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At first, we obtained the existence and uniqueness results by using the Banach fixed point theorem
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1. Introduction

Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze
many real life problems; it has been used by researchers and scientists to get better results than
the integer order differential equations. Fractional order differential equations offer a superior
framework for capturing the intricate dynamics of real-world phenomena compared to their integer-
order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives
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to account for the inherent hereditary and memory characteristics present in diverse processes
and materials. By harnessing these fractional operators, models can more accurately depict the
nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities
across a wide range of disciplines and applications. Many fractional derivatives, including Caputo
derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative,
are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs).
In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was
developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality,
fractional derivative and integrals indicate greater accuracy than integral models and also depict broader
physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic
models [6,7,12,22,24,28,31].

SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many
mathematical models of physical phenomena in different scientific fields for example, technology,
physics, biology, economics, etc. They are important from the viewpoint of applications since they
incorporate randomness into the mathematical description of the phenomena and provide a more
accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry,
medicine, and biology, we often encounter situations where things change suddenly at specific points
in time [5, 23,29,32]. These abrupt changes can be explained by what we call “impulsive effects.”
These impulsive effects are like sudden pushes that happen at certain moments and have a big impact
on the system, being studied. These pushes play a crucial role in understanding and modeling how
things change in the aforementioned diverse fields. For the mathematical models of such phenomena,
finding their solution is a challenging task. As a result, Boundani et al. [8, 9] presented some specific
conditions that help us to determine whether certain mathematical equations, involving randomness,
can have solutions. These equations involve functional differential equations and a type of random
behavior, called fractional Brownian motion.

In [20], Hernandez and O’Regan introduced non-instantaneous (NI) impulses. Many researchers
have utilized these impulses and studied the corresponding dynamical systems [3, 4,27, 36, 39]. To
better understand NI impulses, we can think about human blood sugar levels. When they have too
much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn’t work
instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact
lasts for a while in many real situations. Sudden changes don’t explain things well. For instance, in
the treatment of diseases with medication, we need to describe how things change over time more
smoothly. That’s where NI impulsive differential equations come in handy. They help us to model
these gradual changes, like how drugs affect the body in pharmacotherapy.

Among the qualitative behaviors of different physical systems, different types of stabilities are the
essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR)
stability [11, 16,26,30,33].

In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are
given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar
results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in
finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs
incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of
change of the system at the present moment is influenced not only by its past history but also by its
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anticipated future states. This feature underscores the intricate interplay between past, present, and
future dynamics, where the system’s behavior is shaped by a combination of its memory effects and
anticipatory responses.

In the current manuscript, we investigate the following -Hilfer fractional stochastic equation
(HFSE):

Y% [T(e) — hie. T(e))] =AT(e) + A(e. T(e). D} T(&))

s f " 405, T(5), DI T(e)dB(s)
0

+ f ) A(s, T(s), D} T(£)dB" (s),
0

€ €(pelCc £ :=(0,b], k=0,1,2,...,m,
I'(e) =i (e, T(e)), e€(e,si], k=1,2,...,m,

15°T(&)/e=0 =Ty, v=y+B-7p,

I'(e) = ¢(e), £ € [0 —1,0],

['(e) = p(e),e € [b,b + h], (1.1)
where Dzﬁ) is the y— Hilfer FD of order 0 <y < 1 and of type 0 < 8 < 1. Let _# :=[0,b],b > 0.
The state vector I € R", A € R™" and nonlinear functions h : / X R" — R" A : / X R" — R",
g: I XR"— R", A: ZXR"— R™, and hy : # X R" — R" are measurable and bounded
functions. Also, I'y is .%, measurable R"-valued stochastic variable and B is an n-dimensional Wiener
process.

Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:

() if H = %, then the process is a Brownian motion or a Wiener process exists;
2)if H > %, then the increment of the process is positively correlated;
(3) if H < 1, then the increment of the process is negatively correlated.

The contributions of this paper are described as below:

e Nonlinear ¥-HFSE is considered in R".

e The existence and uniqueness results are established by using the standard Banach contraction
principle.

e The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system
with measure of non-compactness (MNC).

e UHR stability results are derived for y-HFSE with NI impulse.

e An example is provided for the theoretical results.

This paper is structured as follows: In Section 2, we present a number of lemmas and some
fundamental definitions for fractional calculus. Section 3 derives the solution representation of -
Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer’s
and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ~-HFSE is
discussed. Example is demonstrated for the validity of theoretical results in Section 6.
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Notations:

o (Q, .7, ) represents the complete probability space along a probability measure & on Q.

e B(e) and B (¢) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst
index % <H<1.

o {F e € 7} represents the filtration generated by {B(s) :0<s<ég)

o [L,(Q, %, P, R" := L,(Q,R") is the space of all .#,-measurable square integrable random
variables with values in R".

Let /k = (&, €rt1l, Kk = 1,2,...,m be such that impulse times satisfy 0 = gy = 5p < & < 51 <
& <+ <&y < Sy < &y =b. Let C(_Z, L,(Q,R")) denote C,(_#) and be the Banach space of all
continuous maps from _Z into L,(Q,R") of .#.-adapted square integrable functions I'(¢) and for its
norm sup E|[[(g)|]> < co.

Define the space

Y = PCY(_#) = PC'(_Z, L,(Q, RY)
={I: 7 > LQR). T/ 7 €C i LQ.RY),

and there exist I'(g;) and I'(g}) with I'(g;) = I'(¢;), k = 1, ..., m, endowed with the norm

I = max sup {Elle — e0' T (@)l}}.
e ge gy

Clearly, Y is a Banach space.
2. Preliminaries

Lemma 2.1. [39]Let p >2andf € L,(_#,R™") such that E| fob f(s)dB(s)|P < oo, then

f f()dBGs)| (”(” )b E f ()P ds.

