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Abstract: This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral
semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which
the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on
the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral
semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and
combining with the time-delay segmentation technique. The numerical examples are supplied to verify
the effectiveness of the obtained results.
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1. Introduction

The reachable set of a dynamic system is first mentioned in [1], which is defined as the set of all state
trajectories that may be achieved from the origin. The reachable set is a particularly valuable direction
for further research in the field of control theory, which is closely related to stability, and it is crucial
to many practical systems, such as ensuring circuit safety, safety verification, and avoiding aircraft
collision [2—4]. In addition, many control methods has been proposed to improve the performance
of the systems [5—7]. Because the exact shape of the reachable set for the actual system is difficult
to obtain, it also causes scholars to study the estimation of the reachable set. So far, the commonly
used methods for estimating reachable sets include the ellipsoid method and the polyhedron method.
However, in the application of practical systems, time-delay often leads to the deterioration of system
performance and even instability, but this is an unavoidable phenomenon [8]. Therefore, theoretical
research on time-delay systems has attracted the attention of multitudinous researchers [9-15], and
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many achievements have been made in switched systems [16-20].

As a class of special hybrid system, Markovian jump systems can describe this kind of situation
with sudden change (i.e., state sudden change and signal to lag) well. It has been widely used
in actual manufacturing processes, network transmission systems, power circuit systems, economic
systems, and so on. The sojourn time of Markovian jump systems obeys the exponential distribution,
and the transition rate is constant and memoryless, in other words, the transition probability is a
random process independent of the past. As a matter of fact, the transition rate of many practical
systems is not constant, and the application field of Markovian jump systems is limited to some
extent. Thus, a semi-Markovian jump system with a time-varying transition rate is proposed, which
can better describe the general system. The semi-Markovian jump system obeys non-exponential
distributions, such as the Weber distribution [21] and the Gaussian distribution [22], which relaxes the
limitation of probability distribution function and reduces the conservatism of the system. Therefore,
it has a wider application value. To date, a lot of research work has been done on the stability of
semi-Markovian jump systems [23-30], but the reachable set of such systems is still in the stage of
continuous development [31-34]. The issues of reachable set estimation and reachable set control
for semi-Markovian jump systems under bounded peak disturbance have been addressed in [32]. The
problem of reachable set estimation for a class of singular semi-Markovian jump systems with time-
varying delay under zero initial condition was considered in [33].

On the other hand, it is worth noting that a particularly distinctive feature of many dynamic
processes of physics, chemistry, biology, and engineering is that they are not only affected by past
and present states, but are also fully affected by the derivative of the delay. Therefore, in order to
describe this feature, the neutral time delay can be introduced into dynamic systems, called neutral
time-delay systems. Since neutral systems have time delay in both the state and the derivative of the
state, most systems with time delay can be regarded as a special case of neutral systems, which is a
kind of more general system with time-delay. In the last twenty years, time-delay systems have been
deeply studied by many scholars [35-37]. The ellipsoidal bound of reachable sets for linear neutral
systems with bounded peak disturbances has been investigated in [36]. The exponential stability in
the mean square of neutral stochastic delayed systems with switching and distributed-delay dependent
impulses was studied in [37].

Furthermore, a less conservative result can be obtained by using a matrix inequality to enlarge the
derivative of the Lyapunov functional to different degrees. Jensen’s inequality [38], the Wirtinger
integral inequality [39], the reciprocally convex combination inequality [40], and some improved
integral inequalities have been generally used to reduce derivatives of the Lyapunov functional [41-45].
In [44], the author has investigated the boundary of the reachable set for a class linear systems with
mixed delays and state constraints by the Wirtinger-based integral inequality and extended reciprocally
convex combination approach. In [45], a novel quadratic generalized multiple-integral inequality based
on free matrices was proposed to make the stability criterion of the system less conservative.

At present, few scholars have applied advanced methods to the neutral semi-Markovian jump
system. Moreover, it is well known that the triple integral form of the Lyapunov functional can
effectively reduce the conservatism of the criterion. Based on [46], a new integral inequality is derived
by using the integral inequality and time-delay segmentation technique. Inspired by existing results and
combined with the semi-Markovian jumping system, this paper will study the reachable set boundary
of the neutral semi-Markovian jump system by utilizing a novel integral equality.
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Notations: The superscript ‘A”” and ‘A" represent the transpose and inverse matrix representing
matrix A; R” stands for the n-dimensional Euclidean space; R”*? is the set all p X ¢ real matrices; the
symbol P > 0 (P > 0) means that P is a positive definite (semi-positive definite) matrix, and similarly,
P < 0 (P < 0) denotes that P is a negative (semi-negative definite) definite matrix; diag{-} is a diagonal
matrix; an asterisk (*) in the symmetric block represents a symmetric term; E{-} denotes the expectation
operator and £ means the weak infinitesimal generator; P,(:|-) is the conditional probability.

