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Abstract: We investigated the dynamic effect of stochastic environmental fluctuations on the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection system with time delay and
mediations by the angiotensin-converting enzyme 2 (ACE2) receptor protein. First, we discussed the
existence and uniqueness of global positive solutions as well as the stochastic ultimate boundedness
of the stochastic SARS-CoV-2 model. Second, the asymptotic properties of stochastic time-delay
system were investigated by constructing a number of appropriate Lyapunov functions and applying
differential inequality techniques. These properties indicated a positive relationship between the
strength of oscillations and the intensity of environmental fluctuations, and this launched the properties
of a deterministic system. When the random disturbance was relatively large, the disease went extinct.
When the random disturbance was relatively small and Ry, < 1, the disease could become extinct.
Conversely, when the random disturbance was smaller and Ry, > 1, then it would oscillate around the
disease enduring equilibrium. At last, a series of numerical simulations were carried out to show how
the SARS-CoV-2 system was affected by the intensity of environmental fluctuations and time delay.
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1. Introduction

During the development of human society, the outbreak of various infectious diseases and epidemics
has brought great economic losses and harmful to human well-being, and therefore infectious diseases
have always attracted widespread attention and research. Epidemiology [1-3] is a scientific discipline
that specializes in the research of the transmission, occurrence, distribution, and control of disease
in populations [4,5]. Using epidemiological studies, one can gain an improved comprehension of
the pathophysiology, modes of transmission, and influencing variables of diseases, which can aid in
disease prevention and control [6, 7].

Since the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to
novel coronavirus infection has spread rapidly worldwide, bringing great challenges to human society.
SARS-CoV-2 is a single-stranded RNA virus that undergoes genetic mutations during replication due
to factors such as its replication mechanism and genome structure. As a result, multiple mutated strains
emerged [8,9], such as, the B.1.1.7 (Alpha) mutated strain detected in the UK in September 2020 [10].
In December 2020, a variant strain B.1.351 (Beta) was detected in South Africa [11-13]. The P.1
(Gamma) variant detected in Brazil in January 2021 was strongly drug-resistant. The B.1.617.2 (Delta)
variant strain was detected in the UK in March 2021 [9, 12, 14]. The Omicron mutant was detected in
Botswana in November 2021, and it is the most mutated strain of the new library virus so far [15-17].
These five variants are called “variants of concern”.

Normally, the process of SARS-CoV-2 virus incursion into cells is a multifaceted interaction. First,
the free SARS-CoV-2 virus combines with the receptor angiotensin-converting enzyme 2 (ACE2) on
the target cell via the hook protein (S protein), which binds to the cell surface. Second, once the
virus binds to the surface of the target cell, its fusion protein undergoes a conformational change that
results in the virus fusing with the target cell membrane. This allows the viral genetic material (RNA)
to enter the target cytoplasm. Finally, after the viral RNA enters the cytoplasm, it will utilize the
target cell’s biosynthetic machinery to replicate itself and produce new viral particles. These new viral
particles gradually accumulate within the cell and are eventually released to continue infecting other
cells. Among the steps involved in viral replication are transcription, translation, genome replication,
and assembly. Blocking any of these stages in the process may prevent viral replication and provide
selective targets for vaccines and drugs to act on. For example, hepatitis C virus particles invade regular
cells by combining with target cell receptors via the E2 proteins [18]. SARS-CoV-2 enters target cells
by combining with ACE2 receptors on target cells [19].

In recent decades, the development of mathematical models have provided powerful tools and
methods for epidemiological research, allowing us to more accurately understand the transmission
patterns of epidemics, predict the development trends of epidemics, and guide the development of
appropriate prevention and control strategies [20]. In 1996, Perelson et al. [21] developed a
fundamental model that includes free viruses, uninfected cells, and infected cells to study the
interaction between host cells and replicating viruses. A brief mathematical model of free viruses,
antibodies, uninfected cells, and infected cells was considered by Murase et al. [22]. For example,
literature [23,24] investigated the effectiveness of existing vaccines in controlling the SARS-CoV-2
virus. References [25-28] studied the kinetics of SARS-CoV-2 and its strains.

On the one hand, the infection process of viruses and cells is a complex and dynamic process that
is usually not completed in a short period of time. For a virus, such as SARS-CoV-2, the infection
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process involves multiple links, from the entry of the virus into the target cell to the replication and
spread of the virus, each of which requires a certain time delay. Therefore, the affect of time delay
on the SARS-CoV-2 system needs to be considered. In recent years, a number of infectious disease
models with time delays have been proposed [29,30]. In 2023, Lv and Ma [30] established the system
SARA-CoV-2 with time delay as follows:

du
dt(t) =A=pv@) f(DO)U(1) —d U(1),
@
€ Bv(t — w)f(D(t — w)U(t — w)) — da(2),

(1.1)
d;(;) = BNI(E) = ev(),

dD
d_:’) = A1 = KBv(D) f(D@O)D(1) - cD(®),

where U(t), I(¢), v(t), and D(¢) represent the densities of uninfected target celles, infected target cells,
free viruses, and ACE2 receptors carried by uninfected target cells at time ¢, respectively. A and d; are
the proliferation and mortality rates of uninfected target cells, respectively. The free virus fuses with
uninfected target cells mediated by the ACE2 receptor, leading to a reduction of uninfected target cell
numbers Bv(t) f(D(t))U(t), in which 8 denotes the rate constant for free virus infection of uninfected
target cells, and f(D(r)) denotes the probability that the virus successfully enters the target cell under
ACE2 receptor mediation. Normally, f(D(t)) is defined as a Hill function:

Dn
D!+ DV

f(D) =

in which the Hill coefficient is denoted by n > 0, and D; denotes the half-saturation constant. It goes
to show that f(D(r)) ~ (0,1). Let f(D) be a continuously differentiable function that strictly
monotonically increases on [0, +o0) and fulfills £(0) = 0. The term e~ 2“Bv(t — w) f(D(t — w)U(t — w)
represents the value added by infected cells, and d, denotes the mortality rate of infected target cells.
The time delay is denoted by the constant w, and the term e~?“ denotes the survival probability of
infected cells after time w [4, 31]. d,NI(t) denotes the amount of virus released from dead infected
target cells, and the integer N is positive. Viruses degrade at a rate of ¢;. A; and ¢, represent
proliferation and mortality rates of ACE2 receptor, respectively. The term Sv(z) f(D(#))U(¢) refers to
the reduction in the number of uninfected target cells resulting from free virus, and D(#)/U(¢) is the
average amount of ACE2 receptors that are carried by per uninfected target cell. Therefore, the
reduction of ACE2 receptors resulting from the reduction of non-infected target cells denotes

kBv(0) f(D0))U(1) x D(1)/ U(1) = kBv(1) f (D)) D(1),

in which k is a constant ratio. It is assumed that every parameter is a positive constant.
From [32], the next generation matrix method is used to calculate that the system (1.1) has one basic
reproduction number
—drw
e RYBNA (A
- S (0
C]d] Cr

which has a number of properties, as follows:
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(1) System (1.1) possesses a disease-free equilibrium point

A Ay
Ey=1—,0,0, —
’ (dl Cz)

when Ry < 1, and this point is globally asymptotically stable.

(2) System (1.1) possesses an endemic disease equilibrium point
E* — (U*’I*,V*’D*)

when Ry > 1, and this point is globally asymptotically stable.

On the other hand, some epidemiologic models usually consider the impact of environmental
variables like precipitation, temperature, and relative humidity when exploring disease
transmission [33, 34]. These factors in the environment may have a great influence on the viability,
speed of spread, and range of transmission of pathogens. Therefore, during the infection process of
the SARS-CoV-2 virus, it is inevitable that it will be affected by various environmental noises, which
may have a great impact on the whole system. Generally, white noise, as a major environmental
disturbance, is a noise consisting of zero-mean random signals of various frequencies. It is a
continuous disturbance that can simulate various small or medium level fluctuations in the
environment. Moreover these fluctuations have relatively little effect on the intrinsic cell growth rate.
Therefore, revealing how environmental white noise disturbs and effects the SARA-CoV-2 system has
great practical significance. Stochastic models with white noise interference have been constructed
and investigated by numerous academics in the last few years. The reader is referred to the
literature [35—41] and references contained therein. For example, Omamea et al. [41] proposed a
SARS-CoV-2 bivariate stochastic model, and investigated the global asymptotic stability of the
equilibrium point as well as the threshold conditions for disease extinction and ergodic stationary
distribution.

Here, we consider the effect of stochastic environmental fluctuations on target cells, which leads to
the following stochastic SARA-CoV-2 system with time delay

dU(0) = [1=pvO F(D@)U(®) — diUD)]dr + o U(D)dB1 (1),
dI(t) = [e™*“Bv(t — ) f(D(t — w)U(1 — w) — doI()]dt + 01 (H)dB(0),
dv(r) = [daNI(1) = c;v(n)]dt,

dD(1) = [ = kpv() fF(D()D(1) - c,D(1)]dt,

(1.2)

where B;(t) (i = 1,2) is standard Brownian motions independent of each other and B;(0) = 0. And
O'i2 > 0 (i = 1, 2) is the intensity of white noise.

Our objective next is to investigate how stochastic disturbances in system (1.2) affect the global
asymptotic stability of the equilibrium point that determines system (1.1).

The initial conditions of system (1.2) are

U) = D1(6), 1(&) = D:$),

v(&) = @3(8), D(§) = Du(§),

D) >0, €€el-w,0], i=1,2,3,4,
(D1, @y, D3, Dy) € C,

(1.3)
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here C stands for the Banach space C ([-w, 0] , R%) of continuous functions mapping the interval
[~w, 0] into R? and

Ri = {y = (Yb)’Zay3,y4) € Ri’ yi > 07 i = 1’2’3’4}'
We further assume, on the basis of biological significance, that
@) >0, (i=1,2,3,4).

Following is an arrangement of the remaining of the contents of the paper. In Section 2, we
demonstrate that the stochastic system is stochastically ultimately bounded and has a global positive
solution. In Section 3, by building a number of appropriate Lyapunov functions and utilizing
differential inequality techniques, we investigate the long-term asymptotic properties of the stochastic
system with time delay. Finally, we give some numerical simulations and discuss the conclusions.

2. Preliminary

2.1. Global positive solution
Lemma 2.1. ([42], It6’s formula) For a more detailed explanation of Ito’s formula, see [42]. The
following are the main formulas applied.
1
dV(X(1),1) = Vi(X(0),1) + Vx (X(@), 1) F(1) + pirace [GT(t)VXX(X(t), t)G(t)] dt + Vx(X(1), DG(1)dB(1),
then by the diffusion operator
LV:R'"XR, » R

and
LV(X(1), 1) = V(X (1), 1) + Vi (X(1), 1) F(z) + %trace [GT(OVxx(X (1), DG(0)].
the another pxpression for Ito’s formula is
dV(X(1),1) = LV(X(0), tydt + Vy(X(D), HG()dB(r).

Theorem 2.1. There is a unique positive solution (U(1), I(t), v(t), D(t)) € R% to system (1.2) at t > 0
for any given initial value (1.3), and the solution will stay in R* with a probability of one (a.s.).

Proof. Due to the fact that the coefficients of the system (1.2) fulfill the local Lipschitz conditions,
then for any given initial condition (1.3), there exists a unique local solution (U(¢), I(¢), v(t), D(t)) on
t € [0, w,), in which w, is the time of explosion. We merely have to prove that w, = oo to guarantee
that this solution is global. We will not go into the details here and can refer to the literature [29].
Construct a C*-function V: R} — R, by

1 1
V(U.1v.D) =e~“U + (I =1 —1In1) + 5 (v — ¢ —c¢In 1) + Ee“b“’D

C1

+ e b f Bv(0) f(D(O)U(6)de.
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Application of 1t6’s formula yields
dV = LVdt + e “o,UdB, (1) + o»(I — 1)dB»(?),

where

LV =™ [ = pvf(D)U — d,U] + (1 - %) e “pv(t = w) F(D(t - W)Ut - w) - dal | + %o%

s L (1 - ﬂ) (NI = e1v) + 2e 9 [y = kBv F(D)D — D] + e“Bv f(D)U
N % k

— e “Bu(t — W) f(D(t — W)U(t — w)
—dw A c? 1
<d, +e™*® (/1+?)+Nl+§a§
=M,
where M is a non-negative constant. The proof of the rest is given in [28] and will not be repeated
here. O
2.2. Stochastically ultimate boundedness

Definition 2.1. ([43]) Assume that the solution of system (1.2) with initially value (1.3) is
(U@, (), v(t), D(t)). If there is a constant I' = I'(a) > O for any a € (0,1), and the solution of
system (1.2) satisfies

limsupP{|U(?), I(2),v(t), D(H)| < T} > 1 - a,

—o0
then the system (1.2) is stochastically ultimately bounded.