Lemma 2.2. [10] Let ¢ : ¢ — L satisfy fob ||<p(s)||iods < oo, then we get
2

f ¢(s5)dB" (s)
0

Definition 2.1. [17] The generalized y-Hilfer FD of order 0 < v < 1 and of type 0 < B < 1 is
represented by

2 &
E < 2HE f E llg(s)] yds.
0 2

1 d\"
8 Bn-) 160
Dy S0 = 17 (,//(t)'a) vy SO

Definition 2.2. [10] Let 7 be a bounded linear operator. The two parameter Mittage-Leffler (M-L)
function is defined by

My p(z) = v.,8>0, zeC.

e
L T(ry +p)
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One of the interesting properties of the M-L function, related with their Laplace integral, is given by

—SE - M + — .
fo ¢ ro(as)de (s"1 ¥ a)
That is
sﬁ—l y sy_ﬁ
L1 My (a9 = s

Lemma 2.3. [17] For y € (n — 1,n], B € [0, 1], the following Laplace formula for the y-Hilfer
derivative is valid:

m—1

Ly oD FO) = 9 Ly} = Y "B (T £ (),

n=0

Corollary 2.1. [17]If f is a function whose classical Laplace transform is F(s), then the generalized
Laplace transform of the function f oy = f(Y(t)) is also F(s):

LIF(s)y=F(s) = Z{f(ye)} = F(s).

Example 2.1. [17]

r 1
@ Zlwern =L for >0
(b) iﬂw{ea(‘”@))}:L, for s> a.
s—a
u—1
© LAMAG@P) = o —

A
d)  LAWEN " My (AW(@)Y)) = for Re@)>0 and|_| <L

st —A’

Example 2.2. Assume that Re(u) > 0 and |;%| <L If MZ’V denotes the Prabhakar function, then we
have

Y=V

L€)' M) (AW} = Lw(e) ™ M) (AW(e)))} = oAy

3. Solution representation

Consider the linear deterministic system, which is represented in the following form:

Dl’(i) [T(e) — h(e,T(e))] = AT (e) + A(g, T(¢)),

12'T(&)/e=0 =Ty, v=y+B-1vB.
By the Laplace transformation, we get

sT(s) = h(s) — sPI(T(0) — h(g, 0)) = AT(s) + A(s),
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(571 = A) ([(9)) = s (T(0) - (e, 0)) + h(s) + A(s),

I'(s) = s [[(0) — h(e, 0)] + h(s) + ! A(s),
(s7] — A) (s — A) (s71 — A)
where [ is the identity matrix.
s PA=7) R R
r'(s)=.2," I [C(0) — h(e,0)] +.%," = A)h(s) +. 2,7 e A)A(s).

Substituting the L, T of the M-L function, one can obtain that
W(e)
I(e) =y(e)"' M, (AW(e)") [To — h(e,0)] + f W(e) — )M, (AW (e) — 5))h(s,T(s))ds
0

W(E)
+ f W(e) — )" M, (AW (&) — $))A(s, T(s))ds.
0
Therefore, the solution of (1.1) is given as follows:

I'e) = p(e), €€[0-r0],
o), =0,
W(e)'™ My, (AW(e)) [To — he, 0)] + [/ (w(e) — )~ My, (AU (e) — ) )h(s,T(5))ds
+ w(‘g)(w(e) SV My (A@W(e) — sY)A(s. T(s))ds, Dy T(e)
+ [ W) - 57 My, (AW(e) - ([, g1 T(p), DY, T(e)dBn)ds
+ O Wie) - 77 M, (AW(e) - s fo /l(n, (7). D}f D(e)dB™)ds,  ee(0, &),
hk(s, I'(e), ee(e,s], k=1,2,3,.
E) = 50 My (AL s Y(50) + f W) = 5 My, (AW(e) = $))h(s, T(s))ds
+ [ we) - s)y LM, (A(W(e) — ))A(s, T(5))ds, Dd,(g)r(s)
+ [M9We) - 577 My (A () — ) 8. T)). D T(£)dBGp)ds
+f YO ge) — 57 Moy (AWE) — sV A T Yo DY2 L(e)dB")ds,  ee(si. e,
I'(e) =p(e), €€[b,b+h].

(e)

I'(e) =
w< )

Definition 3.1. [40] The set S is called a quasi-equicontinuous in 7 if, for € > 0, there exists a 6 > 0,
such that ifU € S,K € N, 11,70 € Ty (7, and |1, — 11| < 6, then |['(13) —I'(11)| < &.

Lemma 3.1. [34] The set S ¢ PC(_¢# ,R") is relatively compact if

(i) S is uniformly bounded, i.e., ||l'||pc < k for eachI" € S and some k > 0;
(ii) S is quasi-equicontinous in .

Definition 3.2. [14] An operator T : Z — Z is said to be y-condensing of any bounded set % of Z.
with y-condensing(#) > 0, x(T(A)) < x(A), where

() = inf{k > 0, B is covered by a finite number of sets of diameter < k}

is Kuratowskii MNC of a bounded set 2 of Z.
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Now, we state the generalized Schaefer’s type FPT with y-condensing operators.

Theorem 3.1. [15] Let T : Z — Z be an operator and Z. be a separable Banach space satisfying
(A1) T is y-condensing and continuous.
(A2) The set S={I' € Z : " = 6T(I') for some 0 < & < 1} is bounded, then T has a fixed point.

For convenience, define the following:

M, = sup |M, (AW I
e

M; = sup [|M, ,(A(b = y()))II”.
e

To derive the existence result, we imposed the following assumptions:
(H1) The functions A, h, g, A, and h; k = 1,2, ..., m are Lipschitz continuous.

(1) Ellh(e, w) — h(g, w)I* < Mylluy — usll3;

(2) EllA(g, u1,vi) = Ale, uz, v)IF < Mylluy — wally + Mpllvi = vall3;
(3) Ellg((&,u1,v1)) — g((&, uz, v2)II* < My, lluy — unlly + Mg, vy = val3;
(4) EllA(e, uy,vi) — Ag, up, v)IIF < My lluy — woll3 + My, llvi — wall3;
(5) Elli(e, uy) — hi(e, v)II* < Myglluy = vill3,

and hy, € C((&x, sil, Lo(Q, R")), where My, My, M,, M;, and M}, are positive constants, u, U, vy, v, €
R',and e € .
(H2) There exist [, my, n, € Y with [} = SUPge g li(e), m; = SUPe 7 M (E), and ny = SUPser n,(g) such
that

Ellh(e, ur, v)IF < (&) + my@llwi > + ny(@)lvi | for e € T, uy, vy € R".

