http://www.aimspress.com/journal/Math

Research article

Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay

Xipan Zhang, Changchun Shen* and Dingju Xu
School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China

* Correspondence: Email: sccyjs2008@163.com.

Abstract

This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.

Keywords: bound of reachable set; neutral semi-Markovian jump systems; Lyapunov-Krasovskii; Linear matrix inequalities
Mathematics Subject Classification: 93E03

1. Introduction

The reachable set of a dynamic system is first mentioned in [1], which is defined as the set of all state trajectories that may be achieved from the origin. The reachable set is a particularly valuable direction for further research in the field of control theory, which is closely related to stability, and it is crucial to many practical systems, such as ensuring circuit safety, safety verification, and avoiding aircraft collision [2-4]. In addition, many control methods has been proposed to improve the performance of the systems [5-7]. Because the exact shape of the reachable set for the actual system is difficult to obtain, it also causes scholars to study the estimation of the reachable set. So far, the commonly used methods for estimating reachable sets include the ellipsoid method and the polyhedron method. However, in the application of practical systems, time-delay often leads to the deterioration of system performance and even instability, but this is an unavoidable phenomenon [8]. Therefore, theoretical research on time-delay systems has attracted the attention of multitudinous researchers [9-15], and
many achievements have been made in switched systems [16-20].
As a class of special hybrid system, Markovian jump systems can describe this kind of situation with sudden change (i.e., state sudden change and signal to lag) well. It has been widely used in actual manufacturing processes, network transmission systems, power circuit systems, economic systems, and so on. The sojourn time of Markovian jump systems obeys the exponential distribution, and the transition rate is constant and memoryless, in other words, the transition probability is a random process independent of the past. As a matter of fact, the transition rate of many practical systems is not constant, and the application field of Markovian jump systems is limited to some extent. Thus, a semi-Markovian jump system with a time-varying transition rate is proposed, which can better describe the general system. The semi-Markovian jump system obeys non-exponential distributions, such as the Weber distribution [21] and the Gaussian distribution [22], which relaxes the limitation of probability distribution function and reduces the conservatism of the system. Therefore, it has a wider application value. To date, a lot of research work has been done on the stability of semi-Markovian jump systems [23-30], but the reachable set of such systems is still in the stage of continuous development [31-34]. The issues of reachable set estimation and reachable set control for semi-Markovian jump systems under bounded peak disturbance have been addressed in [32]. The problem of reachable set estimation for a class of singular semi-Markovian jump systems with timevarying delay under zero initial condition was considered in [33].

On the other hand, it is worth noting that a particularly distinctive feature of many dynamic processes of physics, chemistry, biology, and engineering is that they are not only affected by past and present states, but are also fully affected by the derivative of the delay. Therefore, in order to describe this feature, the neutral time delay can be introduced into dynamic systems, called neutral time-delay systems. Since neutral systems have time delay in both the state and the derivative of the state, most systems with time delay can be regarded as a special case of neutral systems, which is a kind of more general system with time-delay. In the last twenty years, time-delay systems have been deeply studied by many scholars [35-37]. The ellipsoidal bound of reachable sets for linear neutral systems with bounded peak disturbances has been investigated in [36]. The exponential stability in the mean square of neutral stochastic delayed systems with switching and distributed-delay dependent impulses was studied in [37].

Furthermore, a less conservative result can be obtained by using a matrix inequality to enlarge the derivative of the Lyapunov functional to different degrees. Jensen's inequality [38], the Wirtinger integral inequality [39], the reciprocally convex combination inequality [40], and some improved integral inequalities have been generally used to reduce derivatives of the Lyapunov functional [41-45]. In [44], the author has investigated the boundary of the reachable set for a class linear systems with mixed delays and state constraints by the Wirtinger-based integral inequality and extended reciprocally convex combination approach. In [45], a novel quadratic generalized multiple-integral inequality based on free matrices was proposed to make the stability criterion of the system less conservative.

At present, few scholars have applied advanced methods to the neutral semi-Markovian jump system. Moreover, it is well known that the triple integral form of the Lyapunov functional can effectively reduce the conservatism of the criterion. Based on [46], a new integral inequality is derived by using the integral inequality and time-delay segmentation technique. Inspired by existing results and combined with the semi-Markovian jumping system, this paper will study the reachable set boundary of the neutral semi-Markovian jump system by utilizing a novel integral equality.

