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1. Introduction

Fuzzy cellular neural network (FCNN) was originally proposed by Yang et al. in [1]. Yang et al.
pointed out the differences in mathematical morphology between FCNN and CNN in [2]. FCNN
inherits the properties of CNN well and its structure is based on the uncertainty existing in the modeling
of human cognitive process and nervous system. In addition, as a result of the presence of fuzzy logic,
FCNN can combine the low-level and high-level information processing capabilities of CNN to obtain
better results. Moreover, researches have demonstrated the potential of FCNN for pattern detection
and image processing [3, 4].

The global stability (GS) of FCNN is a prerequisite for these applications mentioned above.
However, in the process of signal processing and transmission, due to the limited communication speed
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of electronic equipment, there will inevitably exist different types of time delays, such as constant
delay [5], time-varying delay [6], and so on, which may destroy the GS of FCNN. Consequently,
it is very important to investigate the GS of delayed FCNN (DFCNN). At present, many classical
methods have been applied to the GS analysis of FCNN, such as Lyapunov theory [7], Razumikhin-type
method [8], and linear matrix inequality method (LMI) [9], etc. In addition, in [10], by constructing
new fractional-order differential inequalities, Du et al. established numerous adequate criteria to
guarantee the stability of fractional FCNN in finite time. In [11], Balasubramaniam et al. combined
Lyapunov function method with LMI technique to investigate the global exponential stability (GES) of
FCNN. In [12], fractional inequality techniques are used to analyze the synchronization of fractional-
order FCNN in discrete time. Yao et al. used the Laplace transform method, fractional integral method,
and complex functional method to propose the GES conditions applicable to fractional-order and
integer-order neural networks in [13]. Besides, the criteria of GES of FCNN with Caputo-Fabrizio
(C-F) operators can be obtained by the methods proposed by Zhang et al. in [14, 15].

In addition, due to the imprecision of measurement and the influence of environmental factors
during system operation, the deviation of parameters will also affect the GS of NNs. Thus, neural
networks with parameter uncertainties have been widely studied in recent years [16]. An effective
way to describe parameter uncertainty is to use the interval matrix principle. Besides, as an internal
perturbation of the system, parameter uncertainties will affect the operating state of the system to a
certain extent. Therefore, we require the designed system to have a certain robustness, that is, when
the system parameters change within a certain deviation range, the system can maintain its dynamic
properties. Thus it is necessary to analyze the global robust stability (GRS) of the system. In [17],
Cao et al. discuss the global asymptotic robust stability (GARS) of a class of delayed recurrent neural
networks with interval connection weight matrices by designing appropriate Lyapunov functionals and
utilizing matrix norm inequalities. On this basis, new matrix norm inequalities are used in [18–21]
to improve the results in [17], the upper bound of the interval of parameter uncertainties is extended,
making it less conservative. Furthermore, Thoiyab and Senan et al. improved the norm inequalities
and applied them to the GARS analysis of BAM neural networks in [22, 23] respectively.

Moreover, it is worth mentioning that the mentioned literature above are all considered the system
without fuzzy logic. Fuzziness is also a common inconvenience in modeling. Fuzzy logic is considered
to be one of the most powerful tools to solve this problem. Zhang et al. analyzed the existence and
uniqueness of the weak solutions of competitive neural networks with C-F operators and fuzzy logics
in [24]. In [25], the GES of discrete-time almost automorphic C-F BAM neural networks with fuzzy
logics is explored by the exponential euler technique. The integration of fuzzy logic in the system can
describe the problem more accurately and fuzzy systems are also considered a universal approximator;
thus, it is necessary to analyze the robust stability of fuzzy neural network models.

On the other hand, in [17–23], only global asymptotic robust stability of the system is discussed.
However, in practical application, we always hope the models we design can converge to the stable
state as fast as possible. Hence, on the basis of asymptotic stability, exponential stability is proposed.
Exponential stability requires that the norm of the system state is always lower than some natural
exponential function, and the absolute value of its exponential part is called the decay rate of the
system. The greater the attenuation rate, the faster the system stabilizes. Like asymptotic stability,
exponential stability is also affected to a certain extent by perturbations within the system. Therefore,
robust exponential stability (RES) analysis is essential for the application of the systems. Hence,
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in [26], Niculescu et al. discuss the RES of uncertain systems first. Lan et al. investigated the
synchronization and stability of multiple-delayed BAM neural network with interval uncertainties
in [27] and [28]. However, these literatures do not take into account the influence of fuzzy logics.