2. Problem statement

Consider the following neutral semi-Markovian jump system with disturbances:

{ (1) = CppyX(t = 7(2)) = Aty X(1) + B ppx(t — h(2)) + Dyt (1),

x(to+60) =0, VOe[-p*,0] (2.1)

where x(f) € R" is the state vector, 7(¢) is the time-varying neutral delay, the time-varying delay A(¢) is
a time-varying function, and w(z) € R™ is the system disturbance satisfying

(1) < Ty, 7O < Tp < 1, 0 < h(t) < h, hy < h(t) < hp < 1w (Ow(®) < w?, (2.2)

p* = max{ty, h}, {r,t > 0} is a semi-Markovian process taking values on the probability space in a
finite state p = {1, 2, 3, ..., N} with the following transition probability:

Aij(0)A +0o(A), i+,

L+ 4:(O)A +o(d), i= ], (2.3)

Pr(rz+A:j|rt:i):{

where ¢ > 0 is the sojourn time between two jumps, A > 0, and iin(l) % = 0. 4;;(0) is the transition

rate from i to j at time ¢ for i # j. In addition, 2;;(6) = — >, 4;;(0) for j = i. Ay, Bury> Cory and
jep\ti)
D, are known constant matrices of the semi-Markovian process.

Remark 1. As described in [24], in the application of the actual system, 4;;(0) is assumed as 4, <
4;j(0) < /_l,j, where 41.1. and /_lij are real constants. Then, we have 4;;(6) = A;; + Ad;;, where A;; =
3+ A,) and [Ad;| < L with I; = 3(A; = 4,).
Remark 2. The neutral systems are suitable for describing the turbojet control systems [47], ship
dynamic positioning systems [48], etc. Neutral systems are a class of more general time-delay systems,
where the change rate of the actual system’s state is not only related to the current and past time states,
but also to the rate of change of past states. When matrix C becomes a zero matrix, system (2.1) can
be rewritten as a general time-delay system, thus almost all time-delay systems can be described as
neutral systems.

For the sake of brevity, x(¢) is used to represent the solution of the system under initial conditions
x(ty +0) = 0, 8 € [-p*,0], and its weak infinitesimal generator, acting on the function V(x,, 1, 1), is
defined in [49].

N . .
.EV(X[, t, l) = ilir(l) X[E(V(XI+A7 I+ Aa rl+A)|(-x17 ry = l)) - V(xt, f, l)] (24)

This paper aims to find a reachable set for neutral semi-Markovian jump system (2.1) based on the
Lyapunov-Krasovskii functional approach. We denote the set of reachable states with w(¢) that satisfies
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Eq (2.2) by
R, £ {x(?) € R"|x(2), w(t) satisfy Eqs (2.1) and (2.2)}. (2.5)

We will bound R, by an ellipsoid of the form

I(P,1) = {x(r) e R" : X" ()Px(r) < 1,P > O}, (2.6)
For simplicity, there are the following representations:

Ai = Awry, Bi = By, Ci = Ciirys Di = Dy, Pi = Py, Vi € .

In this paper, the following lemmas are needed.
Lemma 1. [50] For any positive-definite matrix ® € R™”", if there is a scalar y > 0 and a vector
function w : [0, y] — R” such that the integrations concerned are well defined, then

(Jy w(s)ds)" D[] w(s)ds) <y [) W' (s)Paw(s)ds. 2.7)

Lemma 2. Consider a scalar 2 > 0 and any continuously differentiable function x(¢) € R". For any
positive definite matrix Q, the following inequality holds:

- [, () 0i(s)ds < " (0En(), 28)
where

180 60 0 0 ~960 0 4800
* =360 60 -960Q 1440 4800  —-480Q
« «  —180Q 1440 0 _4800 0

2=| . «  —15360 0 57600 0o |,

* * * * —15360 0 57600
* s * % * -23040 0
* * * * ® * —23040 |

N =@ -5 Ta-h) L ftﬁf x()ds)" L([', x(s)ds)T 5 f:f f;_%x(s)dsdu)T
h‘—z(ftiﬁ futx(s)dsdu)T]T.

Proof of Lemma 2. For any continuously differentiable function x(#) € R” and positive definite matrix
Q, the following equality holds:

_h
S 90i(s)ds = [1, #()Qi(s)ds + [1* & ()Q:(s)ds. (2.9)
Based on Lemma 2 in [46], the following inequalities hold:

4 3 (9)Qis)ds 2 Lxe) = x(t = )17 QLx(D) = x(t = D] + FIx(D) + x(t ~ %)
h f y x(8)ds1T Qx(t) + x(t — &) — 4 f ; x(s)ds]+ O7x(r) — x(t — ) + 12 t’_% x(s)ds  (2.10)
f ; [ x(s)ds]" QLx(t) = x(r = 1) + L2 W ', x(s)ds — B ft_% [ x(s)ds),
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fj AT ()Qx(s)ds = 2[x(t — 1) — x(t — W] QLx(t — &) — x(t — )] + S[x(r — &) + x(z — h)
-1 j x(s)ds)T Q[x(t — h) + x(t— DEEEN t;f x(s)ds] + 2 [x(t -4 )_ x(t — h)
+ 12 tt__h:z x(sia’s— f f x(s)ds Olx(t—-4 —x(t—h)+ 12 f h x(s)ds
-3 f:hj fut_f x(s)ds].

Replacing Eq (2.10) and (2.11) into Eq (2.9) yields Eq (2.8). This completes the proof.