(H3) There exist [y, my,ny € Y with [}, = sup, s [;(&), m}; = sup,.; m(&), and n, = sup,. 5 ny(€) such
that

ElAGE, uy, v)IP < L&) + mp@llw | + np(@)lvill* for & € T ,uy, vy € R".
(H4) There exist I, my € Y with [, = SUPgc le(&), my = SUPe 5 Mg(E), and n, = SUPge g 1g(€) such that
Ellg(e, ur, v)I? < lo(&) + my(@)lluy|* + ng(&)llvi|I* for £ € T, uy, vy € R".

(H5) There exist Iy, my,n, € Y with [} = SUPse [(g), m) = SUPge g m,(€), and n’ = SUPgc s n,(g) such
that

EllA(g, uy, wol* < 11(8) + my(@)lluy|I* + na(e)lvill* for £ € T, uy, vy € R".
(H6) There exist M;; > 0, for all u € R", such that
Ellh(e, wl* < My(1 + |lull3).
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4. Existence and uniqueness of solution

To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into
a fixed point problem and define an operator 77" : Y — Y by

I'e) = p(e), €€[0-r0],

o), =0,
w(e)v 'M,,, (AGW()) [Ty — h(e, 0)] + [ W(e) — 7" M, (AW (&) — s))h(s, T(s))ds
l//( €)

(lﬁ(e) — )M, (AW (&) — $))A(s, T(s))ds, Dy(g)F(S)
W(e) — 9™ M, (AW(e) — M) [, §(1. ), D2 T)dB))ds
f O () = 57 My (AGHE) — 577X fo /l(n T(p), D2 TB)dBds,  ee(0, 1],
h (e, T'(e), eele,si], k=1,2,3,.
(&) = 51)" My, (A(s)") (s V(Sk)) + f (&) — )" M, (AW (&) — $))h(s, T(s))ds
+ [ we - )7 "M, (AG(E) — $))A(s, T(s))ds, D} T(s)
+f YO &) — 57 Moy (AWE) — 5P g0 Tan)). DI Cnd By
i fsf( W) - 57 M, (AW(e) — s [} A, T (. y). D2 T(B)AB™)ds, ee(s. e,
I'(e) =p(e), e€€[b,b+h].
Let x : [0 — r,b + h] — R be a function defined by
I'e) =¢e), if e€[0-r0],
x(e) =40, if e€(0,b],
I'(e)=¢(e), if e€l[b,b+h].
For each z € C([0, b], R) with z(0) = 0, we denote by u the function defined by
I'e) =d¢e), if e€[0-r0],
u(e) =<z(e), if €€(0,b],
I'(e) =¢(e), if e€l[b,b+h].
Let us set I'(¢) = z(e) + x(&) such that y, = z, + x, for each € € (0, b], where
o), &=0,

w(s)v 'M,, (A@W(e)") [T — h(e,0)] + [
w< )

W(E)

HT(e) =

w<)

" (e) — sy M, (AW(E) — 5))h(s.T,)ds

(&) = 5 My, (AW(e) = $)A(s.T,)ds, Dggm)
W) — 57 M, (AW(e) - s [} g1 T, D2 T()dBp)ds
W) — 5 M, (AW(e) - s))( fo ﬁ(n L), D2 TsdB!)ds, €0, 1],
hk(s, I'(e)), ee(e, sk] k=1,2,3,.
90E) = 50 My (A e Y(50) + f W) = 5" My, (AW(e) - s))h(s. T )ds
+ [ we) - s)y M, (AGW(e) = 5))A(s, T)ds, D T(s)
+ [ YO (e) — 57 My (AW(E) — ), 8T, DL Bar)ds
+ [1We) = 57 My (AW — ([ A1 T (. 7). D TpdB™ds, - ee(s e

w<s>
¢( )
I'(e) =

w<)
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o), =0,
w<s>v "M, (AGW(#)) [To — h(e, 001 + [ W(e) = )" M, ,(AW(e) — $))h(s, 2, + x,)ds
W(S)

((6) =7 My (AGE) = )8, 2 + 55, DY T
(&) = 7" My (AW(&) = ) 81,2, + %), Dy, T()dB)ds

f (6 - 7 My (AW — 57X fo /l(n 2+ %), Dy C)dBds,  se(0,21],
h (e, T'(e)), ee(e, sk] k=1,2,3,.

W(e) — 50" My, (A(s0)?) bl y(sk» + f
W(€)

t//()

2(e) =

e W(e) — sy M, (AW(E) — $))h(s, 2, + x,)ds

W(e) - o L (AW(E) = SPIA(S, 2, + x,)ds, Dw)r(s)
f YO 6) — 57 M (AWE) — ) I 81,2y + x,). DY T d Bap)ds
+ [1 W) - 7 My (AW — ([ A1 25 + %), DY T()dBY)ds, se(si. £,

Let ® : Y — Y be an operator given by

0, €€[0-r0],
o), =0,
w(e)v "M, (AW(e) [Ty — h(e, 0] + [ W(e) — sV~ M, (AW (e) — (s, 2, + x,)ds
e )op(e) — )7 My o (AW(e) = $Y)A(s, 2 + x,)ds, D;{’)r(s)
+ fo ") — 57 My, (AW(e) — [, g1z + x,), DL T(s)dB()ds
+ [ W) — 57 M (AW(e) — s([) A 2 + %), DYE T)dB)ds,  ee(0, 1],
DOz(e) = {i(e, T (e)), eeler, skl, k=1,2,3,...,m,
W) — 510" My, (A(so) I (51)
+ [7We) - 7 My (AW(E) — V)5 2, + x,)ds
+f Y e — sy M. M, (AW (e) — $))A(s, 2, + x,)ds, D T(s)
+f Y ) — )7 My (AE) — . 820 + ) D2 T(pdBm)ds
+ [ Y ) — 7 My AWE) — ) A2y + ), D2 TODABYs, (st 1],
0, e€lb,b+h].