Therefore, based on the above discussions, the major works and contributions of this paper are as
follows:

(1) The model of delayed fuzzy cellular neural networks with parameter uncertainties, which is
described by interval matrices, is proposed in this paper.

(2) Using norm inequality method, Lyapunov-Krasovskii method, and mathematical analysis method,
the existence and uniqueness of equilibrium solution of the proposed model are analyzed, and
sufficient conditions for global robust asymptotic stability of the system are obtained.

(3) In the absence of external control, the sufficient conditions for the existence and uniqueness of
the system solutions are obtained, and the global robust asymptotic stability of the system is
analyzed. In addition, based on the obtained conditions, the robust exponential stability of the
system is further analyzed, and the delay dependent sufficient conditions are obtained.

Finally, we give the organizational structure of this paper. In Section 2, the model we used as
well as the assumption and lemmas we needed are given. In Section 3, we obtain the existence and
uniqueness (E&U) of UDFCNN equilibrium solutions and the GARS of UDFCNN by constructing
Lyapunov functions and using different norm inequalities. In Section 4, on the basis of the works in
Section 3, we further study the GERS of UDFCNN, and give some sufficient conditions for the GERS
of UDFCNN. Several examples are given in Section 5 to validate the results.

Notations: | · | represents the Euclidean norm. ||W ||2 =
√∑r

v=1 w2
v , where W = {w1, . . . ,wr}

T ∈ Rr.
||A||2 =

√
λmax(AT A), where A = (avw)r×r ∈ R

r×r and AT is the transpose of A. Besides, for vector
W ∈ Rr, we denote |W |a = {|w1|, . . . , |wr|}

T ∈ Rr. For matrix A = (avw)r×r, we denote |A|a = [|avw|]r×r.
λmax(A) and λmin(A) represent the max and min eigenvalues of A respectively.

2. Preliminaries

The model of UDFCNN we considered is shown below:

q̇v(t) = − cvqv(t) +

r∑
w=1

avwρw(qw(t)) +

r∑
w=1

bvwuw +

r∧
w=1

evwρw(qw(t − τw))

+

r∨
w=1

hvwρw(qw(t − τw)) +

r∧
w=1

dvwuw +

r∨
w=1

mvwuw + Ni,

qv(t) =q0
v(t), ∀t ∈ [−τv, 0],

(2.1)

where q0
v(t) is the initial value function; cv > 0 represents the passive decay rate of vth neuron; avw is

the connection weight matrix; evw and hvw are fuzzy feedback MIN template and fuzzy feedback MAX
template respectively; dvw and mvw are the fuzzy feed-forward MIN and MAX template respectively;

∧
and

∨
represent fuzzy AND and fuzzy OR operations respectively; ρw(·) is activation function; qv(t),

uw and Nv are the state, input and bias respectively; τw is a constant delay. Besides, the parameters of
UDFCNN (2.1) satisfy the following conditions:
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C = diag(cv) : 0 ≤ C ≤ C ≤ C, i.e., 0 < cv ≤ cv ≤ cv, v = 1, . . . , r,

A = (avw)r×r : A ≤ A ≤ A, i.e., avw ≤ avw ≤ avw, v,w = 1, . . . , r,

E = (evw)r×r : E ≤ E ≤ E, i.e., evw ≤ evw ≤ evw, v,w = 1, . . . , r,

H = (hvw)r×r : H ≤ H ≤ H, i.e., hvw ≤ hvw ≤ hvw, v,w = 1, . . . , r,

δ = (τw)r×1 : δ ≤ δ ≤ δ, i.e., δw ≤ τw ≤ δw,w = 1, . . . , r.

