume 9, Issue 4, 8174–8191.



8183

Thus, the second term of the Poissonian kernel is equal to

−
t
x

∞∫
0

e
t(

m∑
k=1

ak cos hkξ−ξ
2)
2ξ sin(t

m∑
k=1

ak sin hkξ) −
m∑

k=1

akhk cos(hkξ + t
m∑

k=1

ak sin hkξ)

 cos xξdξ

= −
t
x2

sin xξ e
t(

m∑
k=1

ak cos hkξ−ξ
2)
2ξ sin(t

m∑
k=1

ak sin hkξ)−
m∑

k=1

akhk cos(hkξ+ t
m∑

k=1

ak sin hkξ)

∣∣∣∣ξ=∞
ξ=0

−

∞∫
0

ψ(ξ) sin xξdξ

 =
t
x3

∞∫
0

ψ(
η

x
) sin ηdη,

where

ψ(ξ)=

et(
m∑

k=1
ak cos hkξ−ξ

2)
2ξ sin(t

m∑
k=1

ak sin hkξ) −
m∑

k=1

akhk cos(hkξ + t
m∑

k=1

ak sin hkξ)

′∈ L1(R1
+).

By virtue of the Wiener Tauberian theorem, this implies that x2E2(x, t)
x→∞
−→ 0 for all fixed t > 0 and

a, h ∈ Rm.

Thus, x2E(x, t)
x→∞
−→ 0 for all fixed t > 0 and a, h ∈ Rm. Therefore, the Poissonian kernel decays at

infinity sufficiently fast to ensure that convolution (3.3) is well defined.
Complete proofs of the results of this section are provided in [22].

4. Elliptic case

Half-space boundary-value problems are traditionally treated to be typical for parabolic and
hyperbolic equations: The only independent variable varying on the semiaxis is naturally treated as
time, while all other independent variables are considered to be spatial ones. Correspondingly, the
boundary of the domain, i.e., the boundary hyperplane, is treated as the initial (zero-time) hyperplane.
However, well-posed half-space problems for stationary equations are known as well (see, e.g., the case
of the Laplace equation in [23, 24]). In such cases, the only spatial variable varying on the semiaxis
acquires so-called timelike properties. Indeed, the problem

n∑
j=1

ux j x j + uyy = 0, x ∈ Rn, y > 0, (4.1)

u∣∣∣∣
y=0

= u0(x), x ∈ Rn, (4.2)

i.e., the half-space Dirichlet problem for the Laplace equation, is well defined in the class of
bounded (classical) solutions, its resolving operator possesses the semigroup property with respect to
the spatial variable y, and its solution u(x, y) is represented by the convolution of the boundary-value

function u0 with the Poissonian kernel
Γ
(

n+1
2

)
π

n+1
2

y

(|x|2 + y2)
n+1

2

(cf.
e−

|x|2
4y

(2
√
πy)n for the Cauchy problem for

the heat equation uy =
n∑

j=1
ux j x j in the same domain with the same initial-value function). This allows
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one to investigate the long-time behavior of the solution of problems (4.1) and (4.2): It turns out that
the Repnikov-Eidel’man stabilization criterion from [1] holds for the elliptic case as well. To prove

this, one can apply the same method as in Section 2, assigning ψ0(r) :=
rn−1(

1 + r2
) n+1

2

. This function

belongs to L1(0,+∞), and its Mellin transform is equal to
Γ
(

n
2 + x

2 i
)
Γ
(

1
2 −

x
2 i
)

2eπmxΓ
(

n+1
2

) , m ∈ Z, which has no

real zeroes, i.e., the Wiener Tauberian theorem works again (see, e.g., [25] with the zero value of the
parameter k).

For elliptic differential-difference equations, the Wiener Tauberian theorem is applicable as well. Up
to now, this is shown only for the planar case. Similarly to parabolic differential-difference problems,
equations with sums of differential operators and translation operators (in other words, equations with
nonlocal potentials) and equations with their superpositions are considered separately. For the former
kind of equations, the following assertion is proved.