To show that the operator .7 has a fixed point, for this it is sufficient to show that the operator ® has a
fixed point and this fixed point will correspond to a solution of problem (1.1).

Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of
the problem (1.1), provided

Ly=max{L,Li, L} <1, k=12,...,m, (4.1)

where

2
L = 3M21/’( £)”
¥

(M), + My, + ()M, + 2Hy(e)* M) + (M, + Y(e1)My, + 2Hy(e1)* M)

||A|| + Mh + Mf] + l//(S)Mg] + 2H¢(81)2HM,1I
1 —(My, + y(e)M,, + 2HY(£1)*1 M,,)
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Ly = My,

L; =4[ "M\ M), +

Mz(b)27 2H 2H
——— M+ My +bM, +2Hb"" M, )+ (My, + bM,, + 2Hb""M,,)

Al + M), + Mfl + ngl + 2Hb2HM,ll
1- (Mf2 + ngz + 2Hb2HM,12)

Proof. Consider the operator ® : Y — Y defined by

0, €€[0-r0],

o), =0,
w(e)v 'M,,, (AGW()) [To — hie, 0] + [ W(e) — )" M, (A (&) — s))h(s, 2, + x,)ds
l//( €)

(w(e) — M, (AW (e) — $))A(s, z5 + x,)ds, D;(B)F(s)
W(e) — 57 M, (AW(e) — s [, gz + x,), DL T(s)dB)ds
f O () = 7 My (AGHE) — 577X fo /1(77, 2+ %), DY T(pdB™ds,  ee(0, 1],
(e, T'(e), eele,si], k=1,2,3,.
W(e) — 510" My, (A(s)") B Y(50) + f (&) — 5 My, (AW(e) — sY)h(s, 2, + x,)ds
+ MW - s)y LM, (A (&) — ))A(s, 2, + x,)ds, D;gr(s)
+ " y(e) - - ', Lo (AW(E) = My 81,2y + x,). D T(d Ba)ds
B fsf( W) — 57 My (AW(e) = s([) A2 + %), DI T()dB)dss, ee(sy, ernl,
0, e€lb,b+h].

lﬁ(s)

Oz(e) =

w<)

4.2)

As A, h, g, A, by are all continuous, we have to prove that @ is a contraction.
Case 1. For z, y € Y and for € € [0, £/], we have

2y 2y
El(@2)(e) — (@y)(&)IP s3{( Mol E p (o) - el +%()Mﬁnz<e> YEIP
M 2y+1 2y+1
+ %MQ 1) =y + 22X o e My lxte) - eI

(8
+( 2‘5 MDY () = DI y(o)I°

My (8)2erl
+ — ||D¢(8)Z(S) DW))’(S)HZ

M 2y+1
VO prg ey MDY () - D;g)ymw)}.

This implies

3IM 2y
l@2)(e) ~ (@@ szny)[(

M, + My, + y(e))M,, + 2Hb2HMAI) X ||z(e) — y(&)I%
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4 3Myy (8)2y
¥?

2y
@2)(e) — (@) <3M; ‘”(y)

(Mfz F (e My, + 2Hb2HMh) x ID}% 2(s) - Dw(g)y(s)||2],

(M), + My, + y(e)My, + Hy(e)* My,) + (My, + (1) M,,

Al + My, + My, + Y(e)M,, + 2Hy (1) M),
1- (Mg, + tﬁ(s)Mg2 + 2H§0(81)2HM/12)

+ Hy(e1)* M,,) x ]”2(8) -yl

Thus we take

2
L :3M2l’//( e~
y?

(M), + My, + ()M, + Hy(e))* M) + (M,

+Y(e1)M,, + Hy(e1)*" M,,)
Al + My, + My, + ()M, + 2Hy(e1)* M),
1 — (M, + y(e)M,, + 2Hy (e M,,) ]

So, we get
I(D2)(&) — (@Y} < Lillz(e) — y(@)II3.
Case 2. Fore € (g, s¢ ], k=1,2,...,m, we have

El[(@z)(e) = (D))l < Elllu(e, 2(&)) — lu(s, y(@)IP,
I(@2)() = (PYEIF < Millz(e) = Y@

Take L, := M, and therefore,

I(@z2)(e) = (D))l < Lillz(e) = y(©)If-

Case 3. For z,y € Y and for € € (s, &x41], we have

Myliz(e) = y(&)II’

M — s)¥
E|[(®2)(e) — (Dy)(@)IP 34{(1//(8) — 50" MiMilz(e) — y(e)II* + ( 2(¢(?2 &

. 1‘42(17[/(8)2 Sk) Y MZ(lp(S)Z Sk) yMgIHZ(E) _ y(8)||2

Mjliz(e) = y(@)IP +

o2
+ MO 20 T by et M et - y<e>||2)

M _ 2y
+( 2<w<sy>2 07 M 2(5) - DI ()P

M _ 7
M) W g D72 2(5) - DY o

N Mz(l//(S)z— si)>

2HY () M, D)L 2(s) - D;ﬁ>y<s>||2)}.

My (&) = 51)>
52

I(@2)(e) — (@y)(&)II° S4{(lﬁ(8)k+1 — 5)"" My My +
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X [My + My, + (Y(8re1) = sOMy, + 2Hy(e)* M), 1 X |lz(e) — y(8)||2)

Y
4 (MZ("’(‘;)Z 7 My + W) — 50My, + 2H(P M)

x ID7% 2(s) - Dw(g)ymuz)}.

Thus,

My(b)>

[(D2)() — (Dy)(e)|]* s4{bv-lMl My, + ———{M, + My, + bM,, + 2HP M, + (M,

+ bM,, + 2Hb* M,,,))
Al + My, + My, + bM,, + 2Hb* M,
1 - (M, +bM,, + 2HD*P M)

= Li|lz(e) — y(o)li3.