Notations: The superscript ' A ' and ' A^{-1} ' represent the transpose and inverse matrix representing matrix $A ; \mathbb{R}^{n}$ stands for the n-dimensional Euclidean space; $\mathbb{R}^{p \times q}$ is the set all $p \times q$ real matrices; the symbol $P>0(P \geq 0)$ means that P is a positive definite (semi-positive definite) matrix, and similarly, $P<0(P \leq 0)$ denotes that P is a negative (semi-negative definite) definite matrix; $\operatorname{diag}\{\cdot\}$ is a diagonal matrix; an asterisk (*) in the symmetric block represents a symmetric term; $E\{\cdot\}$ denotes the expectation operator and \mathcal{L} means the weak infinitesimal generator; $P_{r}(\cdot \mid \cdot)$ is the conditional probability.

2. Problem statement

Consider the following neutral semi-Markovian jump system with disturbances:

$$
\left\{\begin{array}{l}
\dot{x}(t)-C_{\left(t, r_{t}\right)} \dot{x}(t-\tau(t))=A_{\left(t, r_{t}\right)} x(t)+B_{\left(t, r_{t}\right)} x(t-h(t))+D_{\left(t, r_{t}\right)} \omega(t), \tag{2.1}\\
x\left(t_{0}+\theta\right)=0, \quad \forall \theta \in\left[-\rho^{*}, 0\right]
\end{array}\right.
$$

where $x(t) \in \mathbb{R}^{n}$ is the state vector, $\tau(t)$ is the time-varying neutral delay, the time-varying delay $h(t)$ is a time-varying function, and $w(t) \in \mathbb{R}^{m}$ is the system disturbance satisfying

$$
\begin{equation*}
\tau(t) \leq \tau_{M}, \dot{\tau}(t) \leq \tau_{D}<1,0<h(t) \leq h, h_{d} \leq \dot{h}(t) \leq h_{D}<1, w^{T}(t) w(t) \leq w_{m}^{2}, \tag{2.2}
\end{equation*}
$$

$\rho^{*}=\max \left\{\tau_{M}, h\right\},\left\{r_{t}, t \geq 0\right\}$ is a semi-Markovian process taking values on the probability space in a finite state $\wp=\{1,2,3, \ldots, N\}$ with the following transition probability:

$$
\operatorname{Pr}\left(r_{t+\Delta}=j \mid r_{t}=i\right)=\left\{\begin{array}{l}
\lambda_{i j}(\delta) \Delta+o(\Delta), \quad i \neq j, \tag{2.3}\\
1+\lambda_{i i}(\delta) \Delta+o(\Delta), \quad i=j,
\end{array}\right.
$$

where $\delta>0$ is the sojourn time between two jumps, $\Delta>0$, and $\lim _{\Delta \rightarrow 0} \frac{o(\Delta)}{\Delta}=0 . \lambda_{i j}(\delta)$ is the transition rate from i to j at time t for $i \neq j$. In addition, $\lambda_{i i}(\delta)=-\sum_{j \in \mathcal{Q} \backslash i\}} \lambda_{i j}(\delta)$ for $j=i$. $A_{\left(t, r_{t}\right)}, B_{\left(t, r_{t}\right)}, C_{\left(t, r_{t}\right)}$ and $D_{\left(t, r_{t}\right)}$ are known constant matrices of the semi-Markovian process.
Remark 1. As described in [24], in the application of the actual system, $\lambda_{i j}(\delta)$ is assumed as $\underline{\lambda}_{i j} \leqslant$ $\lambda_{i j}(\delta) \leqslant \bar{\lambda}_{i j}$, where $\underline{\lambda}_{i j}$ and $\bar{\lambda}_{i j}$ are real constants. Then, we have $\lambda_{i j}(\delta)=\lambda_{i j}+\Delta \lambda_{i j}$, where $\lambda_{i j}=$ $\frac{1}{2}\left(\bar{\lambda}_{i j}+\underline{\lambda}_{i j}\right)$ and $\left|\Delta \lambda_{i j}\right| \leqslant l_{i j}$ with $l_{i j}=\frac{1}{2}\left(\bar{\lambda}_{i j}-\underline{\lambda}_{i j}\right)$.
Remark 2. The neutral systems are suitable for describing the turbojet control systems [47], ship dynamic positioning systems [48], etc. Neutral systems are a class of more general time-delay systems, where the change rate of the actual system's state is not only related to the current and past time states, but also to the rate of change of past states. When matrix C becomes a zero matrix, system (2.1) can be rewritten as a general time-delay system, thus almost all time-delay systems can be described as neutral systems.