Theorem 4.1. Let u0 ∈ L∞(R1) ∩C(R1), let there exist a positive constant a0 such that the inequality

ξ2 +

m∑
j=1

a j cos h jξ ≥ a0 (4.3)

holds on the real line, and let the function E(x, y) be defined as follows:

E(x, y) =

∞∫
0

e−yG1(ξ) cos
[
xξ − yG2(ξ)

]
dξ, (4.4)

where G1(ξ) = ρ(ξ) cos θ(ξ), G2(ξ) = ρ(ξ) sin θ(ξ),

θ(ξ) =
1
2

arctan

m∑
j=1

a j sin h jξ

ξ2 +
m∑

j=1
a j cos h jξ

, (4.5)

and

ρ(ξ) =


ξ2 +

m∑
j=1

a j cos h jξ


2

+

 m∑
j=1

a j sin h jξ


2

1
4

. (4.6)

If
m∑

j=1

a j ≥ 0, then the function

u(x, y) =
1
π

+∞∫
−∞

E(x − ξ, y)u0(ξ)dξ (4.7)

satisfies the problem

uxx + uyy −

m∑
j=1

a ju(x + h j, y) = 0, x ∈ (−∞,+∞), y ∈ (0,+∞), (4.8)
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u∣∣∣∣
y=0

= u0(x), x ∈ (−∞,+∞), (4.9)

in the classical sense and is infinitely smooth in the open half-plane R1×(0,+∞).

As in the parabolic case, this theorem is proved by means of the Gel’fand-Shilov operational
scheme. The transformation with respect to the variable x is formally applied to the investigated
problem. As a result, instead of a boundary-value problem for a partial differential-difference equation,
we obtain an initial-value problem for an ordinary differential equation, depending on the scalar
parameter ξ:

d2û
dy2 =

ξ2 +

m∑
j=1

a jeih jξ

 û, x ∈ (−∞,+∞), (4.10)

û(0; ξ) = û0(ξ). (4.11)

The characteristic equation of Eq (4.10) has the two roots ±ρ(ξ)[cos θ(ξ) + i sin θ(ξ)], which yields
two linearly independent solutions (depending on the parameter ξ) of Eq (4.10). Now, it remains to
take their linear combination, formally apply the inverse Fourier transformation (with respect to ξ)
to it, annihilate the terms with odd integrands, and select the arbitrary constants depending on the
parameter ξ to nullify all imaginary terms (such a choice is possible because Eq (4.10) has the second
order, while the initial-value condition is unique).

This formal procedure leads to convolution (4.7), but we have to justify it, proving that the
constructed function (4.4) and all its derivatives contained in Eq (4.8) vanish sufficiently fast as x→ ∞.
Again, this is done by means of the Wiener Tauberian theorem: We assign ψ0(r) := e−yr2

, f (r) := cos r,
and ψ(r) := e−yG1(r) cos

[
yG2 (r)

]
.

For elliptic equations with superpositions of differential operators and translation operators, the
following results are obtained.

Theorem 4.2. Let u0 ∈ L∞(R1) ∩C(R1), let there exist a positive constant a0 such that the inequality

1 +

m∑
k=1

ak cos hkξ ≥ a0 (4.12)

holds on the real line, and let the function E(x, y) be defined by relation (4.4), where

G{ 1
2 }

(ξ) = ξ

√
ϕ(ξ) ± a(ξ) ± 1

2
,

ϕ(ξ) =
[
a2(ξ) + b2(ξ) + 2a(ξ) + 1

] 1
2
, a(ξ) =

m∑
k=1

ak cos hkξ, and b(ξ) =
m∑

k=1
ak sin hkξ. Then, function (4.7)

satisfies the Dirichlet problem with Condition (4.9) for the equation

uxx +

m∑
k=1

akuxx(x + hk, y) + uyy = 0, x ∈ (−∞,+∞), y > 0, (4.13)

in the sense of generalized functions and is infinitely smooth in the open half-plane R1×(0,+∞).
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The scheme of the proof is the same as above. The dual ordinary differential equation obtained after
the formal applying of the Fourier transformation has the form

d2û
dy2 = ξ2

1 +

m∑
k=1

akeihkξ

 û,

which causes the distinction in the definition of the functions G1 and G2 but does not affect the choice
of the functions f , ψ0, and ψ for the corollary from the Wiener Tauberian theorem.

Remark 4.1. In both cases, no restrictions about the commensurability are imposed on the real
parameters a1, . . . , am and h1, . . . , hm; they are linked only by Conditions (4.3) and (4.12) for
Theorems 4.1 and 4.2, respectively.