Theorem 2.2. The solution (U(t), I(t), v(t), D(t)) of the system (1.2) is stochastically ultimate bounded
for any initial value (1.3).

Proof. Construct a C*>—function V: R* — R, by

V(U,Iv,D) = e U + I + %v +e D,
Applying 1t6’s formula gets
dV = LVdt + e 0 UdB,(t) + 0,1dB,(¢),
where
LV =™ [1 = vf(D)U — dy U] + [ “Bu(t - w) f(D(t = w))U(t - w) — do1 | + %(dZNI —cpv)
+e 2 [A) — kBvf(D)D — c,D]
<e™2°) — H, [e—dsz +1+ %Vv + e—dzwD] — e BvA(D)U = v(t — w) f(D(t — w)U(t — w)]

+e B9, — e kB F(D)D
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—drw —drw 1 —dyw
<e A+ ) —Hyle™™ U+I+ﬁv+e D

— e 2B [vfF(D)U = v(t — w) f(D(t — w)U(t — w)]
=" (1 + 1)) — HyV — e B [vf(D)U — v(t — w) f(D(t — w)U(t — w)],

where
. d
HO = min {d17 523 Cla CZ} s
then,

AV <[e™(A+ A1) = HoV|dt = e B vf(D)U = w(t - ) f(D(t - w))U(t — w)] dt
+ e 20 UdB, (1) + 0,1dBy(1).

Applying 1t0’s formula to e’V yields

def'v =t (dV + HyVdr)

<efl! [e—dwu +A)) - HOV] dt — e 2B [y F(DYU — v(t — w) f(D(t — w)U(t — w)] d

+ e | o UdB, (1) + oo ldBy(1) | + ™" Ho Vdr
=M™ (Q 4 1))dt — e B[y f(D)U — v(t — w) f(D(t — w))U(t — w)]dt
+ e[ 220 UdB, () + 0,1dB,(1)].

Taking the expectation for either side of the above inequality results in

€—d2w(1_/110+ A1) (eHof _ 1)

MEV(U (), I(1), v(t), D(1)) <V(U(0), I(0), v(0), D(0)) +
— ¢ ““BE f e+ O(6) F(D(s)U(s)ds
0

+ e ogE f () FD($)U(s)ds

e—dzw(l_/llo+ /11) (eHof _ 1)

0
4 ehog f Hs+0) () F(D(s)U(s)ds,

<V(U(0), 1(0), v(0), D(0)) +

Taking the upper limit of the above inequality, one has

—drw
lim sup BV(U (), 1(1), W(z), D)) < #
t—oo 0

So,

) 1. e+ 1)
limsup EV(U(¢) + I(¢) + v(t) + D(¢)) < A lim sup EV(U(¥), 1(1), v(t), D(t)) < —un
f—00 t—00 0

t
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where

1
h=min{e 1, —*}.
mm{e 2 }

Therefore, for any a > 0, set
A+ A
€d2wH0hC¥ ’

application of Chebyshev’s inequality leads to

< E|U(t) + 1(t) + v(t) + D(?)|

PHU®), 1), v(), D()] > T'} T

Hence,

limsup P{lU(?), I(1), v(t), D(t)| > T'} < a.

f—o00

This implies
limsup P{|U (1), 1(1), v(1), D()] < T} > 1 - a.

—o0

3. Main results

The asymptotic properties of the stochastic system (1.2) near the disease-free equilibrium E, and
the endemic equilibrium E* are examined in this subsection.

Definition 3.1. Suppose (U(t), I(t), v(t), D(t)) is the solution of system (1.2) with initial conditions (1.3),
and

E=(U,ILv,D)
is an equilibrium point of the corresponding deterministic system (1.1). If there exists a constant A > 0
that makes the following equation hold true

lim sup %E f [(U(s) — U + (I(s) = )* + (v(s) = 9)* + (D(s) — D)z] ds<A as.,
0

t—00

then we claim that the solution of the system (1.2) will oscillate around the equilibrium point E =
(U, 1,7, D) of its deterministic system (1.1).

Lemma 3.1. (/34]) The Young inequality is specified as follows

A a" ., VYm,neR, Vx,y,e> 0.

ml* |nP < & m|“* +
X+y

e(x+y)
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3.1. Asymptotic properties near the E

System (1.1) has a globally asymptotically stable equilibrium point

A A
EO:(—()()—‘),

b b b
d, (6]

when Ry < 1. The asymptotic characteristics of the system (1.2) solution in the vicinity of E, are
investigated in this subsection.

Theorem 3.1. Suppose (U(t),1(t),v(t), D(t)) is the solution of the system (1.2) with the initial
conditions (1.3). If
Ry<1 and o? <d;, (i=1,2)

are valid, then,

1 ! /l 2 /120_2
lim sup —]Ef U(s)——| ds < ﬁ, a.s.,

1 !
lim sup ;]Ef 12(s)dssd>1, a.s.,
1—0o0 0

1 ! 2N?
lim sup ;Ef Vi(s)ds < )’1’ a.s.,
0

t—o0 C1

1 LY ko
lim sup ;]Ef (& |D(s) — c_2 ds < 2
0 2

t—o00

a.s.,

where
(d; + dz)lezoﬁ
(di — o) (dr — 03)d2dy’

A2a? d? d? o3
yr=e v —— L (1 +2d; + ¢ + —1) + (—1 +cp + —2) ®,.

q)l _ e—2d2a)

Proof. Define

Applying It6’s formula, one has
A
dV, = LVvidr + 0'1U(U - d_) dB, (1),
1
where

LV, = (U — di) [A-Bvf(D)U - d\U] + %anz
1

~ 1\ P A\ 1,
= —d1 (U - d_l) + (U - d_l) [—ﬂVf(D) (U - d_l) - d—lﬁVf(D)] + 50’1 U
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A\ A A\, 1\
S—dl(U—d—l) —ﬁVf(D)d—l(U—d—l)-l-O'l(U—d—l) +0'1E