Lemma 3. [34] For system (2.1) with constraints (2.2), if there is a Lyapunov functional V(x;, r;) with
V(xo, ro) = 0 and a positive scalar @, such that

(2.11)

LV (1) + @V (i, 1) = zw(®)w(t) <0, (2.12)

then V(x,,r,) < 1 forany ¢ > 0.
Lemma 4. [32] Given any constant € and square matrix P € R™", the inequality

e(P+P")< €T +PT'P", (2.13)

holds for any symmetric matrix 7" > 0.
Lemma 5. [51] (Schur Complement) Given constant symmetric matrices X, X,, and X3, where X; = ZIT
and 3, = 37 > 0, then 3; + 2]3;'%; < 0 holds if and only if

T _ T
[21 3 ]<o, [ 2| g, (2.14)

X =X X X

3. Main results

Our aim is to find an ellipsoid set as small as possible to bound the reachable set defined in Eq (2.6).

Based on the Lyapunov method and linear matrix inequality techniques, the following theorems are
derived.
Theorem 1. Consider the time-delayed system (2.1) with constraints (2.2). If there exist real matrices
P,; and P3;, symmetric matrices Py; > 0 for eachmodei € 9, Ry >0,R, >0,R; >0,R; > 0,5, > 0,
$,>20,83>0, M, >0, M, >0, and Q > 0, and a scalar « > 0 satisfying the following matrix
inequalities:

o, o, o, ®, ¥, 0 @, 0 o o,
* D, 0 (I)lz,4 D) 5 O 0 0 0 (Dz,lo
* Dy O, 0 D0 Dy, D Dy, O
* * * (I)g,4 0 (Dil,6 0 (I)iLS 0 0
. * * * * !
I T I P
66  ° 68  °
* * * * * * (I)’7’7 0 (I)’7’9 0
* * * * * * * @’8’8 0 0
* * * * * * * * (I)’9’9 0
* * * * * * * * * (DLIOIO |

where
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j S 2 18
(Dl]’l :CYP1i+P;Ai+AlTP2i+R2 +R3+h(S1 + 72)+%M2— TQ+ Z /lij(é)Plj»
Jjep
i _ T T i _ 60 »i _ pT i _ pT i _ _9%0 i _ 4800
D, = Pii— Py + A; Py, @y 5 = 57, @) = Py Bi, D 5 = P,,C;, @ ; = -5, Dy = .

h
i _pTp. M — _pT _p. . ®d —pPTR. d —pler. & — pTn.
q)l,lo - PZiDl’ (D2,2 =hQ+ R, P3i Ps;, (Dz,4 - P3iBl’ q)z,s - P3iCl’ (DZ,IO - P3iD,,
ah _ah

: hos _ah _ah h h h _q 36 i 6
®yy = (1= e ¥R — e (1= )Ry + 51 = B)e 2S5 + e P My - 22, = %2,
j 96 ; 144 ; 480 ; 480 ; _—ah _ 18
Dy =-2C @), =L oL =L DLy = —TL D), = —(1-hp)e 3 Ry —(1—hp)e ™R3 - &,
i 144 i 480 i - i - 1536
Pyo = B ) =~ O = (1= 1) R, B = ~2h(1 ~ hp)e S + 551~ 52,

hp \ —ah
i _ 51600 gy _ _~p - 15360 i _ 57600 i _  8(1="P)e 23040
Qg == Q77 =-2he” 2 [S1 + 5] o D= = Py = M noo

i 8(1-"D)eah 23040 i o
(D9,9 =-———g M- ’(DlO,IO = w2t
Then, the reachable sets of system (2.1) having constraints (2.2) is bounded by an ellipsoidal bound
() J(Py;, 1) defined in Eq (2.6).
icp
Proof of Theorem 1. Choose a new class of functional candidate for system (2.1) as follows:

Vit r) = 3 Vit 1), (32)
k=1
where
1 P
Vit =X opo = o o | ool o e

=D xT ()R x(s5)ds

() noy €

+ ﬁm) DT ()R, x(s)ds,
(L ($)S 1x()dsdd + [ [1, e 5T (S 2x(5)dsdo

G

+ f_h(f) fzie 7 DX ()8 3x(5)d sdb,

L a(s—t) T t Lt a(s—1) T

Va(x,, t,1,) = ft_h(lz)l fa 2 fu 2 e xT ($)M, x(5)dsdudb + f[_@ fe fu eI xT (§)Mox(s)d sdudo,
Vst ) = [ [ €601 (5)Qi(s)dsde.

Furthermore, Py, > 0, P»,,, P3,,, Ry >20,R, >20,R3;>0,5,>0,5,>0,5;>0,M, >0, M, >0, and

Q > 0, and a scalar @ > 0 are solutions of Eq (3.1).