}Ilz(s) -yl

From the above three cases, we obtain that [|(®z)(e) — (@y)(&)II* < Lollz(g) — y(8)ll3 as per (4.1), @ is
contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).

Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness
is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and
uniqueness results, even though conditions are stronger.

Remark 4.2. It is to be noted that the assumption Ly < 1 in Theorem 4.1 shows a restrictive smallness
on Lipschitz constants for the nonlinear functions h, g, A, and A when compared with the periods
of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the
generalized Schaefer’s FPT is introduced.

Theorem 4.2. Assume that (H2) — (HS) hold, then the nonlinear operator ® : Y — Y has a fixed
point, which is a solution of problem (1.1)

Proof. Since ® is well defined, we will present the proof by the following four steps.

First, we prove that ® is completely continuous (CC), that is, 7 is continuous, maps bounded sets
into bounded sets, and maps bounded sets into quasi-equicontinuous sets.
Step 1. To prove @ is continuous.

Since h, g, A, A, and hy are all continuous, then it is clear that the operator @ is continuous on ¥ .
Step 2. To prove ® maps bounded sets in Y.

In fact, it is sufficient to show that for any r > 0, there exists an > 0 such that for each z € 8B, =
{zeY : |zl < 2.
Case 1. Fore € [0,g],z€Y

2y
I(@2)(e)Il3, S4{w(81)V_IM1IIFo — h(g, O)ly, + My——5— e (e, 25 + x,), Dy T(s)l|
¥

8 w( )27+1
IAGe, 2+ x0 DY PO+ My =2 lgles 2 + 51, DY T

'71’(81)27
7
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2v+1
+2H (&) My e
y?

ez, + e Wr(s»u}

Using (H2) — (H4) and Lemmas 2.1 and 2.2, one can enumerate

2y 2y
@@ s4{Ml Iy — he, O)IP, + M. ‘”‘y E7 (1(8) + mu(@lizs + ) + Ma ‘”( L

(Uy(e)

+my(@)llzs + x| + ny@ID}E L))
(8 )Zy+1
+ le//;/—(l (&) + my(@)llzy — x5 + gD} T(s)IP)

2H-1 Y(e )Zy+1 V.8 2
+2Hy(e)™" " M, " ———(a(&) + my(&)llzy + x|l + 1D e, LI

2y 2y 2y+1
l//( 1) @) + le//( £1) r) + l//( y) r)

S4{M1||Fo — h(e, 0)l[3, + M.

2H
M, 2H¢(81) (lj)}

( h) M2 ( f)

2 2y+1 2y+1
4{M2w(71) ’ f Mz—w( ;/)2 ’ I’l; + Mz—w( ;/)2 ’ n %, }”
Y(e )27

) ) 2y+1 2H
.\ 4{ d,(jll) Y ',0(81) Y M(m;) + MZ&( A)}”z”

V24 2
Dy (o)

34{M1||F0 — h(&, 0)|* + My™—— (I + I+ y(e)ly + 2H¢,//(8)2Hl*)}

(e 1)2

+ 4{M1||F0 — h(g, 0)II* + My———(mj, + m; + y(&)m;, + 2Hy(£)*"'m,)

. (l}i + 1 + (@)l + ()l + (my + my + Y(e)my + w(g)m;))}
1- (nj} + lﬁ(&‘)n;‘, + Y(e)m; Z
= To-
Case 2. For ¢ € (g, s¢], k=1,2,...,m

I(D2)(@)I* <Ellhi(, 2z + x)IIP < My, (1 + [12]P)
<y(&)' " My, (1 + Iz
<max (&) "M, (1 +2)
=, k=1,2,3....m

Case 3. Fore € (s, 141, k=1,2,...,m, I € Y, we have
E|[(D2) () S4{E IW(&rt — 510" My, (A(s)”) hye(sie, T(s)II?
()
+ E|| f W(e) — )" M, (AW (&) — $) (s, z, + x,)dsl|]
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[(s)dsl?

W(e)
+E| f () — )™ My, (A (&) = ))A(s, 25 + x5, DY

W(e) s
+ El f W(e) — ) M, (A(W(e) - S)y)(j; 8,z + xn,Dlé)F(s))dB(n))dst

() s
+E|| f (&) = )" M, (AW () = 9))( f A, 2 + x,,,Dggns))dBH)dsllz}.
Sk 0

Thus

_ 2y
E|@D)@)| s4{(¢<s>v-1M1th<1+||r<sk)||%f>)+Mz(‘/’(8)"“ S

,},2

1+ Wl — L, + 2HW () sk>2”13]}

_ 2y
+4{<w(s)V‘1M1th(1 +||r(sk)||%f>>+Mz(‘/’(‘9)’”y‘2 LA

+ m}i + (W(&)is1 — Sk)m + 2HW ()41 — Sk)ZHl* }

2y 2y+1 2y+1
+ 4{M2 lﬁ(é‘]z) n + Mz%”* + Mz%n *2 }”Dﬂg L(s)IP
Y

% f % 8 Y(e)

2y

b
s4{bv—1M1 My + MZV[I;; + [} + bl + 2Hb2Hl;]}

2y

+ 4{bv-‘M1 My + My—[m), + m; + bm; + 2Hb* ' m]
Y

+1

ly + I + bly + bl + (my + m, + bmy, + bm) .
1- 4(n;) + bn;‘, + bm,
= Np.

Let 7= {no, 7> ), k = 1,2, ...,m, then {y' ™ (®2)(¢g) : z € B} is abounded set in Y, i.e., |zl < 7.
Step 3. @ is a quasi-equicontinous set in Y.