1\ pl A
_ 2
= _(dl —0'1)(U— d_l) —ﬁVf(D)d—l (U— d—l)+0'li.
Define
I+
Vo=It+w)+d, f I1(s)ds.
t

Applying It6’s formula leads to

dV, = LV,dt + 0,1d B (1),

where
LV, = e By f(D)U — drI(t + w) + drI(t + w) — drI(1)
Pl
= e 2Bvf(D)|U - A) s e By f(D)— — d,1
d, d
_ Pl e 2By f(D)A
= e 2pvf(D)|U - — I|——— 1
e “pvf(D)|U a +d; 4o
A ~20BF(D)NA
:e_dzwﬁVf(D) U--— +d2[ e ﬁf( ) -1
d] Cldl
pl ~hOBNA A
< ety Dy (U = L)+ dt [ BN p Ay g
d] C]d] ()
A
<epyfD)(U - =|.
d
Define

It is easy to get that

Taking the expected yield after integrating each side of Eq (3.1) from O to ¢

2 2.2

o e A so Ao
EV3(0) ~EV3(0) < —™*%(d) —oDE | |U(s) ~— ds+e™® —
0 1

1

Taking the upper limit yield after dividing both sides of (3.2) by ¢

1 ! /l 2 120.2
lim sup —Ef U(is)— —| ds < ﬁ a.s.
tooo 1 0 dl (dl - U])d]

(3.1

(3.2)
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Moreover, define

then

A 1 1
LV, = [e—dzw (U _ d_) I+ a))] [e‘d2“’(/1 -d\U) —drI(t + w)] + 2e_2d2“’ aiU* + 20'212(t + w)

1

A 1 1
=—le®|U- =)+ 1t + w) —g 2hw 2U2 + 0'212(t + W)
dy 2 2

1
e d, (U - d—) +doI(t + w)] +
1

2

Pl pl

= — ¢ 2bog, (U - d—) —dI* (t + w) — e2°(d, + d») (U - d—)l(z + w)
1 1

1 1
+ Ee_z‘lz“’ 2U2 + 20'212(t + w)
1\ d di + dy)? 1\
<- €_2d2wd1 (U - d_) - dz]z(t + w) + ?212(1' + w) + €_2d2w% (U - d_)
1 2 1
2 2.2
A Ao 1
—2drw 2 —2drw 1 272
+ e (U_d_l) +e zd—%+§0-21(t+(1))
d2+d2 AV 1 o2
:—2d2a) 1 U-= ——d— 212t+ + —2drw 1
¢ ( 2d, )( dl) F( I+ @)+ e

where the Young inequality is utilized in the inequality above

2 d di + d»)* A\
—e™*(d, + d») (U - d—) I(t+ w) < 32120 +w) + o2 {1 A2 (U - —) .

1 2d2 dl
Define
Y I (f% VitV (d 2) f (s)d
=e + Vi + -0 s)ds,
’ 2o(di o) d 2] T 22
then,
1 d, + d))*’0?
LVs < —=(dy — o)I* + e%w%. (3.3)
2 2(d1 - O'l)dldz
Taking the expected yield after integrating each side of Eq (3.3) from O to ¢
1 ' (d, + dy)* Vo
EVs(t) — EV5(0) < —=(d> — 073 Ef P(s)ds + e 20— _1; 34
5(1) 500) < =52~ 02) ; (s) 2y~ Eds (3.4)

Taking the upper limit yield after dividing both sides of (3.4) by ¢

(d] + dz)z/lza'% _
(dy — o) (dr — 03)d}d,

1s a.s.

1 !
lim sup ;Ef F(s)ds < e72®¢
0

—o00
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Define
2

Ve =

1 A 1
3 [e—f’zw (U —~ d_l) It + W)+ S+ )

then,

LV = [e“’z‘”(U - dil) + I(t + w) + %v(r + w)

e A A D) 2
S—€2d2 (dl—O'%)(U—d—l) — e dl(U_d_l)I(t+w)_ed2T l]—d—1 v(t + w)
I(t+ W(t + w) 2(t + )+1 21t + w) + 2‘12“’/120-%
- — w)V w ——V w g w e _—
N N? 272 &
AV AV & 2
<—eod — o) |U-=| +e?|U- | + LP(t+w)+e -Zdzw(dl”l)
d, d, 4
1 2
+ %v (t+w)+ P+ w) + sz(tﬂu)— ;—vz(t+w)+ SOt + w) + 70 dzl

1

C1 d1 4 2 2N2

whereby we employ the Young inequality in the inequality above

2

1 AV d
—e g (U - =1 <e?oly - 2| + L
e 1( dl)(+w)_e ( a +4 (t + w),

2
e (1 + €1 (U_ A)

C1

(di +c1)
N

_ e—dzw

A
(U—d—l)v(t+w)§e I

d

- %I(r + V(I +w) <P+ w) + :ﬁ\;(t + w),

and the inequality (a + b)* < 2a® + 2b* for any a, b € R,.

Define
c +w
V7:€_d2wp1V3+h1V4+V6+2—]\1/2f VZ(S)dS,
13
where
1 al2 d+d?
——|[1+di+ e+ L+ o)+ | ==+ 07|,
b1 dl—O'l ( L C1 0-1) 1( 2d2 71
2 d% 0'%
h — 40+ =
: dz—a§(4 “ 2)
Therefore,
2.2 2 2 2
€l 2 b g d; d;
LV; £ ———Vv" + 2 1+2d+c1+—)+(—+c1+ =)D
7 TNEM (dl—af)df( 1+ c 01) (4 c 2)1
__ S o
—2—N2V + 71,

C1
+ —V (1 + w),

2

2

d? AV (& o3 Ao
=¢ 2h (1 +d +c +— +o-f)(U - —) + (— +cp + —)12(t+ W) — — (1 +w) +e 2"2‘“7‘
1

1
[ b —d U) - cev(t + w)] + e‘2"2‘”0'2U + 20'212(t + w)