For the sake of brevity, $x(t)$ is used to represent the solution of the system under initial conditions $x\left(t_{0}+\theta\right)=0, \theta \in\left[-\rho^{*}, 0\right]$, and its weak infinitesimal generator, acting on the function $V\left(x_{t}, t, i\right)$, is defined in [49].

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, i\right)=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[E\left(V\left(x_{t+\Delta}, t+\Delta, r_{t+\Delta}\right)\left(\left(x_{t}, r_{t}=i\right)\right)-V\left(x_{t}, t, i\right)\right] .\right. \tag{2.4}
\end{equation*}
$$

This paper aims to find a reachable set for neutral semi-Markovian jump system (2.1) based on the Lyapunov-Krasovskii functional approach. We denote the set of reachable states with $w(t)$ that satisfies

Eq (2.2) by

$$
\begin{equation*}
\mathfrak{R}_{x} \triangleq\left\{x(t) \in \mathbb{R}^{n} \mid x(t), w(t) \text { satisfy Eqs (2.1) and (2.2) }\right\} \tag{2.5}
\end{equation*}
$$

We will bound \mathfrak{R}_{x} by an ellipsoid of the form

$$
\begin{equation*}
\mathfrak{J}(P, 1) \triangleq\left\{x(t) \in \mathbb{R}^{n}: x^{T}(t) P x(t) \leq 1, P>0\right\} . \tag{2.6}
\end{equation*}
$$

For simplicity, there are the following representations:

$$
A_{i}=A_{\left(t, r_{i}\right)}, B_{i}=B_{\left(t, r_{i}\right)}, C_{i}=C_{\left(t, r_{i}\right)}, D_{i}=D_{\left(t, r_{i}\right)}, P_{i}=P_{\left(t, r_{i}\right)}, \forall i \in \wp .
$$

In this paper, the following lemmas are needed.
Lemma 1. [50] For any positive-definite matrix $\Phi \in \mathbb{R}^{n \times n}$, if there is a scalar $\gamma>0$ and a vector function $\omega:[0, \gamma] \rightarrow \mathbb{R}^{n}$ such that the integrations concerned are well defined, then

$$
\begin{equation*}
\left(\int_{0}^{\gamma} \omega(s) d s\right)^{T} \Phi\left(\int_{0}^{\gamma} \omega(s) d s\right) \leq \gamma \int_{0}^{\gamma} \omega^{T}(s) \Phi \omega(s) d s \tag{2.7}
\end{equation*}
$$

Lemma 2. Consider a scalar $h>0$ and any continuously differentiable function $x(t) \in \mathbb{R}^{n}$. For any positive definite matrix Q, the following inequality holds:

$$
\begin{equation*}
-\int_{t-h}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s \leq \frac{1}{h} \eta^{T}(t) \Xi \eta(t), \tag{2.8}
\end{equation*}
$$

where

$$
\Xi=\left[\begin{array}{ccccccc}
-18 Q & 6 Q & 0 & 0 & -96 Q & 0 & 480 Q \\
* & -36 Q & 6 Q & -96 Q & 144 Q & 480 Q & -480 Q \\
* & * & -18 Q & 144 Q & 0 & -480 Q & 0 \\
* & * & * & -1536 Q & 0 & 5760 Q & 0 \\
* & * & * & * & -1536 Q & 0 & 5760 Q \\
* & * & * & * & * & -2304 Q & 0 \\
* & * & * & * & * & * & -2304 Q
\end{array}\right],
$$

$$
\eta(t)=\left[\begin{array}{cccccc}
x^{T}(t) & x^{T}\left(t-\frac{h}{2}\right) & x^{T}(t-h) & \frac{1}{h}\left(\int_{t-h}^{t-\frac{h}{2}} x(s) d s\right)^{T} & \frac{1}{h}\left(\int_{t-\frac{h}{2}}^{t} x(s) d s\right)^{T} & \frac{1}{h^{2}}\left(\int_{t-h}^{t-\frac{h}{h}} \int_{u}^{t-\frac{h}{2}} x(s) d s d u\right)^{T}
\end{array}\right.
$$

$$
\left.\frac{1}{h^{2}}\left(\int_{t-\frac{h}{2}}^{t} \int_{u}^{t} x(s) d s d u\right)^{T}\right]^{T} .
$$