Case 1. Let 7y, 7, € [0, ;] with O < 7; < 7, < &1. One could establish the following estimate:

I(@2)(12) = (@2)(T)I* = sup{Ellry " (@T)(72) = 7, (@D)(7)II’)

SS{E 1My, (AT)ITo = h(e, O)ll = My ,(AT)IITo — A, O

T2
+ T f 7, (12 = )™ My, (A7 = 5)7)
0

— 11711 = ) My (A1 = IR, + my Ellzs + x| + 3 IDYE T (s)IP)ds

+(1y— 1)) f 20 1y — )M, (A(ty — I + miEllzy + x|

+ n|ID}E T(9)|P)ds + 7 f 17,7 (72 = )" M, ,(A(7 = 5)7)
0
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— 1171y = T M (A — SR + mEllz, + x|P + nIDE T(s)P)ds

Y(e)
+(12—T1) f 2y = 52 My (A = IPW + miEllzs + x,1°

+nj|IDE T(s)IP)ds + 1 fo 7,7 (72 = )77 M, ,(A(72 = 5)")

— 71711 = 7 M,y (A1 — )P + mEEllz, + x> + ng iDL T(9)|P)ds

+(12—11) f 7 (1 = 97 My (A, — IPL + miElz + x|

T2
+ nyIDY T (s)IP)ds + 2HD! f ey " (r2 — 8" ' M, (A(12 — 5)")
0

— 7170 = 97 My (At — SR + mEllz, + x| + mlIDE T(s)P)ds

T2
+2H(1, — 1) f 201y — M, (AT — )P
0

X (I + myEllzs + x|I* + ndllDlé)F(s)llz)ds}.

We conclude that as 7, — 7; — 0 with £ sufficiently small, the right hand side of the above inequality
tends to zero independently of z € 4. Furthermore, the similar results are true for g, < 71 < 7 < 8¢
and s < 7] < Tp £ gy for k = 1,2,...,m. It proves the equicontinuous of ® on Y. Thus, for
71,72 € [0, (&, Exs1], kK = 1,2,...,m, whenever £ is a bounded set of Y as in Step 2, let z € %,,
then

I(@2)(71) = (@)@l < M(r)(T2 = T1).

Thus, @ is quasi-equicontinuous, then ®(z) is relatively compact by Lemma 3.1, which implies that
d(z) is CC.
Step 4. @ has a Prior bound.

It remains to estimate that the set [[(®) = {z€ Y : z = Odz,0 < O < 1} is bounded.

Let z € II(D), then z = Od(z) for some O € (0, 1), by following the proof of Step 2 that ||z|]ly < 7.
This proves that the set II(®) is bounded. Hence, by Theorem 3.1, ® has a fixed point, which is the
required solution on _Z.

5. UHR stability results

Here, we derive the UHR stability for (1.1). Let w > 0, ¢ > 0, and { € PC( / ,R™) be
nondecreasing. Consider the following inequalities.

E|D} [T(e) - h(e, T(£))] - AT () - A, T(e), D} T(s)) — f g(s, T(s), D}, T (5))dB(s)

fg A(s, T(s), DW(S)F(S))dBH(s)II <wl(e), € €(Sw&1), k=0,1,2,....m
0

E”r(s) - hk(s’ F(S))” < w¢’ ce (Sk’ Sk]’ k= 1’ 2’ ce.e,m
E|lI;-'T(e) = Toll* < we,
I'(e) = ¢p(e),e € [0—r,0], (5.1
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I'(e) = ¢(e),e € [b,b + h.

Define a vector space as y:
x =PC(Z,R") N C((sg, tr1], RY).

Definition 5.1. System (1.1) is UHR stable with respect to ({, ¢) if there exists Coyrps) > 0 such that
for each solution T € y of the inequality (5.1), there exists solutionI" € PC(_¢ ,R") of (1.1) with

E|l(e) -T()I* < Cotrpow(l(e) +¢),e€ 7.

Remark 5.1. A function T' € y is a solution of (5.1) & there is 2 € ﬂffo ((Sg> 1], R"] and q €
NZo((ex, si), R") such that:

(1) E||Q(e)||2 < w{(e), & € Nk 81011 Elg@)IP < w, & € Nt sil;
(2) D) [T(e) - h(e,T(e)] = AT(e) + Ae, T(e), D} T(s) + [ g(s.T(s), Dw(g)F(S)))dB(S)

+f0 A(s, T(s), Dlé)F(s)))dBH(s) + 2(e), € €(sp,&1], k=0,1,2,.

(3) T(e) = (e, T(e)) + qe),e € (g, 81, k=0,1,2,....,m

By Remark 5.1, we have

D8 [F(e) - h(e, [(e)] =AT(e) + Ae, T(e), D} T (s) + f ) g(s.T(s), D} [(s)))dB(s)

f A(s, T(s), Dy(g)l“(s)))dBH(s) + 9(e),

0
& E(Sk78k+1]’k:0’192’-'~’m

T(e) =h(e,T(&) + qle), e€ (g, 1), k=0,1,2,...,m
1y"T(&)/e=0 = T.

Lemma 5.1. Let € [0,1], y € (0, 1). If a function T € y is a solution of (5.1) then we have:
(i) EI(&) = (&)™ M, (AW(e)") [T — h(e, 0)]
_ fo " ) - 97 My A — 57 VhCs, (), DI (s
. fo " e — 577 M, (AWte) — 9AG.T(9). DI (5))ds
_ fo W)(w(s) — )" My (AW (e) = ))( f §(n. T, Dy [ (s)dB(p)ds

w(e)
- fo (&) = )" My, (A@W(e) = 5))( f A, T(p), D}7 T(5))dB™)dls||”
l/’zy( ) vt

f {(s)ds, €¢€]0,¢&].

(i) EllGp(e) = s1)"™ My, (A(s)?) sy T(s1))
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+ L L//(g)(lﬂ(&) — )" My, (A(Y(&) = $))h(s,T(5), D}’ T(s))ds

- j; L//(g)(lﬂ@) — )" M, ,(A(Y(&) = $))A(s, T(5), D)7 T(s))ds

- L w@)(w(g) — )" My (AQY(e) = 5))( f s g, E (), D)7 T())dB()ds

- L W)(lﬁ(s) — )" My (AQY(e) — 5))( f A, E(p), D)7 T(5))dB™)dis|I*
Sb;—ZyMzwf {(s)ds, € € (Sg,ek41), k=1,2,...,m.