(2.2)

Assume the equilibrium point of UDFCNN (2.1) is q∗, where q∗ = {q∗1, . . . , q
∗
r}. Let zv = qv − q∗v,

then, the equilibrium point of UDFCNN (2.1) is shifted to origin, and the following model is the altered
UDFCNN:

żv(t) = − cvzv(t) +

r∑
w=1

avwψw(zw(t)) +

r∧
w=1

evwψw(zw(t − τw)) +

r∨
w=1

hvwψw(zw(t − τw)),

zv(t) =z0
v(t),∀t ∈ [−τv, 0],

(2.3)

where ψw(zw(·)) = ρw(zw(·) + q∗w) − ρw(q∗w), and ψw(0) = 0.
In order to obtain our main results, we make the following assumption:

Assumption A1. There exist Lw > 0 and ζw > 0(w = 1, . . . , r) such that

|ψw(Ω) − ψw(ω)| ≤ Lw|Ω − ω|, |ψw(t)| ≤ ζw,

where Ω and ω are the states of UDFCNN (2.3).

Remark 2.1. According to Brouwer’s fixed point theorem, if the activation function is limited, the
neural network will always have an equilibrium point. Nevertheless, if the activation function is not
limited, we cannot always ensure that the equilibrium point of neural network exists [18].

Remark 2.2. Different activation function choices will cause different state responses of the system.
For example, consider the following neural network model:

℘̇(t) = A℘(t) + B f (℘(t − 1)), (2.4)

where A = [−1.0615,−0.6156; 2.3504, 0.7480], B = [−0.1924,−0.7648; 0.8886,−1.4022]. We take
the activation function f (·) as sin(·) and tanh(·), respectively. Then, we can find that Assumption A1 is
satisfied. However, we can find that the state response of the model is completely different in Figure 1.
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Figure 1. State response of (2.4) in different activation functions.
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Besides, the following Lemmas are needed for getting our main results:

Lemma 2.1. [29] Assume Ω and ω are the states of UDFCNN (2.1), then∣∣∣∣∣ r∧
w=1

evwψw(Ω) −
r∧

w=1

evwψw(ω)
∣∣∣∣∣≤ r∑

w=1

|evw||ψw(Ω) − ψw(ω)|,

∣∣∣∣∣ r∨
w=1

hvwψw(Ω) −
r∨

w=1

hvwψw(ω)
∣∣∣∣∣≤ r∑

w=1

|hvw||ψw(Ω) − ψw(ω)|.

Lemma 2.2. [23] For any vectors u = {u1, . . . , ur}
T and v = {v1, . . . , vr}

T , there must be a positive
constant σ > 0 such that

2uT v = 2vT u ≤ σuT u +
1
σ

vT v.

For any matrix K ∈ [K,K], we denote that K∗ = 1
2 (K + K) and K∗ = 1

2 (K − K), then we have the
following lemmas.

Lemma 2.3. [22] For any matrix K ∈ [K,K], the following inequality holds,

||K||22 ≤ λmax(|K∗T K∗|a + 2KT
∗ |K

∗|a + KT
∗ K∗).

Next, we introduce the definitions of GARS and GERS respectively.

Definition 2.1. [17] UDFCNN (2.3) satisfies the conditions (2.2) is GARS, if the unique equilibrium
point of UDFCNN (2.3) is globally asymptotically stable (GAS).

Definition 2.2. [26] UDFCNN (2.3) is GERS, if there are α, β > 0 such that

||z(t)||2 ≤ α exp(−βt) sup
s∈[−δ̂,0]

||z(s)||2 (2.5)

holds, where δ̂ = max1≤v≤r δv. That means for any decay rate β, the equilibrium solution of FCNN is
GES for all admissible uncertainties.

3. Global asymptotic robust stability result

In this part, some criteria for E&U of the solutions of UDFCNN (2.3), and the GARS of
UDFCNN (2.3) is explored by choosing suitable LKFs.