Proof of Lemma 2. For any continuously differentiable function $x(t) \in \mathbb{R}^{n}$ and positive definite matrix Q, the following equality holds:

$$
\begin{equation*}
\int_{t-h}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s=\int_{t-\frac{h}{2}}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s+\int_{t-h}^{t-\frac{h}{2}} \dot{x}^{T}(s) Q \dot{x}(s) d s . \tag{2.9}
\end{equation*}
$$

Based on Lemma 2 in [46], the following inequalities hold:

$$
\begin{align*}
& \int_{t-\frac{h}{2}}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s \geq \frac{2}{h}\left[x(t)-x\left(t-\frac{h}{2}\right)\right]^{T} Q\left[x(t)-x\left(t-\frac{h}{2}\right)\right]+\frac{6}{h}\left[x(t)+x\left(t-\frac{h}{2}\right)\right. \\
& \left.\quad-\frac{4}{h} \int_{t-\frac{h}{h}}^{t} x(s) d s\right]^{T} Q\left[x(t)+x\left(t-\frac{h}{2}\right)-\frac{4}{h} \int_{t-\frac{h}{2}}^{t} x(s) d s\right]+\frac{10}{h}\left[x(t)-x\left(t-\frac{h}{2}\right)+\frac{12}{h} \int_{t-\frac{h}{2}}^{t} x(s) d s\right. \tag{2.10}\\
& \left.\quad-\frac{48}{h^{2}} \int_{t-\frac{h}{2}}^{t} \int_{u}^{t} x(s) d s\right]^{T} Q\left[x(t)-x\left(t-\frac{h}{2}\right)+\frac{12}{h} \int_{t-\frac{h}{2}}^{t} x(s) d s-\frac{48}{h^{2}} \int_{t-\frac{h}{2}}^{t} \int_{u}^{t} x(s) d s\right],
\end{align*}
$$

$$
\begin{aligned}
& \int_{t-h}^{t-\frac{h}{2}} \dot{x}^{T}(s) Q \dot{x}(s) d s \geq \frac{2}{h}\left[x\left(t-\frac{h}{2}\right)-x(t-h)\right]^{T} Q\left[x\left(t-\frac{h}{2}\right)-x(t-h)\right]+\frac{6}{h}\left[x\left(t-\frac{h}{2}\right)+x(t-h)\right. \\
& \left.\quad-\frac{4}{h} \int_{t-h}^{t-\frac{h}{2}} x(s) d s\right]^{T} Q\left[x\left(t-\frac{h}{2}\right)+x(t-h)-\frac{4}{h} \int_{t-h}^{t-\frac{h}{2}} x(s) d s\right]+\frac{10}{h}\left[x\left(t-\frac{h}{2}\right)-x(t-h)\right. \\
& \left.\quad+\frac{12}{h} \int_{t-h}^{t-\frac{h}{2}} x(s) d s-\frac{48}{h^{2}} \int_{t-h}^{t-\frac{h}{2}} \int_{u}^{t-\frac{h}{2}} x(s) d s\right]^{T} Q\left[x\left(t-\frac{h}{2}\right)-x(t-h)+\frac{12}{h} \int_{t-h}^{t-\frac{h}{2}} x(s) d s\right. \\
& \left.\quad-\frac{48}{h^{2}} \int_{t-h}^{t-\frac{h}{2}} \int_{u}^{t-\frac{h}{2}} x(s) d s\right] .
\end{aligned}
$$

Replacing Eq (2.10) and (2.11) into Eq (2.9) yields Eq (2.8). This completes the proof.
Lemma 3. [34] For system (2.1) with constraints (2.2), if there is a Lyapunov functional $V\left(x_{t}, r_{t}\right)$ with $V\left(x_{0}, r_{0}\right)=0$ and a positive scalar α, such that

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, r_{t}\right)+\alpha V\left(x_{t}, r_{t}\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq 0, \tag{2.12}
\end{equation*}
$$

then $V\left(x_{t}, r_{t}\right) \leq 1$ for any $t \geq 0$.
Lemma 4. [32] Given any constant ϵ and square matrix $P \in \mathbb{R}^{n \times n}$, the inequality

$$
\begin{equation*}
\epsilon\left(P+P^{T}\right) \leqslant \epsilon^{2} T+P T^{-1} P^{T}, \tag{2.13}
\end{equation*}
$$

holds for any symmetric matrix $T>0$.
Lemma 5. [51] (Schur Complement) Given constant symmetric matrices Σ_{1}, Σ_{2}, and Σ_{3}, where $\Sigma_{1}=\Sigma_{1}^{T}$ and $\Sigma_{2}=\Sigma_{2}^{T}>0$, then $\Sigma_{1}+\Sigma_{3}^{T} \Sigma_{2}^{-1} \Sigma_{3}<0$ holds if and only if

$$
\left[\begin{array}{cc}
\Sigma_{1} & \Sigma_{3}^{T} \tag{2.14}\\
\Sigma_{3} & -\Sigma_{2}
\end{array}\right]<0, \quad\left[\begin{array}{cc}
-\Sigma_{2} & \Sigma_{3}^{T} \\
\Sigma_{3} & \Sigma_{1}
\end{array}\right]<0 .
$$