By Remark 5.1, we have:
Case 1. For ¢ € [0, g;], we have

D;fg)[l“(s) h(e, T (e))] =AT () + A(e, T(e), Dw(g)l“(s)) + fg g(s,T(s), Dw(g)l“(s))dB(s)
fo A5, T(5). DL T(s)AB () + Do),
Thus
[(e) =u(e)' ™ My, (AW(&") [Ty — h(z, 0)]

+ fo 6 = 5 M AW — 97, T, D T
N fo w(g)(l/,(g) — sV M, (AW (e) — $))A(s, T(s), D}E T(s))ds
+ fo W(S)(l//(s) — )7 M, (AQ(e) — ))( f 8(n T 0n), Dy, T()dB@)ds
" fo%)o//(s) — )77 My, (AG(E) — 5 f A, Tn), Dy T(s)dB")ds
N fo W)(d,(g) — )" M, (AW (&) — $)")2(s)ds.

From above, we obtain

E|ll(e) — (&)™ My, (A(Y(8)") [Ty = (e, 0)]

w(e)
- fo (W() — 8V~ My, (A((e) — $))h(s, T(s), D} T(s))ds

w(e)
- fo (W () — 5V My, (A((e) — $))A(s, T (s), D} T(s))d's

w(e)
- fo (&) = )™ My, (AW (e) = )X f g, T(m), D7, T(s))dB(m)ds
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U(e)
- j(; (W(&) = )™ My, (AW (e) = 5))( f A, E(p), D)7 T())dB™)ds|

w(e)
<E|| f (&) = )" My, (AW (&) — 5))2(s)dsI”

2
Y, f 2(s)ds.
¥?

Case 2. For ¢ € (g, s¢], we have

E|Il(e) = hi(e, T(@))I < wg.

Case 3. For € € (s, &41], we get

D} (6) = e )] =AT(e) + Ae.T(@. D) + [ " 4(s.F(s). DI T(s))dB()

f (5. F(s).D 18 L()dB" (s) + 2(&),
0
then, (&) =(¥(e) = 50" My (A(s0)") us ¥(51)

+ fsk%)(w(s) = )7 M, (AW(e) = (s, T(5), DG, T(s))ds

¥ f " ) — 7 My A - 9 ES), D} T(s))ds

N f " e - 57 M AWE) - ) f 1. ). DY T 5B
) LW)W(”‘ 7040 = 97X [ a0 . D T,

W(e)
+ f W(e) — ) ' M, (AW (e) — $))2(s)ds.
Thus
E|l(e) — (W(e) — s1)"'M,,, (A(s)?) sy, T(sp))

- fk W)(w(g) — sV M, (AW (e) — $))h(s, T(s), D} T (s))ds

-~ fA w(s)(w(e) — sV M, (AW (e) — $))A(s, T(s), DS T(s))ds

- f " ) = 7 M, AE) - ) f §(n. T, D} D(s))dB()ds

_ f W(g)(w(g)_s)vl M, (A@W(e) — s)7)( f A(n, T, D7, T(s)dB™ds]
<E| f " e - 7 M, Awte) — ) 2
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Ry
(l//(b‘) Sk)y f £(s)ds

S—zMzsf {(s)ds.
Y 0

In order to prove stability, we assume the following assumptions:
(H7) There exist positive constants My(k = 1,2, ...,m) such that

Elliu(e, T(g)) = (e, z(@))I < Z MLE|IT () = 2(&)lIF Ve € (e, si].

k=1

(H8) Let £ € C(_#, R") be a nondecreasing function if there exists ¢, > 0 such that fos {(s)ds < c L(¢),

Vee 7.

Lemma 5.2. Let Py = PU O where p = 1,2, ..., m, and the following inequality holds

I'(e) <a(e) + f ’ b(I'(s)ds + Zoee <l (7)), €20,
0

where I',a,b € PC(R*,R"), a is nondecreasing and b(e) > 0, a;, > 0, k € P. For € € R*,

I(e) < ale)(1 + a)fe ( f ) b(s)ds) ,e € (ex,ex1l, K e Py,
0

where a = supg plak} and gy = 0.

Theorem 5.1. If the assumptions (H1),(H7), and (HS8) are satisfied, then (1.1) is UHR stable with
respect to (£, §).

Proof. Let T € y be a solution of inequality (5.1) and I be the unique solution of (1.1).
Case 1. For ¢ € [0, g/], we have:

E|T(e) - y(e)™ My, (AW(£)) [T — h(e, 0)]
7e) 3
- fo (&) = )™ My, (A(W(e) = ) (s, [(s))ds

W(e) .

- fo We) = 57~ My, (AW(E) — $7)AGs, T(s), DI T(s)ds
W(€) s .

- [ w9 a0 -0 [ e T D rendBmds
(&)

—‘[0 W(e) — ) M, (A(W(e) - S)y)(f A, T(n), D¢(8)F(S))dBH)dS||

u(e)
=E|| fo (&) = )™ M, (AW (&) — ") 2(s)dslI*

2 & 2 2
slﬁ ;58) Mye f Y(s)ds < v ;gs) Mywel(€) < %Mzwqé (&) < cpeel(e),
0
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_ b
where ¢, = 7M2.
Case 2. For € € (g, s¢], we have

Ell(e) - hi(e, T(e)I < we.
Case 3. For ¢ € (sy, €411, we have

E|lT(e) = (&) = 510" My, (A(se)) (51, T(50))

_ L w(a)(w(g) — )M, (AW () — 5) (s, T(5))ds
_ifﬂww_@rmgwam@—@mM&ﬁwJﬁgHst
_Ifﬂmw_@%m@%mwwrwvxﬁ}mfm»mgnnmmmMs
_jjﬂm@—WHMme@—wmiﬁwmﬁmefwwﬂwmz
zmjjﬂwg_wﬂm¢mw@—wmmww

SW(S)),—ZSI{)VMzwféV(S)dS < %Mzwcgf(g) < epegl(e).
0

Hence, for € € [0, &1], we have:

y(e)”

,},2

E|Il(e) - T()I” < Mz[ng{(S) + ((Mh + My, + y(e1)My, + Hy(1)*' M,,)