First, we show that V(x,, 1, r,) in Eq (3.2) is a fine Lyapunov-Krasovskii functional candidate. From

f—@ . ! . !
Vo(x,, t,1,) = f 2 oG DxT ()R x(s)ds + ft—M e"“‘t)xr(s)sz(s)ds+fI_
2

Vi(x, t, 1) = f_oh

5
Eq (3.2), we have ) Vi(x,,t, r,) > 0. Therefore, we get
k=2

5
V(xt, f, rl) = kg] Vk(-xt’ f, rt) = V] (xt’ f, rt) = XT(Z)P]Z'X(I),

(3.3)
V(x;,t,r,) =0, when x(0)=0, 0¢€l[t-p',t].
Next, the derivative of V(x;, t, r;) along the trajectory of system (2.1) is given by
5
LV, 1,1) = ) LVixis 1, 7). (3:4)
k=1
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From Eq (2.4), we have

LV (x,t,0) = lll’I(l) Y Prij| ix"(t + A)Px(t + A) — x" (£)P;x(1)

Jjep

= lim L[ zfj:(/ T(t+A)Px(t+A)+P”’ Tt + A)
©\1

- Pix(t+ A) — xT(1)P;x(1)]

— T L 4ij(Fi(6+A)—Fi(6) « 1-Fi(5+A)
= il—r{(l) A[j% i T re X+ AP+ A)+ 55

xT(t + ANPx(t + A) — xT () Pix(1)]

(3.5)

where F(¢) is the cumulative distribution function of the sojourn time ¢ in mode i, and g;; is the
probability density intensity of the system jump from mode i to mode j. When A is small, x(z + A) =
x(t) + X(HA + o(A) = (A;A + 1) x(¢) + B;Ax(t — h(t)) + C;Ax(t — 7(¢)) + D;Aw(t) + o(A). Then, Eq (3.5)
becomes

. . ii(Fi(6+A)—F;(6) T 1- F(5+A)
LV (g, t,0) =1im 5[ Y, B8 (0GT PG (1) +
> A 1-F;(6 1 1-F;(6
A0 2 7o) @ © (3.6)

-E[(OG] PiGi&1(D) — X" (DPix(1)],

where G; = [A/A B/A CA DAL &) =[x"() xT(t—h@) X'(t—-70) @)
Furthermore, utilizing the same technique as in [28], it is obtained that

Fi(6+0)~Fi(6) _
i{% ro = O

1-Fi(+A) _
lim =775 = L, (3.7)
lim FOHF@) _ g (s).

Anp (-FG)A —

Here, A;(9) is the transition rate of the system jumping from mode 7, and we define A;;(6) = 1;(6)g;; for

J#iand 4;(0) = — X A4;;(0). Next, LV;(x,1,1i) can be rewritten as
j=1j#i

LViGxati)=2| 2@ (1) ][ Pu Py H )

o PL|| o

+xTO[>D Aij(0)P1]1x(1)

x(1) "
—x(1) + A;x(t) + B;jx(t — h(t))
+Cix(t — (1)) + Diw(t)

+xT ([ Y ;(6)P1;1x()

JEP

=2| (1) x%)][ o ,’jﬂ

= xT()[PLA; + AT Py)x(r) + 2x7 (1)[Py; — PL. + AT Py ]ic(t) + 2x7 (1) PLB;x(t — h(1))
+2xT(t)PTCx(z —7(1)) + 2x" () PL.Dw(t) — &7 (1)[PL, + P31x(t) + 2xT(t)P Bix(t—h(D) (38
+2i7 (1) PLCi(t — (1)) + 2xT(t)P Daw(t) + (O[3 A;;(8)Py1x (1),

Jjep

ah

LVo(x,,1,1) < xT(O[R: + Ralx(®) + (1 = )e~ T xT (1 - h(’))R x(t =12y + X7 (R4 (1)
— (1 = hp)e™E X7 (t = h(e)R x(t — h(D)) = (1 = 2)e= % xT (1 = “)Ryx(1 — 2) (3.9)
— (1 = hp)e™™xT(t = h(t))R3x(t — h(1)) — (1 — Tp)e ™ X7 (t — T()R45(t — (1)) — @V,
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LV3(xi, t,0) < hx" (O[S 1 + £21x(r) + K21 - hm) 5T (1 — My S s x(r — M0y
= L €OV (IS 1 + S 21x(s)ds - [ o €CIA (S| + (1= h(e)Ss)x(s)ds — Vs

ah

<l OISt + F1x(0) + 51 = B)e™ 2o (1 = BNS 3x(1 = 52) = 2he™ 2 (G, [Luy 2(s)ds)”
h(t)

81+ 821G, [Luo 2(5)ds) = 2h(1 = hp)e™% G [ h(;x(s)ds) [S1+S31G: [0 x(s)ds) — Vs,

(3.10)
LVay(x,1,1) = =(1 = h(1) f,h; I ¥ 0T (5)My x(s)dsdu + (1 — 12
h @ ah(t h als—
Soa b ks ’z“xT(t—%Ml x(t = "dsdu — (1 =12 1) [} T () Max(s)dsdu
+ [l J; 2 OMox(Dds — aVy (3.11)
_ipy, SR}
< %ze-%xT(t B0\ M, (= B0y 4 T (o) — R Fod 177 xodsdu)”
h(r) h(t)
Mi(f, 0 [T x(s)dsdu) - 2 2)( o [} x(s)dsdu)TMz( [ [} 2(s)dsdu) = aV,
LVs(x,,1,1) < ha" (1 QX(1) — | ihm i (5)Qx(s)ds — aVs. (3.12)
From Lemma 2, we have
- ,ﬁhm & (5)Qx(s)ds < +ET(NZE(®), (3.13)
where E is the same as defined in Lemma 2, and
T T h() T P T 1/(! T 1 =15 T
o =" =) A@-h@) (J . x©ds)T ft,@ x(s)ds)” 3( f, "o f x(s)dsdu)
s [} x()dsdu)"T".
Finally, by combining Eqs (3.5)—(3.13), we further have
LV (i, 1,0) + @V, 1,0) = zw®)w(t) < XTODX(), (3.14)