Theorem 3.1. Let Assumption A1 hold, and exists σ > 0 such that

−cv +
1
2
σ||A||20 +

1
2
σ||∆||22 +

L2
v

σ
< 0 (3.1)

holds, where ||A||20 = λmax(|A∗T A∗|a + 2AT
∗ |A

∗|a + AT
∗ A∗). Then, UDFCNN (2.3) is GARS and origin is

the unique equilibrium point.
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Proof. First and foremost, we demonstrate that the equilibrium point of UDFCNN (2.3) is unique. Let
z∗ = {z∗1, . . . , z

∗
r}

T , 0 is the equilibrium point of UDFCNN (2.3), then,

−cvz∗v +

r∑
w=1

avwψw(z∗w) +

r∧
w=1

evwψw(z∗w) +

r∨
w=1

hvwρw(z∗w) = 0. (3.2)

We multiply (3.2) by 2z∗v, we have

0 = − 2cvz∗v
2

+

r∑
w=1

2z∗vavwψw(z∗w) +

r∧
w=1

2z∗vevwψw(z∗w) +

r∨
w=1

2z∗vhvwψw(z∗w). (3.3)

Then, from Lemmas 2.1–2.3,

0 ≤ − 2cvz∗v
2

+

r∑
w=1

2z∗vavwψw(z∗w) + 2z∗v
[ r∑

w=1

(
|evw| + |hvw|

)
|ψw(z∗w)|

]
≤ − 2

r∑
v=1

cvz∗v
2

+ 2
r∑

v=1

r∑
w=1

z∗vavwψw(z∗w) + 2
r∑

v=1

z∗v
[ r∑

w=1

(
|evw| + |hvw|

)
|ψw(z∗w)|

]
.

Let ∆vw = |evw| + |hvw|, then from (2.2), we can get that

∆ = (∆vw)r×r : 0 ≤ ∆ ≤ ∆ i.e., 0 ≤ ∆vw ≤ ∆vw, (3.4)

where ∆vw = max{|evw|, |evw|} + max{|hvw|, |hvw|}. Thus, we can obtain that ∆∗ = ∆∗ = 1
2∆, and ||∆||22 ≤

4λmax(∆∗T ∆∗) = 4||∆∗||22 = ||∆||22.
Furthermore, let ||A||20 = λmax(|A∗T A∗|a + 2AT

∗ |A
∗|a + AT

∗ A∗), where A∗ = 1
2 (A + A) and A∗ = 1

2 (A− A),
we have

2
r∑

v=1

r∑
w=1

z∗vavwψw(z∗w) =2z∗T Ag(z∗)

≤σz∗T AAT z∗ +
1
σ

gT (z∗)g(z∗)

≤σ||A||22
r∑

v=1

z∗v
2

+
1
σ

r∑
v=1

L2
vz∗v

2

≤σ||A||20
r∑

v=1

z∗v
2

+
1
σ

r∑
v=1

L2
vz∗v

2. (3.5)

And,

2
r∑

v=1

r∑
w=1

(
|evw| + |hvw|

)
|ψw(z∗w)|z∗v =2z∗T (|e|a + |h|a)|g(z∗)|a

≤σz∗T (|e|a + |h|a)(|e|a + |h|a)T z∗ +
1
σ
|g(z∗)|Ta |g(z∗)|a

≤σ||∆||22

r∑
v=1

z∗v
2

+
1
σ

r∑
v=1

ψ2
v(z∗)
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≤σ||∆||22

r∑
v=1

z∗v
2

+
1
σ

r∑
v=1

L2
vz∗v

2

≤σ||∆||22

r∑
v=1

z∗v
2

+
1
σ

r∑
v=1

L2
vz∗v

2. (3.6)

Then, we have

0 ≤ − 2
r∑

v=1

cvz∗v
2

+ σ||A||20
r∑

v=1

z∗v
2

+ σ||∆||22

r∑
v=1

z∗v
2

+
2
σ

r∑
v=1

L2
vz∗v

2

≤

r∑
v=1

(
−2cv + σ||A||20 + σ||∆||22 +

2L2
v

σ

)
z∗v

2

≤2
r∑

v=1

(
−cv +

σ

2
||A||20 +

σ

2
||∆||22 +

L2
v

σ

)
z∗v

2. (3.7)

Hence, (3.7) is in conflict with (3.1), therefore, UDFCNN (2.1) has no other equilibrium point
expect origin.