(3.5)
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where

A2a? d? d? o
yi=e?—— L _(1+2d) +c;+ —|+[= +c + =] D).
C1 4 2

Taking the expected yield after integrating each side of Eq (3.5) from O to ¢

!
EVs(1) = EV(0) <~ fo V(s)ds + 1. (3.6)

Taking the upper limit yield after dividing both sides of (3.6) by ¢

1 ! 2N?
limsup—Efvz(s)dss )/1’ a.s.
0

t—c0 Ci
Define
Vs = (U ~Uy-Uyln U%) + e 4 edw%v + k%oo (D —Dy— f: %dg) + jt:twﬂf(D(s))v(s)U(s)ds,
where
Uy = i,Do = ﬂ,
d, (&)
then,

LVy = (1 - %) (A= BFDWU = dyU) + ¢ [ 2 Bu(t — w) f(D(t — o)) Ut - w) = ]

b L _ Uo ([, _ f(Do)
+e N(dzNI cv) + Dy (1 (D)

— Bv(t — w) f(D(t — w))U(t — w) + %an%

=1 (2 _ o ﬂ) + Lo (e“’z“’N UoBf (Do) _
N cl

) (A = kBf(D)vD — ¢, D) + Bf (DU

1) v+ UoBv [f(D) = f(Dy)]

, UBf(DwD [f(Do) B 1] , Vo [1 B f(Do)] , UoeaD [f(Do) . 1] + Ly
Dy f(D) kDq f(D) kDo | f(D) 2
Yo U\ € gwp _ Uoca  BUof(D)v) = f(Do) 15
_/1(2 T Uo) + Ne (Ry—1Dv+ ( Dy + Dy )(D Dy) [—f(D) 1] + 2Uoo-1
Uoca JD)=fDy) 1 ,
S—k—l)O(D—Do)W EU()O'l
__Uaf')

1
D — Dy)* + =Uyo?
kDo f(D) L~ Do)+ 5 b

<_ Uocy
kD,

1
fE(D = Do)* + EUocr%,

where

f(D) = f(Do) = f"(&€)D — Dy),
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& is between D and Dy, and f’(£) > 0, so

LVg < —

2
f &) (D - /cﬁ) + ﬂ (3.7)

kA d1 2 2dl

Taking the expected yield after integrating each side of Eq (3.7) from O to ¢

D Py 3.8
1d1 ff(f)( (S)——) Z_dlt' (3.8)

Taking the upper limit yield after dividing both sides of (3.8) by ¢

2 k/lIO'%
lim sup —Ef JHC3) (D(s) - —) s < 22 a.s.

t—00 2

EVg(r) — EVg(0) < —

Remark 3.1. When o; = 0 (i = 1, 2), it is evident from Theorem 3.1 that

1 2
LV3 < —e_dz‘”dl (U - —) < 0,
dy

1
LVs < —Edﬂz <0,

LV7 < —2C—]\1,2V2 < O,

LV < — A3 D 12<0
8= k/ld o) T

this means that the disease-free equilibrium point E of system (1.1) is globally asymptotically stable,
Jrom which the nature of the deterministic system can be introduced.

3.2. Asymptotic properties near the E*

System (1.1) has a globally asymptotically stable equilibrium point
E* — (U*’I*,V*’D*)

when Ry, > 1. The asymptotic characteristics of the system (1.2) solution in the vicinity of E* are
investigated in this subsection.

Theorem 3.2. Suppose (U(t),I(t),v(t),D(t)) is the solution of system (1.2) with the initial
conditions (1.3). If Ry > 1 and o1 < d,, 207 < d, are valid, then

1 !
lim sup ;Ef (U(s) — U*)*ds < 7 i S, a.S.,

f—o0 1 = 0-1

lim sup —Ef (I(s) = IV ds < D, a.s.,

t—00
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2N?
hmsup—Ef(v(s) v ds < /1= 72 a.s.,

t—00 C1

httlliup —Ef (&) (D(s) — D*)?ds < %, a.s.,
where
L= 2 +§dvjf(D*) (U202 + (d, +,3v2* i;(D*)) U L2,

2 2
¥y = e‘zdz“’(l +dy+c; + C—l + a-%) Yo + (Zl +c + ag) D, + e 22U + o5(I"),
1

1 1
P = Ee_dsz*O'% + 5]*0‘%

Proof. Observing that the positive equilibrium of the system (1.1) is (U, I*,v*, D*), we have
A=V f(DHU" —dU" =0,
e 2By F(DYU* — doI" = 0,
dzNI* - clv* = O,
— kBv f(D*)D* — c,D* = 0.
Define
* * U
Vi=U-U"-U"In—.
U*

Applying It6’s formula, we can show that

dVv, = Lvidt + o(U — U*)dBl(l),

where
U* 1 )
LV, = (1 - U)[/l—ﬁVf(D)U—dlU] + EU*O'I
AU” . R e
=A-pvf(D)U - d,U - U +pvf(D)U" +d,U" + EU o
= [V f(DHU" + d U] (2 - l[]]* - [l]]*) + BV (D YU - U") - Bvf(DYU-U") + %U*O'f
U - U*)? 1
= 18 D) + 1 T BfD) = B DO - U + U
Define

£ £ I
Vo=1-I'-T'ln—.
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Utilizing 1t6’s formula results in
dV, = LV,dt + o5(1 — I')dB; (1),

where

LV, = (1 - 17) e “pv(t = w) F(D(t — W)U(t - w) — o] | + %I*ag
=€_d2wﬂv(l’ — W) f(D(t — W)Ut — w) — d>I — e_dz“’ﬁv(t - w)f(D( —w)U(t - a))l—; +d) " + %I*O'g

s«

=e “Bu(t — w) f(D(t — W)U(t — w) — dal — e 2“Bu(t — w) f(D(t — W) U(t - a))17

1
+e By (DU + =I5

2
o pyrg e |V QfDE - 0)U(—w) TV -w)f(Dt-0)U(-w) T| 1,
=B ADIU [ v (DU 1 I f(D)U" I*] Rl
v e [V @D = DU =) | W= f D= o)UG-w) 1] 1,
<e BV (DU [ v F(DYU In I F(D) U I*] + 2I 5.
Define
t
tom oo [ [T 0O,
then,
—ctwps g | WU vf(D)U vt - ) (D - w)U (1 - w)
Haze TRy [V*f(D*)U* DU v (DU
I v(t — w) (D — w)U(t - w)] .
VDU
Define

1 v
V, = (v=v -1 —).
f INT v—v'—v nv*

Applying It6’s formula, we can show that

1 £

LV, = (1 _ V—) (doNI - c1v)
\%

Vv

3 Wi N cV
~I* dNI* vI* d)NI*

1 v v
+

= — - — - 1

I v vI¥

1 v vl
<—-—-In

I v* vl*

1 1
-2 Y miimt

AIMS Mathematics Volume 9, Issue 4, 8104-8133.
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Define

Vs = Vo + Vi + e 2By f(D)U V.