where @' is the same as that defined in Theorem 1 for any i € p, and
o
X =0 @O =" x=h) FC-10) (L0 Hd) ([l xs)ds)

h(t) h(t)

w50 77 odsdw) E([" i [ x(s)dsdu)”  wT(0)]".

Thus, from the matrix inequalities (3. 1) we get
LV(xi,1,0) + aV(xi, 1,0) = Sw(t) w(t) <0, Vi€ p. (3.15)

which means, by Lemma 3, that V(x;,t,i) = Vi(x,, £, 1)+ Vo(x;, t,0) + Va(x;, 8, 1) + Va(x,, t, 1) + Vs(xy, 1, 1) <
1, and this results in V,(x;, 1, i) = xT (t)P1;x(t) < 1 forany i € @, since V,(x;, t, i)+ V3(x;, 1, 1)+ Va(x,, 1, )+
Vs(x:,t,1) > 0. This completes the proof.

Remark 3. Since 4;;(6) in Theorem 1 is time-varying and contains an infinite number of inequalities,
it is impossible to solve by using the Linear Matrix Inequalities (LMIs). At this point, we will obtain
the boundary of the reachable set according to the upper and lower bounded method in [32].
Corollary 1. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices P,; and
Ps;, symmetric matrices P; > 0 foreachmode i€ ¢, T;; >0,R; 2 0,R, >20,R3 >0,R4 > 0,5, >0,
$,>20,83>0, M >0, M, >0, and Q > 0, and a scalar @ > 0 satisfying the following matrix
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inequalities:
(Dil,l (Dll 2 (Dil,3 (I)l:l,4 (Dlil,S 0 (Dll 7 0 (Dll 9 (Dll 10 q)ll 11
* @’2’2 0 @’2’ 4 (Dlz,s 0 0 0 0 q)lz,m 0
* * (ng CI)’ 0 CI)’?”6 (13’3 ; CI)"3’8 (1313,9 0 0
* * * CI)EL4 0 @2’6 0 (Dit,s 0 0 0
* * * * (Dls . 0 0 0 0 0 0
O =| =« * * * * (1)26 0 (1328 0 0 0 <0, (3.16)

% * % * % * (D’7,7 0 (13’7,9 0 0
* * * * * * *  Oge 0 0 0
* * * * * * * * d)g 0 0 0
* * * * * * * * * q)’io 10 0
* * * * * * * * * * (D’i] "y

where

(Dli,l:aP1i+P;Ai+A?P2i+R2+R3+I’l(S]+%)+%M2—18—Q++Z/L]P1J Z UTl],

JEP Jep\i}
i T T i 00 gi _ pT i _ pT i — _9%0 g — 4800
), = PliT_ Py + A P3i, @) 5 = e D} 4 = PyBi, (DTl1,5 = PG, (DTIM = "Th o (Dll,T9 =h o
j— — 4 — L — l —
cD’1 "o = PL.D, @, = hQ + Ry — Pl — Py, @2’ = PLB. ©); = PLC. ®) = PLD,

o, =(1- hd)e—%Rl — e (1= )Ry + 4(1 - )e 'S +h2 M- X2 0, =%
Do =52, 0, = L, O = “8,?9, D, = “SOQ @, = ~(1-hp)e” “R - (1 —hD>e—ath - 1o,
Dl = 14:Q’ (DZ,S = _ﬁ’ i =1~ TD)E_MMR4, (D’6’6 = =2h(1 — hp)e ™ [S| + S;3] - 1526Q’
(Dé,s = 5720Q <I>i = —2he‘“7h[Sl +S5] - 15169, (I)Q’9 = @, d)g’g = —S(I_E)E_UhMl — 23%4Q,
q)i _8(1—;) "th 2%04Q ®110 = W%,I’

O, = [P11 ISTARE ,Pu— — Py, Pyix1 — Py -, Py — Pyl
@), |, = ~diag{Tu, - , Tig-1) Tiis1)s -+ » Tin'}-
Other unknown parameters are the same as those defined in Theorem 1. Then, the reachable sets
of system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound () J(Py;, 1) defined in

icp
Eq (2.6).
Proof of Corollary 1. According to Remark 1, the item )] A;;(6)P;; will be handled separately, and we
Jjep
can get that
X APy = X (A +Ady) Py
jep Jjeo
= S AP+ % A (Pi—Py) (3.17)
Jjep Jep\li}
= Z /llJPIJ + Zi“[lA/li](Plj_Pli)'i' %A/lij(Plj_Pli)]-
jep\li
Meanwhile, by Lemma 4, there exist symmetric positive definite matrix 77; for any | A4;; [< [;;, and we
have
Z A;;(6)Py; < Z APy + Z ”T +(Pij = Pu) T (P - Pui)|- (3.18)

i€p Jjep Jep\li}
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Thus, by the Schur complement, inequality (3.1) can be written as inequality (3.16). The proof is
complete.