Next we will prove that UDFCNN (2.3) is GARS. Consider the following LKF:

V(z(t)) =

r∑
v=1

z2
v(t) +

1
σ

r∑
v=1

∫ t

t−τv

ψ2
v(zv(η))dη. (3.8)

Take the derivative of V(z(t)) with respect to t, we can obtain

V̇(z(t)) =2
r∑

v=1

zv(t)żv(t) +
1
σ

r∑
v=1

(
ψ2

v(zv(t)) − ψ2
v(zv(t − τv))

)
≤2

r∑
v=1

zv(t)
[
−cvzv(t) +

r∑
w=1

avwψw(zw(t)) +

r∧
w=1

evwψw(zw(t − τw)) +

r∨
w=1

hvwψw(zw(t − τw))
]

+
1
σ

r∑
v=1

[
ψ2

v(zv(t)) − ψ2
v(zv(t − τv))

]
≤ − 2

r∑
v=1

cvz2
v(t) + 2

r∑
v=1

r∑
w=1

zv(t)avwψw(zw(t)) + 2
r∑

v=1

r∑
w=1

zv(t)|evw||ψw(zw(t − τw))|

+ 2
r∑

v=1

r∑
w=1

zv(t)|hvw||ψw(zw(t − τw))| +
1
σ

r∑
v=1

[
ψ2

v(zv(t)) − ψ2
v(zv(t − τv))

]
≤ − 2

r∑
v=1

cvz2
v(t) + 2

r∑
v=1

r∑
w=1

zv(t)avwψw(zw(t))

+ 2
r∑

v=1

r∑
w=1

zv(t)
(
|evw| + |hvw|

)
|ψw(zw(t − τw))|

+
1
σ

r∑
v=1

[
ψ2

v(zv(t)) − ψ2
v(zv(t − τv))

]
. (3.9)
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Similarly,

2
r∑

v=1

r∑
w=1

zv

(
|evw| + |hvw|

)
|ψw(zw(t − τw))| =2zT ∆|ψ(z(t − τ))|a

≤σzT ∆∆T z +
1
σ
|ψ(z(t − τ))|Ta |ψ(z(t − τ))|a

≤σ||∆||22

r∑
v=1

z2
v +

1
σ

r∑
v=1

ψ2
v(zv(t − τv))

≤σ||∆||22

r∑
v=1

z2
v +

1
σ

r∑
v=1

ψ2
v(zv(t − τv)). (3.10)

Therefore,

V̇(z(t)) ≤ − 2
r∑

v=1

cvz2
v + σ||A||20

r∑
v=1

z2
v(t) + σ||∆||22

r∑
v=1

z2
v +

2
σ

r∑
v=1

ψ2
v(zv(t))

≤2
r∑

v=1

(
−cv +

1
2
σ||A||20 +

1
2
σ||∆||22 +

L2
v

σ

)
z2

v(t). (3.11)

From (3.1), we can observe that V̇(z(t)) < 0, when zv(t) , 0. Thus, based on the Lyapunov
theory, the origin of UDFCNN (2.3) satisfying condition (2.2) is GAS. Therefore, the UDFCNN (2.3)
satisfying the conditions (2.2) is GARS. �

Remark 3.1. Compared with previous results in [30, 31], the results obtained by us are not affected
by time delays. In other words, no matter how big the delays are, the system can always reach GARS
as long as the assumptions and sufficient conditions are satisfied. Therefore, the method used in this
paper reduces the complexity of the analysis of stability to a certain extent.

4. Global exponential stability result

Based on the LKFs in Theorem 3.1, the GERS is further discussed. Hence, we further have the
following Theorem.

Theorem 4.1. Let Assumption A1 hold, and ∃ σ > 0 such that

β − cv +
1
2
σ||A||20 +

1
2
σ||∆||2 +

(1 + βδv)L2
v

σ
< 0 (4.1)

holds, then, the UDFCNN (2.3) which satisfying the condition (2.2) is GERS.