If the nonlocal term of Eq (4.13) is unique, then Theorem 4.2 is complemented by the following
result about the asymptotical behavior of the constructed solution:

Theorem 4.3. If m = 1 and |a| < 1, then, under the assumptions of Theorem 4.2, the function u(x, y)
obeys the relation lim

y→+∞
[u(x, y) − v(x, y)] = 0 for each real x, where v(x, y) is the classical bounded

solution of the equation
(a + 1)uxx + uyy = 0 (4.14)

satisfying Condition (4.9).

Remark 4.2. The assumptions of the theorem guarantee the ellipticity of Eq (4.14). Hence, the
function v(x, y) is well defined.

Complete proofs of the results of this section are provided in [26–28].

5. Nonlinear case

For quasilinear (both parabolic and elliptic) equations, the stabilization phenomenon takes place as
well, though no direct usage of the Wiener Tauberian theorem is possible. The technique of monotone
maps, proposed in [29], is applied.

To demonstrate this technique, consider the problem

∂u
∂t

= ∆u + g(u)|∇u|2, x ∈ Rn, t > 0, (5.1)

u∣∣∣∣
t=0

= u0(x), x ∈ Rn, (5.2)

where g is continuous, while u0 is continuous and bounded.
The existence and uniqueness of its classical bounded solution u(x, t) is known, e.g., from [32].
The specified solution obeys the following assertion.

Theorem 5.1. If x ∈ Rn, then lim
t→∞

u(x, t) exists if and only if lim
t→∞

nΓ( n
2 )

2π
n
2 tn

∫
{|x|<t}

f [u0(x)]dx exists, where

f (s) =

s∫
0

e

x∫
0

g(τ)dτ
dx. (5.3)

AIMS Mathematics Volume 9, Issue 4, 8174–8191.



8187

If those limits exist, then the latter one is equal to

lim
t→∞

u(x, t) = f −1

lim
t→∞

nΓ( n
2 )

2π
n
2 tn

∫
{|x|<t}

f [u0(x)]dx

 .
To prove this, we compute f ′(s) = e

s∫
0

g(τ)dτ
and see this is strictly positive everywhere, i.e., f is

strictly monotone. Further, we note that f ′′(s) = g(s)e

s∫
0

g(τ)dτ
and, therefore, g(s) =

f ′′(s)
f ′(s)

.

Defining v(x, t) := f [u(x, t)], we find that it satisfies Eq (2.1). Further, taking into account that f
is continuous and u is bounded, we conclude that v(x, t) is bounded as well (as a continuous function
f on the segment [inf u, sup u]). Thus, being a bounded solution of the heat equation, the function
v(x, t) obeys the stabilization criterion from [1], i.e., for any x ∈ Rn, lim

t→∞
v(x, t) exists if and only if

lim
t→∞

nΓ
(

n
2

)
2π

n
2 tn

∫
{|x|<t}

v(x, 0)dx exists, and if those limits exist, then they are equal to each other.

Now, it remains to take into account that f is invertible due its strong monotonicity, and f −1 is
continuous due the smoothness of f .

The last theorem is generalized to the case of singular coefficients, but the generalization holds only
for positive solutions. More exactly, the following assertion is valid:

Theorem 5.2. Let g(s) =
α

sβ
, where α ∈ R1, while β ∈ (0, 1). Let u0 be continuous, bounded,

nonnegative, and nontrivial in Rn. Then, there exists a unique positive bounded solution of
problems (5.1) and (5.2), and the assertion of Theorem 5.1 holds for it.

The scheme of the proof, proposed above, still works (with the same anzatz), but we have to restrict
the sign of the solution to guarantee the map monotonicity.

The value β = 1 is reachable as well, but anzatz (5.3) is not applicable anymore, and it has to be
changed for f (s) := sα+1. This yields the following result:

Theorem 5.3. Let g(s) =
α

s
,where α > −1. Let u0 be continuous, bounded, nonnegative, and nontrivial

in Rn. Then, there exists a unique positive bounded solution of problems (5.1) and (5.2), and the

following criterion is valid: If x ∈ Rn, then lim
t→∞

u(x, t) exists if and only if lim
t→∞

1
tn

∫
{|x|<t}

uα+1
0 (x)dx exists.