+ (M, + Y(e1)M,, + 2Hy(e))*" M,,)
Al + My, + My, + y(e)M,, + 2Hy(e1)* M,
1= (M, +y(e)M,, + 2Hy(e))*H M,,)

ﬁnﬂ—ﬁmﬂ
bzy 2H
§7M2 wcé{(s) + (M, + Mfl + ngl + Hb M/h)
+(My, + bM,, + Hb*" M,,)
Al + My, + My, + bM,, + Hb* M),
1 — (M, + bM,, + 2Hb* M ,)

)IIF(S) - f(S)Ilz]' (5.2)

For € € (g, s¢], we get

E|T(e) - T (o)’ =EIT(e) — h(si, D(so)IP
=E|T(e) — hx(sx, T(s1) + hie(si, TCsi)) — haCsis T(s)II”
<AHEIT (&) = b TSI + Ell(si, T(s1)) = i, Esi)IP)
Lfwed + X M|[T(e) — T(e)|*). (5.3)

For ¢ € (Sk, 8k+1], k:1,2,. ..,1n,

. b*
E|[T(s) - T(e)| SS—ZMZ[wc({(s) + ((Mh + My, + bM,, + HV* M)
5 :
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+(My, + bM,, + Hb*" M,,)
Al + M, + M +bM, + Hb*"M, .
1 A8 Lircs) - TP,
— (Mf2 + ng2 + Hb*"M,,)
+ 5" M ER . MIT(s) — T(s)|1% (5.4)
i=1

Combining (5.2)—(5.4), one can get an inequality of the form given in Lemma 5.2. For £ € ¢, since
€ € (&, &41]), K € Py, we have

E|IT(e) - T()II? SS{prCg{(S) + b7 MIZE MITGe) - Tl

+ | (M), + My, + bMy, + HV* M)

+(My, + bM,, + Hb*"M,,)
Al + My, + My, + bM,, + HV*" M,
1- (]Mf2 + ngz + HbZHM,iz)

]IIT(S) - L)l

56 MLEE MIT(s) r(s)||2} 2w

<5c,we (L(€) + )1 + My<eh 145,

where
M =sup{b*"' M M},
L =c,|(M, + My, + bM,, + Hb*" M) + (M}, + bM,, + Hb*" M)
Al + M), + My, + bM,, + Hb* M),
1 - (My, +bM,, + HP*M,,)
Thus,

E|l(e) = D@l < 5CuLppwl(e) +¢).Ve € 7,

where Cy 1) 18 @ constant depending on M, L, p, {. Hence, (1.1) is UHR stable w.r.t ({, ¢).
6. Example

Consider the following nonlinear ¥-HFSE with NI impulses driven by both noises. This type of
fractional SDE can be applied in pharmacotherapy.

V1 Tue) 1 T y
Diwl1(e) =128+ 5 (1 +T3(e) + F%@)) "3 (1 +T3(e) + r§<s>’DW>F(S))

—i(&) 24 (¢)
v —rl(g); Bi(e) D) + e pl(e), D7 ),

u(e) 3 W)
13 1 I'>(e) 1 I (e) B
DT, (g) =Ty (&) + — + = ,D" T
we! 2(8) =T(&) + (1 +T(e) + F%(s)) 5 (1 +T%(e) + I3(e)” @ ©
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[a(e)e .8 Da(e)e
+ 3B Dy, I () + ————

8€(Sk, 8k+l]’ k:()al""’m’

B3 (£), D}E T(s),

I'(e) :%F(s, ), €0.9,s), k=12,...,m,
I'(0) =y, y(e) = sin(e),

where' e R%, T € %,ﬂ =1 0<egy<sp<e <---<s, =1 are prefixed numbers, / = [0, 1]. Here
[i(e)
01 5(142(e)+12(g)) 0
A = (1 O) ’ A(‘g, r(‘g)) = ( ! 6 2 Ia(e) s
5(14T2(e)+T2(e))
51(8) . 0
5(1+T2(e)+T2(e))
h(e, () = ( : 6 2 Ia(e) ;
5(14T2(e)+T3(e))
LEe™ Tie)e® 0
g(89 F(S)) = (3) [ (e)e™?@ | /1(89 F(S)) = 8 el (e)e™?@ |+
3 5

Calculate the M-L function by using [12]. We have
S1 S,
Yy —
MwMM@)—L& &y

where

> (=1)/b3Y
S1=S4= ) ————=-0.3377,
L 4ra 2y

> (=1)/pGihy
=—8,= = —1.666.
$2==53 ZF(1+(2j+1)y)

J=0

Also calculate

Py Pz)

Mwmw—whzta P

where

2 (=1 (b — )2
po=p, =N EVCO=9T o
= TCiy+y)

> (= 1)/ (b — 5) @Dy

= —0.4203.
FI2j+ 1yl

P2:—P3
j=0

Therefore, we need to check the hypotheses of nonlinear functions:

1
E|lh(e, uy) — h(g, up)|I* <3glln - wll,
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1 1
E|lA(g, uy,v1) — Ag, up, va)|I? Sg””l —wl* + g”vl — ol

1 1 _
Ellg(e, ur,vi) — g(&, uz, m)|I* S§€ lluy — wol* + To¢ vy =%,

1 1
2 4 2 =5 2
EllA(e, uy, vy — A(g, uz, vo)l| Sge YNy — | + 20°¢ [ [

1
Ellh (e, u) — hi(g,vlI* <ggll - VR k=1,2,...,m.

We get M = 0.0862, M, = 0.3824, M, = 0.065, and y = 0.5. Hence we have L = max{Ly, Ly, L;*} =
0.52 < 1. Also,

E|T(e) = D(@)I* < 5CunLp0el() + ).Ve € 7,
<0.218.

In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a
unique solution and is also UHR stable.

7. Conclusions

With the help of Schaefer’s FPT and the Banach contraction principles, we obtained the
existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-
instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability
for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why
this theory is very important in the numerical analysis as well as in approximation theory. We are
hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is
provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings
to investigate the controllability of HSFEs.
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