Proof. Take W(z(t)) = exp(2βt)V(z(t)), where V(z(t)) is as same as we defined in Theorem 3.1. Thus,
we have

Ẇ(z(t)) =2β exp(2βt)V(z(t)) + exp(2βt)V̇(z(t))

≤ exp(2βt)
r∑

v=1

(
−2cv + σ||A||20 + σ||∆||22 +

2L2
v

σ

)
z2

v(t) + 2β exp(2βt)
r∑

v=1

z2
v(t)
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+
2β exp(2βt)

σ

r∑
v=1

∫ t

t−τv

ψ2
v(zv(η))dη. (4.2)

Hence, according to the mean value theorem of the integral, there exists a s ∈ [t − δv, t] such that

Ẇ(z(t)) ≤2 exp(2βt)
r∑

v=1

(
β − cv +

1
2
σ||A||20 +

1
2
σ||∆||22 +

L2
v

σ

)
z2

v(t) +
2β exp(2βt)

σ

r∑
v=1

δvL2
vzv(s)

≤2 exp(2βt)
r∑

v=1

[
β − cv +

1
2
σ||A||20 +

1
2
σ||∆||2 +

(1 + βδv)L2
v

σ

]
sup

s∈[−δv,0]

z2
v(s) < 0. (4.3)

Then,

W(t) ≤W(0) = V(0)

=

r∑
v=1

z2
v(0) +

1
σ

r∑
v=1

∫ 0

−τv

ψ2
v(zv(η))dη

≤

r∑
v=1

z2
v(0) +

1
σ

r∑
v=1

δvψ
2
v(zv(s))

≤

r∑
v=1

(
1 +

δvL2
v

σ

)
sup

s∈[−δv,0]

z2
v(s) ≤ M sup

s∈[−δ̂,0]
||z(s)||22, (4.4)

where M = max
1≤v≤r

(
1 +

δvL2
v

σ

)
. Therefore, V(z(t)) ≤ M exp(−2βt) sup

s∈[−δ̂,0]
||z(s)||22.

Since ||z(t)||22 ≤
∑r

v=1 z2
v(t) ≤ V(z(t)) =

∑r
v=1 z2

v(t) + 1
σ

∑r
v=1

∫ t

t−τv
ψ2

v(zv(η))dη, hence,

||z(t)||2 ≤
√

M sup
s∈[−δ̂,0]

||z(s)||2 exp(−βt). (4.5)

Therefore, UDFCNN (2.3) which satisfying the condition (2.2) is GERS. �

Remark 4.1. It can be seen from Theorem 4.1 that under a certain decay rate, the GERS of the
fuzzy neural networks with uncertainty coefficients is related to the size of the delay. In addition,
the attenuation coefficient α is also related to the time delay.

Remark 4.2. The steps of analysis of this paper are given in Figure 2. From (3.1) and (4.1), we can find
that if the system parameters satisfy the conditions of Theorem 4.1, the conditions of Theorem 3.1 must
also be satisfied, which reveals the relationship between asymptotic stability and exponential stability.

Remark 4.3. There is a brief comparison between existing literatures and this paper in Table 1.
The elements of the comparison are fuzzy logic (F-L), time delays (TDs), GARS, GERS, parameter
uncertainties (UP), LMI, and inequality techniques (IT).
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Figure 2. The analysis steps of this paper.

Table 1. The differences between our study and current literatures.

F-L TDs GARS GERS UP LMI IT
Thoiyab et al. (2020) [20] - 4 4 - 4 - -
Thoiyab et al. (2021) [22] - 4 4 - 4 - -
Lan et al. (2024) [27] - 4 - 4 4 4 -
This paper 4 4 4 4 4 - 4

5. Examples

To validate our results, we provide two numerical examples in this part.
Example 5.1. The parameters we considered are as follows:

A = a
[
0 1
1 2

]
A = a

[
−1 −2
−1 −3

]
, E = a

[
2 1
0 1

]
,

E = a
[
−2 −3
−1 0

]
, H = a

[
−1 2
1 0

]
,

H = a
[
−2 1
0 1

]
, C = C = C =

[
2 0
0 2

]
,

(5.1)

where a > 0.
Hence, we can calculate that

∆ = a
[
4 5
2 2

]
, A∗ = a

[
−0.5 −0.5

0 −0.5

]
, A∗ = a

[
0.5 1.5
1 2.5

]
.

Let Lv = 1, σ = 2, then, from Theorem 3.1, we have

−2 + 48.9182a2 + 222.9955a2 +
1
2
< 0. (5.2)
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Therefore, we can get a2 < 3
543.8275 , i.e., a < 0.0743. That is, Theorem 3.1 is satisfied when

a < 0.0743.
We take a = 0.06, and Figures 3 and 4 show the states of UDFCNN (2.3) with different bounded

activation functions and parameters satisfy the conditions (5.1). It can be seen that when the parameter
uncertainty satisfies the conditions of Theorem 3.1, the system can converge to its equilibrium point
and maintain its global asymptotic robust stability. Besides, as can be seen from Figures 3 and 4, as
long as the conditions of Theorem 3.1 are satisfied, no matter how big the time delay is, the system
maintains global asymptotic robust stability.