Then, we can easy to get that

LVs <e™“Bv* f(DYU" vV]]:( (DD*))({]* ~In vv]{( g))l;]* - Ii +1n [i + %1*0’5‘
+ e By f(DYU" (Ii - lnli* - L)
ey oy | 2O - IO L k] ol

DU
U Vv F(D)U*
> v U

n f(D*) V* U*

u U
<e ®“pv* f(D*U* (ﬁ i —2)

:e—dgwﬁv*f(D*)U* (2 —In % — 1) + e_dzwﬁv*f(D*)U*[

-1

1,
+1]+§I<7§

o r e | VAU vf(D) U 1.,
te ﬁv f(D )U [V*f(D*)U* V*f(D*) U~ + 21 03

+1

—drw * * (U_ U*)2 —drw * * * 1 * 2

=e” BV f(D) 7 +e Y [Bvf(D) - pv' f(DH](U - U )+§1 0.
Define

1
Ve = E(U - U™
Then,
dVe = LVgdt + o U(U — U*)dB, (1),

where

LVs =(U = U") [A = Bvf(D)U - d, U] + %U%UZ

=(U - U [Bv (D" + d\U* —d,U - Bvf(D)U] + %U%UZ

<—di(U - U+ [V f(DYU" = Bvf(D)UNU - U*) + o>(U — U*)* + 2(U")*
—(di —oD)U = U*Y = Bvf(DYU — U*)* = BU* [vf(D) = v' f(D)] (U = U*) + o1(U*)?
< —(di —o)U = U = BU" [vf(D) = V' f(D)| (U — U") + o1 (U")*.

Define

v, = AV V, + et (di + pv" f(D)U”

Vs + Vg,
7 dl dl 5 6
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then, we can derive that

L B IDOU [ (U-Uy
<

(U -U")?

(i + BV SO
d,

1
+ 5 1'03| = (i = o)U = U = BU" [vf (D) =v' f(DV] (U = U") + 03(U")

2y 4 BV DY, (4 BV DU
g Wt 2d,

[e_dz‘“ﬁv*f(D*)

=—(d —o)HU - U + eI o)

=—(di —o)(U = U + ¢,

where

2d, + BV (D7) ey 2, LBV FONU >

U eI'os.

2, e 2d, 72
Taking the expected yield after integrating each side of Eq (3.9) from O to ¢

2:

EV;(1) — EV2(0) < —(d; — 02)E f (U(s) — U ds + yt.
0

Dividing each side of (3.10) by ¢ and then taking the upper limit yield

lim sup —]Ef (U(s) — U*)?ds < Y a.s.
100 (di —?)
Define
1 —drw * * 2
Vg = 5[e LU -UY+Ue+T) -1
Then,

LVg = [e‘dz“‘(U —UY+ U+ w) - 1*)] [e—dzw(z —BVF(D)U — dyU) + e 2By F(D)U — doI(t + a))]

1 1
+ e_2d2”0'%+ 0'212

2 2
=|e U - U") + Ut + w) - )| [ 2B F(DIW" + dyU” - dyU) + e **Buf(D)U

(t+w)

1 1
—doI(t + w)] + 2e 2‘12‘”0'% + 2crzlz(t + w)

= [e*dzw(U ~ U+ It +w) - 1*)] [-d\(U - U*) — dy(I(t + w) = I')] + e T2 10212

2
= — e 22d (U - U")? — ed,(U - U*)(I(t +w)-I" - do(I(t + w) — 1*)2

e 0dy(U = UNU(t+ w) = I') + e ot ;azﬂ(; + w)
<—e 00 (U - U - do(I(t + w) — *)2 e~ P(dy + do)(U — UHU(1 + w) — IY)

+e —2drw Z(U U* )2 + e_2d2“) 2(U ) + O'2(I(l+ Lt)) I*) + 0-2(1*)

e (di + o)’

<—ed) — U - U = (dy — DUt + w) = ') + e 53
2

U -U*y

+ %(I(t +w) = I + e 22002 (U? + o)

2 2
_p 2w (dl +d,

1
+ 0 | (U= U = =(dy = 20D)U(t + w) = I')* + e 2202 (U*)? + a3(I")?,
2d, ! 2 2 2

1
—(BV" f(D") + dl)T — (Bvf(D) - Bv* fF(DH)U - U*) + EU*J%

+e (B f(D) — By F(D U - U")

(3.9)

(3.10)

(t+w)
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in the above inequality, we apply the Young inequality

By d>)?

ey + d)(U - U1+ w) ~ ) < e -0+ S+ w -

2d,
Define
e 2w d2 + d2
Vo = " ( o0 +0'1)V7 + Vg + (d2 - 20'2)f (I(s) — I')*ds.

Then,

e_Zdz‘“ d% + d%

LV, < 2 =(dy — (U - U*)* +
9011_0%(26]2 cﬁ[<1am )+
d*> + d? 1
+ e (—‘2 0 a%)(U — U = 5(da = 200)(I(t + @) = I') + 00 {(U) + o517

(3.11)
1 2 %2 1 2 #\2

+ E(dz =205){(t+w)—-1")" — E(dz -205)U-1T")

g2t (d2 d2

d - o2\ 2d;

1
=_ 5(dz 20 - T')* + + al)wz + e (U + o ()2

Taking the expected yield after integrating each side of Eq (3.11) from O to ¢

EVo(r) — EVs(0) < — %(d2 —20))E f (I(s) - I')* ds
(3.12)

o 2w d2 + d2
dl — O'% ( 2d

+0'1)¢2+e 2o g (U +0'2(I)]

Taking the upper limit yield after dividing both sides of (3.12) by ¢

I Ef(l() [ ds < —2 e%w d%”l%
m sup —
o ’ Y2420 d -2\ 24,

= (Dz, a.s.