If those limits exist, then lim
t→∞

u(x, t) =

nΓ( n
2 )

2π
n
2

lim
t→∞

1
tn

∫
{|x|<t}

uα+1
0 (x)dx


1
α+1

.

For the half-space Dirichlet problem for elliptic equations with nonlinearities of the above kind, the
explained technique is applicable as well. Consider the problem

∆u + g(u)|∇u|2, x′ ∈ Rn, xn+1 > 0, (5.4)

u∣∣∣∣
xn+1=0

= ϕ(x), x′ ∈ Rn, (5.5)
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where x = (x1, . . . , xn, xn+1) := (x′, xn+1), while ϕ is continuous and bounded in Rn.

The following assertions are valid.

Theorem 5.4. Let g be continuous in R1. Then, there exists a unique bounded solution u(x, t) of
problems (5.4) and (5.5), and

lim
xn+1→+∞

u(x) = l if and only if lim
R→+∞

f −1

 nΓ( n
2 )

2π
n
2 Rn

∫
{|y|<R}

f [ϕ(y)]dy

 = l

for each x′ ∈ Rn and each l ∈ R1, where f is defined by relation (5.3).

Theorem 5.5. Let g(s) =
α

s β
, where 0 < β < 1, and 0 ≤ ϕ . 0. Then, there exists a unique bounded

positive solution u(x, t) of problems (5.4) and (5.5), and the assertion of Theorem 5.4 is valid for it.

Remark 5.1. In the last case, the function f can be represented as follows:

f (s) =

s∫
0

e
α
β+1 τ

β+1
dτ.

Theorem 5.6. If g(s) =
α

s
, where α > −1, and 0 ≤ ϕ . 0, then there exists a unique bounded positive

solution u(x, t) of problems (5.4) and (5.5), and

lim
xn+1→+∞

u(x) = l if and only if lim
R→+∞

nΓ(n
2 )

2π
n
2 Rn

∫
{|y|<R}

ϕα+1(y)dy = lα+1

for each x′ ∈ Rn and each nonnegative l.

The above results about elliptic problems are extended to equations with variable coefficients at
linear terms (see [30]).

Complete proofs of the results of this section are provided in [30, 31].

6. Discussion

The most acute open question of this research area is whether the described phenomenon is
preserved for elliptic differential-difference equations with several tangential (spacelike) independent
variables. Currently, as far as the author is aware, no results in this direction are known. This might be
a technical disadvantage because the Wiener Tauberian theorem is one-dimensional, while, comparing
this case with the elliptic differential one and the parabolic differential-difference one, we see that their
Poissonian kernels or integrands determining them possess certain symmetry properties: The function

y

(|x|2 + y2)
n+1

2

is radially symmetric with respect to the multidimensional spacelike variable x and the

integrands in (3.4) can be reduced to factorable (with respect to the multidimensional spatial variable x)
functions by means of the expansion with respect to plane waves (note that the specified procedure was
originally invented to investigate hyperbolic problems).
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For the elliptic differential-difference case, no such simplifying procedure has been found yet.
Another important open direction is uniqueness classes for problems with elliptic differential-

difference equations. In general, the uniqueness study in the differential-difference case qualitatively
differs from the classical case of partial differential equations because no maximum principle takes
place for (parabolic and elliptic) differential-difference equations. To find uniqueness classes for
parabolic problems, we pass to the dual ordinary differential equation. In the elliptic case, this task
is harder because the dual equation has the second order, while the initial-value condition is unique.

As far as the author is aware, this problem is not solved yet.

7. Conclusions

Stabilization phenomena discovered for the heat equation in 1966 are typical for a much more
broad class of equations than classical partial differential equations of the parabolic type. Stabilization
theorems establishing the equivalence of the existence of a limit of the solution (as t → ∞) and a
limit of the mean value of the initial-value function over balls (as the ball radius tends to infinity)
are generalized to the Cauchy problem for parabolic differential-difference equations and to the half-
space Dirichlet problem for elliptic differential and differential-difference equations. In all the specified
cases, the Wiener Tauberian theorem plays a key role for the proofs.

For parabolic and elliptic equations with KPZ-nonlinearities, this phenomenon takes place as well,
but this is proved by other methods: Bitsadze’s technique of monotone maps is applied.
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