Remark 4. Inspired by reference [52], the mathematical expectation method is used to solve the
transfer rate 4,;(6), Corollary 2 is derived from this approach, and the simulation result is worse than
that of Corollary 1.

Corollary 2. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices P,; and
P3;, symmetric matrices Py; > 0 for eachmodei € 9, Ry >0,R, >0,R3 >0,R, >0,5,>0,5, >0,
S3>0,M, >0, M, >0, and Q > 0, and a scalar @ > 0 satisfying the following matrix inequalities:

P P, Dy O Oy 0 P, 0 0 O

L, 1 1 I 1,10
# @, 0 @ 05 0 0 0 0 @,
* * Dy O, 0 D Dy, Dy D, O
* ® * @2’4 0 q)l4,6 0 @2’8 0 0
. * % * x @ 0 0 0 0 0
o = 5,5 ; ; <0, (3.19)
* * * * * (D6,6 () (D6’8 0 0
* * * * * * @’7’7 0 @’7’9 0
% * * * * * * (Dé ¢ O 0
* % * % * * * * CDg’9 0
* * * * * * * * % (Dilo,lo |
whge N _
(Dil,l =aPy; + Pg,'Ai +AiTP2i + R, +R3+ ]’l(Sl + 572) + %Mz - % + jg:()/lijplja /lij =FE [/llj(é)],

h

i _ pT i T i _ pT i _ pT i _ pT
(DI,IO - PZiDi’ (Dz,z =hQ+Ry - P3i — P, (D2,4 - P3iBi’ (1)2’5 - P3iCi’ (DZ,IO - P3iDi’
ah ah

. o _ah _ah h h hr _ah _ahg 36 i 6
¢)l33 = —Td)e Ry —e2(1 —TD)R2+§(1 —TD)e ZS3+h2e 2 M, —’TQ,Q)’M: TQ,

j 96 i 144 i 480 i 480 i — gk - 18
Do = =20 Dy = 2, @ = T @y = — T8, 0y = —(1=hp)e™ Ry — (1 =hp)e™ Ry = T,

j 144 - 480 ' - ' - 1536
D)o = L, Oy =~ DL = ~(1 = 1p)e Ry, D o = —2h(1 — hp)e ™" [S 1 + §3] — 252

i _ p  _ pT Tp. . ®d 9 i _pTR ® —ple. d 29— 200 Hi _ 4800
(D1,2—Plt P2i+AiP3"(D1,3_ h’q)l,4_P2iBl’cD1,5_PZiC"(Dlj_ h’q)l,9_

h b
hp\ —ah

i _ 57600 i _ah _ 15360 i _ 57600 i 8(->)e 23040

Oy = =5 oy = —2he” 2[S1 + 5] o o= Dy = M ne
h

- 8(1—"L)e " 23040 i

i — 2 _ i —_ _
(D99 - n2 M, h ’(DIO,IO = TW 1.

The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of
system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound () 3(Py;, 1) defined in

i€p
Eq (2.6). (
Proof of Corollary 2. A;(6) is handled by the same method as in [52]. The Z- ; can be obtained through
the probability density function f;(§) = ﬁéb‘le‘(‘s/“)b with respect to the sojourn time (6 > 0). It is
worth noting that a represents the scale parameter and b represents the shape parameter. Then, the
expectation of A;; is E [/lij(é)] = fooo 4ij(0)fi(6)do. After Zj is trivial to obtain, Corollary 2 can be
proved based on Theorem 1.

Next, we consider the neutral semi-Markovian jump system with uncertainties as follows:

x(@) — (Ci + AC(0)x(r — 7(2)) = (A; + AA(D)x(2) + (B; + AB(1))
X(t = h()) + (D; + AD;()w(?), (3.20)
x(to+6) =0, V6 e [—p*,0],
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where the uncertainties of the form A;, B;, C;, and D; are the known mode-dependent matrices with
appropriate dimensions, and the uncertainties AA;(¢), AB;(t), AC;(t), and AD;(t) are expressed as

| M) AB(5) ACi(t) AD(1) | = LK(0)| Ey Ex Esi Ey |,

where K;(f) € RP* is an unknown real and possibly time-varying matrix with Lebesgue measurable
elements satisfying

K/ (DKi(1) < 1,
and L;, Ey;, E»;, E3;, and Ey4; are known real constant matrices which characterize how the uncertainty
enters the nominal matrices A;, B;, C;, and D;. Before proceeding further, system (3.20) can be written
as:

x(t) — Cix(t — 7(1)) = A;x(t) + Bix(t — h(t)) + Diw(t) + Liu;, 3.21)

zi(t) = Eyix(t) + Eyx(t — h(t) + E3%(t — 7(0)) + Eqw(?), '
with the constraint u; = K;(¢)z;(t). We further have

u'u < [Eix(t) + Eyx(t — h(t) + E3x(t — 1(1)) + Eqw(0)]T (3.22)

[Eix(1) + Egix(t — h(t) + E5ix(t — 7(1)) + E4w(D)].