0 1 2 3 4 5 6 7 8 9 10

Time t

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

Time t

-0.2

0

0.2

0.4

0.6

Figure 3. States of UDFCNN (2.3) with a = 0.06, τ = 4, and different activation functions,
respectively.

0 1 2 3 4 5 6 7 8 9 10

Time t

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

Time t

-0.2

0

0.2

0.4

0.6

Figure 4. States of UDFCNN (2.3) with a = 0.06, τ = 2, and different activation functions,
respectively.

Furthermore, in Figure 5 when a = 3, we can observe that the system can not converge to the
equilibrium point. This also illustrates the validity of our results.
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-1

-0.5

0

0.5

1

Figure 5. States of UDFCNN (2.3) with a = 3 and different activation functions, respectively.

Example 5.2. In this example, we take the same system parameter values as in Example 5.1. In
addition, according to Theorem 4.1, it can be seen that the GERS of the system is related to the delay
and the decay rate; thus, in this example we take δ = a[0, 2]T , δ = a[1, 3]T . Let α =

√
M, β = 1.1.

Then, we have,

1.1 − 2 + 48.9182a2 + 222.9955a2 +
1 + 1.1 × 2a

2
< 0. (5.3)

Calculating by Matlab, we can obtain that a < 0.0364. Therefore, if a < 0.0364 holds, then
the sufficient conditions of Theorems 4.1 is satisfied, i.e., the UDFCNN (2.3) which satisfies the
condition (2.2) is GERS.

We take a = 0.02, then we can obtain that τ1 ∈ [0, 0.02], τ2 ∈ [0.04, 0.06]. Hence, UDFCNN (2.3)
with parameter uncertainty is GERS when the variation range of time delay are satisfied. Figure 6
shows the states of UDFCNN (2.3) with uncertain time delay τw and different bounded activation
functions, respectively. It can be seen that when the conditions of Theorem 4.1 are satisfied, the
equilibrium point of the system is exponentially stable, which means that the system with uncertain
parameters is globally exponentially stable.

Figure 7 shows the states of UDFCNN (2.3) with different activation functions under a = 5, and we
can find that when a = 5, the system cannot converge to its equilibrium point, and the system is not
exponentially stable, so the system is not globally exponentially robust stable.

Remark 5.1. Compared with the literatures [17–23], this paper considers fuzzy logics in the system.
Because of the existence of fuzzy logics, the systems considered in this paper are more widely used.
In addition, we further explore the sufficient conditions for the system to maintain robust exponential
stability on the basis of robust asymptotic stability, which is different from the known results.

Remark 5.2. In this paper, we use the norm inequality method to obtain sufficient conditions for the
robust asymptotic stability of the system. Compared with the LMI method used in [27], the results
obtained in this paper are easier to verify. Besides, we explore the effect of interval system parameters
on the robust exponential stability of the system without adding additional controls, which is different
from the literature [28].
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Figure 6. States of UDFCNN (2.3) with a = 0.02 and different activation functions.
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Figure 7. States of UDFCNN (2.3) with a = 5 and different activation functions.

6. Conclusions

In this paper, the robust asymptotic and robust exponential stability of delayed fuzzy cellular neural
networks are analyzed. We found that the robust asymptotic stability of the system is independent of
the time delays and related only to the uncertainties of system parameters, while the robust exponential

AIMS Mathematics Volume 9, Issue 4, 8063–8078.



8076

stability of the system is related to the uncertainties of the time delays. When the uncertainties of time
delays of the system are less than the deduced result, the system will not be able to maintain robust
asymptotic stability. Finally, we give several examples to verify our results. Future studies can continue
to consider the impact of environmental noise on the global robust stability of the system and estimate
the maximum disturbance intensity that the system can withstand to maintain stability. Besides, new
norm inequalities can be applied to reduce the conservatism of this paper.
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