+a%)z//2+e-2d2w (U + 2(1*)2]

Define

2
Vip = [e-dw(U ~UHY+Ut+w)-T)+ %(V(I + w) — v*)] .

| =
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Then,
LV, = _e’dQ“’(U U+ U+ w)— T + %(v(t o)) [e*dzw(a _dU) - %v(t ; w)]

1 . 1
+3e ~2d> 2U2+20212(t+w)

) . ]

=le (U -U+ Ut +w) =T + N(v(t +w) =V [—e‘dzwdl(U —-U") - %(v(t +w) - v*)]
- | ]

+ 26_2”12“’ 2U2 + 20’%12(1 + w)

= — e g (U - U - Flz(v(t +w) = v — e R4 (U - UHU(t + w) - T')

(dy + 1)
N

(t+ w)

_ —dow

1
(U - U + w) — V') — %(I(t +w) - I+ ) — V) + Ee—z‘bwo—%w
1
+ 50'%12
d2
<—e g (U -Ury - % Wt + w) — V) + 220U - U™)? + —l(I(t +w)-I")

2
‘2"2“’@(U - U + i(v(r +w) = v+t +w) - I + 4—2(v(t + w) — V')
1

‘e —2drw 2(U U) +o-2(1(t+a))—1) +e—2d2w 2(U) +0—2(I*)

+e

& di
:e—Zdzw(1+dl + ¢ +_1+0-%)(U_U*)2+(ZI+C1 +0'%)(I(t+(!))_l*)2
C1

2,20 2172 2
—2—Nz(v(t+a))—v) +e “o(U%) +0'2(I)

where, we use the Young inequality to simplify the above inequalities

d2
— AU - UG+ ) = 1) < PEU - U + U0+ w) = T,

d, + d, + 2 .
D w0y —v) < e U g S ) -y

- %(I(t +w) = I+ w) =V < eIt +w) = T + 4%@(, +w)— v

Define

Vii= e_Zdzwp2V7 + thg + Vi + W f (V(S) \% ) ds,

where

D2 =

b

d: di +d; )
”dl””Z”] + hy A + 05

dy -

i 2 (&
=——— |+ +c+03
2T d-202\4 T
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Therefore,
&’ &2
LV < - Z—NZ(V—V ) +e_2d2‘“(1 +dy+c + C—: +0'%)l//2 + (Zl + ¢ +o-§)(1)2
+ e o {(UY + o3(I7) (3.13)
= - 0=V,
where

2 2
yz:e‘Z"Zw(l+d1+c1+c—1+o-%)w2+(zl+c1+o-§)d)2+e 20052 (U 4 a(I7).
1

Taking the expected yield after integrating each side of Eq (3.13) from O to ¢

EVi1(t) —EV11(0) < _Z_JVZEf (v(s)—v ) ds + Yat. (3.14)

Taking the upper limit yield after dividing both sides of (3.14) by ¢

2N?
lim sup —Ef (v(s)—v) ds < 72 a.s.

C1

[—0o0

Define
_ —dw _ * * E I L i l N 1
Vip =e (U U Uan*)+(I 1 Ilnl*)+N(V V vlnv*)
ety . [P fD) L (v fD)U(s)
+ D (D—D - 7 ds)+d21 ft_wg( " F DU )ds
Then,
LV, —e v (1 - U*) BV f(DYU" = Bvf(D)U + d\(U" - U)]

*

(1 - )[ 9Bt — w) f(D(t = w)U(t - w) = dol | + . (1 - —)(dzNI - )

ety (DY) vf(D)U
+ W (1 f(D) ) [kﬂ f(D )D — kBVf(D)D + C2D - CzD] + d2 (W)

(vt - @) f(D(t — W)U w)
~al's ( v (DU )+

=g (1 - U*) [V F(DU* = Byf(D)U + dy(U* = U)]
(1 - —) e “pv(t = w) F(D(t — W)U(t - w) - o1 | + %(1 - V;)(dzNI )

—dywr* s
R (l_f(D) vf(D)U

) [kBV" f(D)D* — kBvf(D)D + c,D* — ¢, D] + doI”

kD* f(D) v f (D*)U )
V(- W) f(D(E - w)U (1 - w) o Y f D -0V -w) 1 4, 1.,
—d,I v F(DIU- +dr)["1In " (DU 2 U'o? + 21 0.
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We have
BV f(DYU* = e™dyI, c\v* = d,NI”

and use the equality
V(i —w)f(Dt - w)U(l - w) In v(t —w)f(D(t — w)U(t — w)I” f(D") vl U~

+1n + In + In

In

vf(D)U - v f(D9U*I fD) v U’
So,
wo=- 4wy ( B, ;z;;;g)(D — DYAD) - F(D)] - doT" [g((l]])
S W T B
- %(D = DYFD) ~ DN + 3¢ U0 + 310 s
< —dzwckg € p_pys ; b %I*cr%
=- #f OD =D+,
where

f(D) = f(Do) = f/({)(D — Do),
& is between D and Dy, f'(¢) > 0, and

1 . 1
Py = Ee_dz“’U*o'f + 51*0’%

Taking the expected yield after integrating each side of Eq (3.15) from O to ¢

e 2
EVia(0) = EVi(0) £ =——7—E | f1(&) (D(s) = D')"ds + ¢at. (3.16)
0
Taking the upper limit yield after dividing both sides of (3.16) by ¢
kD"
lim sup —E f @& (D(s) - DYds < ——#2_ 45
t—0co e_dzwcl U+

Remark 3.2. When o; = 0 (i = 1, 2), it is evident from Theorem 3.2 that
LV; < —d\(U - U*)* <0,

1
LVy < —Edg(l -1’ <0,
LV“ < —C—l(V - V*)2 < O,

—dzu)
LV <=2 F@D - DY <0,

this means that the disease-free equilibrium pomt E* of system (1.1) is globally asymptotically stable,
from which the nature of the deterministic system can be introduced.
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4. Numerical simulations