Based on Theorem 1, we can obtain the reachable sets of uncertain neutral systems (3.21). The

following Theorem 2 is a result for the no-ellipsoidal bound of a reachable set for an uncertain time-
delayed system (3.21) having the constraints (2.2).
Theorem 2. Consider the uncertain time-delayed system (3.21) with constraints (2.2), and real matrices
P,; and P3;, symmetric matrices Py; > 0 for eachmodei € 9, Ry >0,R, >0,R; >0,R; >0,5, >0,
$,>0,55>0,M, >0, M, >0, and Q > 0, and scalars @ > 0, &; > 0 satisfying the following matrix
inequalities:

R TP
W= « —-gl O <0, (3.23)
* x  —gl

where
[ T
Wi, =[L'Py LTPy 00 000000O0],
Wii=[eEi 00 sEy sEy 0000 0 gEy| .

The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of
system (3.21) having constraints (2.2) are bounded by an ellipsoidal bound () J(Py;, 1) defined in

icp
Eq (2.6).
Proof of Theorem 2. Applying a similar method to that in the proof of Theorem 1, we can obtain
LV(x,t,0) + aV(x,, t,i) — V%w(t)Tw(t) < XT()D'X(t) + 2x" ()P, Liu; + 2x" (1) P} Liu;, (3.24)

where @' is the same as defined in Theorem 1 for any i € g.
From inequalities (3.22), one can see that the following equation holds for any nonnegative scalar
E;.

LV (x;,1,0) + aV(x, 1,1) = Sw(®) ' w() < [ X' ul ] [ (1: E’(izl ]
X (1)

1

+ Eqw()]T[Eyx(t) + Exix(t = h(t)) + E3x(t = 7(1) + Equw(1)],

(3.25)

+ &{[Eix(r) + Exix(t — h(1) + E3i%(t — 7(1))
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where @' and ‘I”i’z are the same as defined in Theorem 2. By using Lemma 5, the matrix
inequalities (3.23) imply

LV(x, t,0) +aV(x,t,i)— W%W(I)Tw(t) <0,Viep (3.26)

which means, by Lemma 3, that V(x,,t,i) = Vi(x,, t, i)+ Vo(x;, t,0) + Va(x;, 8, 1) + Va(x,, t, 1) + Vs(xy, 1, 1) <
1, and this results in V;(x,, t,i) = xT (f)P;x(f) < 1 for any i € p. This completes the proof.

Remark 5. When the reachable set is estimated by an ellipsoidal technique, the smaller the ellipsoidal
boundary set is, the closer it is to the actual reachable set boundary. As in reference [53], that is,
maximizing p subject to pI < Py;, is equivalent to the following optimization problem:

minimize p (P = é)

pl I
(a) [ I Py ] >0, (3.27)
(b) Eqgs (3.1), or (3.16), or (3.19), or (3.23).

s.t.

Remark 6. The matrix inequalities in Theorems 1 and 2 contain only one non-convex scalar @ > 0,
and these become LMIs by fixing the scalar a. The feasibility check of a matrix inequality having only
one non-convex scalar parameter is numerically tractable, and a local optimum value of @ can be found
by fminsearch.m.

4. Numerical examples

In this section, the validity of the main results derived above is illustrated by the following three
examples.
Example 1. Consider system (2.1) with time-varying delays as follows:

{ x(t) — Cix(t — 7(1)) = Aix(t) + Bix(t — h(1)) + Diw(t),

x(to +60) =0, V6 e [-p*,0], (4.1)

where w! (f)w(t) < 1. The parameters of system (4.1) are introduced as follows: A; = [ —2 -l ]

-3 0 -1 0 -12 0 -2 0 -1 0
AZ‘[ 0 2| ‘[—1 —2]’31 ‘[ -1 -1 ]’Bz_[—l.S -0.5 ]’33 ‘[ 0 -1 ]
0.1 0 02 0 03 0 ~0.13 -0.12
Cl‘[o 0.1]’C2‘[0 0.2]’C3‘[0 0.3]’D1‘ 0.15 ]’DZ‘[O.ss ]’D3‘

[ _00'32 ] h=1y=02hy=0.1,hp=1p = 0.75,7(t) = h(t) = 0.1 + 0.1sin(r), w(r) = sin(r).

According to the same method in [32], parameters for the three modes are chosenasi = 1,a =2,b =
1.8, 11(0) = —1.046%%, 1,5(8) = 0.526°%, 15(8) = 0.526°3; i =2,a =3, b = 1.8, 1n(8) = —0.56°8,
1(0) = 0.256%3, 13(6) = 0.256°8%; i = 3, a = 4.5, b = 1.8, A13(5) = —0.246°3, 25,(6) = 0.126°8,
A3(6) = 0.126°8. Then, A; ; and [;; can be obtained as in Remark 1, and the bounds of 4;;(0) are denoted
by the following two matrices:

-14 07 07 26 13 13
A,=| 04 08 04 |, 2;=| 1 -2 1 |

01 01 -02 07 07 -14
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Moreover, the Z ; are obtained by the same method as in [52], the details of which are as follows:

Iij: 0.5333 —1.0666 0.5333

-1.6038 0.8019 0.8019
0.3540  0.3540 —0.7080

By solving the optimization problem (3.27), the maximum value of p in different methods and the
corresponding feasible matrices are obtained in Table 1. Using the LMIs toolbox to solve the theoretical
results of Corollaries 1 and 2, the computational time is 3.9930 seconds and 3.8212 seconds.

Table 1. The results of Corollaries 1 and 2.

@ p Py P Pi;
31 5.4430 52.1001 21.6797 35.8567 4.9769 14.1468 7.6204
) ' 49769 18.5069 7.6204 17.0268

21.6797 41.4409

14 53122 [33.6548 —5.5096] [30.5665 —4.2398] [30.1417 —5.2802]

-5.5096 17.0706 —4.2398 21.0895 —-5.2802 21.3094

Figures 1 and 2 show a possible mode evolution and the reachable state from the origin of the neutral
semi-Markovian jump system respectively. Figure 3 manifests that Corollary 1 is less conservative than
Corollary 2. Simulation results are shown in Table 1, and it is not difficult to see from Figure 1 that the
reachable set is in the intersection of ellipsoidal bounds, and thus both methods are valid.

4

3.5

3

25

2

r(t)

1.5

1

0.5

0

Il Il Il Il
0 200 400 600 800 1000
t/s

Figure 1. Random jumping mode r(t) of the neutral semi-Markovian jump system (4.1).
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Figure 2. The time responses of state variable x(t) of the neutral semi-Markovian jump

system (4.1).

— )
——Coolay 1-9P,1)
-~ Coralay 1-3P,1)
——— Conolay 19, 1)
—— Conlary 20P, 1)
- Conolary 2P, 1)

{

— — — Corollary - PQJ)

Figure 3. The comparative bounding ellipsoids and the state trajectories by Corollaries 1

and 2 for system (4.1).

Example 2. Consider the following semi-Markovian jump system studied in [32]:

where A, = l 1088 -2

AIMS Mathematics

{ (1) = Aix(f) + Dw(?),

)C(t() + 9) = O, Yo € [_p*7 0],

-8 -2

0 ! ],Azz[ 0 1 ],D1=Dz=|?],wT(t)a)(t)Swfn:I.

(4.2)
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By using Corollary 2 and solving the optimization problem (3.27), we can obtain p = 1.9 when o =
1.1. The corresponding results are obtained in Table 2. Figure 4 indicates the ellipsoidal boundaries
of system (4.2), and it is evident that the results of Corollary 2 get significant improvement over those
in [32].

Table 2. Comparison results of Corollary 2 and [32].

o P P1 P2 Method
(207347 1.0226 | [ 20.7345 1.0226 |
L9 0026 19975 | | 10226 19975 | Corollay 2
[ 17.2762 0.8429 | [ 13.5858 1.0078 |
09147 170V ) 08420 17557 | | 10078 17956 | 17

X0

Figure 4. Comparision of the ellipsoidal bounds of Corollary 2 and [32].

Example 3. Consider the following uncertain neutral semi-Markovian jump systems (see Figure 5):

x(1) — (Ci + LK(E ) x(t — 7(1)) = (A; + LiK(t)E)x(1) + (B; + LiK(1)E3;)
-x(t — h(t)) + (D; + LiK(t)E4)w(t), 4.3)

x(to+6) =0, VO e[—p*,0],

10
01

0.1 O

where L1 = [2 = L3 :[ 0 01

Es; = [ 00 ]
introduced in Example 1.

], EyW=FEp=E;3-= [

0.1
0.1

], Ey = E3 = Eyy = E3p = Ey3 =

,Eyq = Epp = Eg3 = [ ] el = &2 =¢&3 =1, K(t) = sin(t). The other parameters are
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5 ! ! ! ! ! ! ! ! !
025 02 015 0 005 0 3 0 015 02 0%

Figure 5. The boundaring ellipsoids of the uncertain neutral semi-Markovian jump
systems (4.3).

The transition rate problem is solved using the expected technique in order to seek a less
conservative boundary of the reachable set for uncertain systems, and the maximum value of p and

the corresponding feasible matrices are obtained by finding the local optimal value of @. When
43.6548 26.2615

a = 0.5, p = 13.2, and the corresponding feasible matrices are P; = [ 262615 377218 |’

25.7136 8.7409 ] [24.7843 7.4360 ]
P12 = , and 13 = .

8.7400 22.6792 7.4360 25.0682
5. Conclusions

In this paper, the reachable set problem of neutral semi-Markovian jump systems with time-
varying delays and uncertain neutral semi-Markovian jump systems is investigated. First, a novel and
appropriate Lyapunov functional is constructed. Furthermore, its derivative is reduced by the improved
integral inequality, and the reachable set boundary of the neutral semi-Markovian jump system under
zero initial conditions is given by an ellipsoid in terms of LMIs. Finally, a numerical example is given
to verify the effectiveness of the obtained results. Comparing the upper and lower bound method and
the mathematical expectation method for dealing with the transition rate, we get the bound of the
reachable set less conservatively.
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