In this subsection, we provide some numerical simulations to confirm the validity of the above
theorem and validate the conclusions in the paper. We set the initial value to

(U(0),1(0), v(0), D(0)) = (6,3,4,4)

before the numerical simulation.
Casel.Letd=2,14,=12,d,=04,d,=04,¢,=03,¢,=04, =005 w=2, N=2, k=
0.5, D; = 0.2. Then calculate that the basic reproduction number Ry, = 0.7470 < 1. Let o; = 0.1

(i = 1,2) in Figure la. Let o0; = 0.2 (i = 1,2) in Figure 1b. As seen in Figure 1, the solution of
system (1.2) swings asymptotically about Ej, confirming the Theorem 3.1.

a b
20 () I 20 I () U(t)l f system (1)
—U(t) of m (1) -_— of system
— —_— I(t)t o(; s:/)slts:n @) PR — f/((lt)) (z)ff Z};’S:il;li (( 11))
=15t :VD((‘t))ooffssyys:teenl;((ll)) : 15+ ——D(t) of system (1)|
A ——U(©) of system (2) o) — Hl()t) (;f S}ftstem(g)
8 1(t) of system (2) 8 “ f:) fssyysS ;[11111 2
> — oo Sv)’S‘lCm @ E > —D(t) of system (2)
Py 10 D(t) of system (2) P 10
= =
e S <t
- S\ ) 5
. | N ~ . . 0 A 7 ) .
0 50 100 150 200 0 50 100 150 200
t t
(c) (d)
6 6
4 4
> 2 = 2
0 0
4 4
) 10 : 10
5 5
0 0 0 0
I(t) U I(t) U

Figure 1. (a) and (b) are the time sequence diagrams at o; = 0.1 and o; = 0.2 (i = 1.2),
respectively, and (c¢) and (d) are the corresponding spatial phases.

Case2. letd =6, 1, =2,d,=04,d, =04, ¢, =08, ¢, =02, =005 w=2, N=3, k=
0.5, D; = 0.2. Then calculate that the basic reproduction number Ry = 1.2606 > 1. Let o; = 0.1
(i = 1,2) in Figure 2a. Let 0; = 0.2 (i = 1,2) in Figure 2b. As seen in Figure 2, the solution of
system (1.2) swings asymptotically about E*, confirming the Theorem 3.2.

Case3d. letd =3, 4, =2,d=04,d,=04,¢,=04,¢,=02,=005 w=2, N=3, k=
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0.5, Dy = 0.2, 0y = 0.1, 0, = 0.1. We can observe that the viruses and the infected target cells are
going to persist from Figure 3c,d.

Cased. letd=3,14,=2,d, =04,d, =04, ¢, =04, ¢, =02,8=005 w=2, N=3, k=
0.5, D; =0.2, oy = 0.1, 0, = 1. We can see that the viruses and the infected target cells will become
extinct from Figure 4c,d.

CaseS. letd =6, 1, =2,d,=04,d, =04, ¢, =08, ¢, =02, =005 w=2, N=3, k=
0.5, D; = 0.2. In Figure 5a, let o7; = 0.1 (i = 1,2). In Figure 5b, let o; = 0.8 (i = 1,2). Figure 5 shows
that under strong noise interference conditions, infected target cells and viruses go extinct.

Case 6. Let A = 6, ﬂ.l = 2, dl = 04, dz = 04, cp = 08, Cy = 02, ﬁ = 005, N = 3, k = 05, D1 =
0.2, oy = 0, = 0.1. In Figure 6, let w = 1.8,w = 2.2, w = 4, respectively. According to Figure 6,
infected target cells and viruses will go extinct as the time delay gets longer.
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Figure 2. (a) and (b) are the time sequence diagrams at o; = 0.1 and o; = 0.2 (i = 1.2),
respectively, and (c¢) and (d) are the corresponding spatial phases.
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Figure 3. The time sequence diagrams for U(t), D(t), I(t), and v(¢) are represented by the
symbols for (a), (b), (c), and (d). oy = 0.1,0, = 0.1.
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Figure 4. The time sequence diagrams for U(t), D(t), I(t), and v(¢) are represented by the
symbols for (a), (b), (c), and (d). oy = 0.1,0, = 1.
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Figure 6. The time series plots (a), (b) and (c) are at w = 1.8, w = 2.2 and w

respectively.

5. Conclusions

= 4,

We investigate the dynamic impact of stochastic fluctuations in the environment, mediated by the
ACE2 receptor protein, on the SARS-CoV-2 virus infection system with time delay. The long-term
asymptotic properties of the stochastic time-delay system are obtained by building the suitable
Lyapunov functions and applying the differential inequality techniques. The results indicate that the
solution of the stochastic system (1.2) swings in the vicinity of the no-disease equilibrium point E
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when Ry < 1. When R; > 1, the solution of the stochastic system (1.2) swings in the vicinity of the
endemic equilibrium point E*.
The major results are as follows:

(1) The system (1.2) is stochastically ultimately bounded.

(2) When Ry < 1 and crf < d; (i = 1,2), the solution of the system (1.2) will oscillate in the vicinity
of the disease-free equilibrium E of its deterministic system (1.1), which means the viruses and the
infected target cells will go extinct.

(3) When Ry > 1 and 0} < dy,205 < d,, the solution of the system (1.2) will oscillate in the
vicinity of the endemic equilibrium E* of its deterministic system (1.1), which means the viruses and
the infected target cells will persist.

The following conclusions are obtained via theoretical analysis and numerical simulations:

(1) The solution of the stochastic system (1.2) oscillates in the neighborhood of the equilibrium of
the deterministic system (1.1), the amplitude of the oscillation increases with the intensity of the
environmental disturbances, and when the intensity of noise grows large enough, both virus and
infected target cells go extinct, which suggests that fluctuations in the environment have an impact on
the dynamics of the SARS-CoV-2 virus infection system (1.2).

(i1) Time delay also affects the dynamic properties of the SARS-CoV-2 virus infection system (1.2),
and a long time delay leads to the extinction of the virus and infected target cells of system (1.2).

As a consequence, the spread of the SARS-CoV-2 virus can be controlled by increasing the intensity
of random disturbances in the environment or by prolonging the time it takes for the virus to invade
uninfected target cells or for infected cells to generate new viruses.
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