3. Main results

Our aim is to find an ellipsoid set as small as possible to bound the reachable set defined in Eq (2.6). Based on the Lyapunov method and linear matrix inequality techniques, the following theorems are derived.
Theorem 1. Consider the time-delayed system (2.1) with constraints (2.2). If there exist real matrices $P_{2 i}$ and $P_{3 i}$, symmetric matrices $P_{1 i}>0$ for each mode $i \in \wp, R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, R_{4} \geq 0, S_{1} \geq 0$, $S_{2} \geq 0, S_{3} \geq 0, M_{1} \geq 0, M_{2} \geq 0$, and $Q \geq 0$, and a scalar $\alpha>0$ satisfying the following matrix inequalities:

$$
\Phi^{i}=\left[\begin{array}{cccccccccc}
\Phi_{1,1}^{i} & \Phi_{1,2}^{i} & \Phi_{1,3}^{i} & \Phi_{1,4}^{i} & \Phi_{1,5}^{i} & 0 & \Phi_{1,7}^{i} & 0 & \Phi_{1,9}^{i} & \Phi_{1,10}^{i} \tag{3.1}\\
* & \Phi_{2,2}^{i} & 0 & \Phi_{2,4}^{i} & \Phi_{2,5}^{i} & 0 & 0 & 0 & 0 & \Phi_{2,10}^{i} \\
* & * & \Phi_{3,3}^{i} & \Phi_{3,4}^{i} & 0 & \Phi_{3,6}^{i} & \Phi_{3,7}^{i} & \Phi_{3,8}^{i} & \Phi_{3,9}^{i} & 0 \\
* & * & * & \Phi_{4,4}^{i} & 0 & \Phi_{4,6}^{i} & 0 & \Phi_{4,8}^{i} & 0 & 0 \\
* & * & * & * & \Phi_{5,5}^{i} & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & * & \Phi_{6,6}^{i} & 0 & \Phi_{6,8}^{i} & 0 & 0 \\
* & * & * & * & * & * & \Phi_{7,7}^{i} & 0 & \Phi_{7,9}^{i} & 0 \\
* & * & * & * & * & * & * & \Phi_{8,8}^{i} & 0 & 0 \\
* & * & * & * & * & * & * & * & \Phi_{9,9}^{i} & 0 \\
* & * & * & * & * & * & * & * & * & \Phi_{10,10}^{i}
\end{array}\right] \leq 0,
$$

where

$$
\begin{aligned}
& \Phi_{1,1}^{i}=\alpha P_{1 i}+P_{2 i}^{T} A_{i}+A_{i}^{T} P_{2 i}+R_{2}+R_{3}+h\left(S_{1}+\frac{S_{2}}{2}\right)+\frac{h^{2}}{8} M_{2}-\frac{18 Q}{h}+\sum_{j \in \wp} \lambda_{i j}(\delta) P_{1 j}, \\
& \Phi_{1,2}^{i}=P_{1 i}-P_{2 i}^{T}+A_{i}^{T} P_{3 i}, \Phi_{1,3}^{i}=\frac{6 Q}{h}, \Phi_{1,4}^{i}=P_{2 i}^{T} B_{i}, \Phi_{1,5}^{i}=P_{2 i}^{T} C_{i}, \Phi_{1,7}^{i}=-\frac{96 Q}{h}, \Phi_{1,9}^{i}=\frac{480 Q}{h}, \\
& \Phi_{1,10}^{i}=P_{2 i}^{T} D_{i}, \Phi_{2,2}^{i}=h Q+R_{4}-P_{3 i}^{T}-P_{3 i}, \Phi_{2,4}^{i}=P_{3 i}^{T} B_{i}, \Phi_{2,5}^{i}=P_{3 i}^{T} C_{i}, \Phi_{2,10}^{i}=P_{3 i}^{T} D_{i}, \\
& \Phi_{3,3}^{i}=\left(1-\frac{h_{d}}{2}\right) e^{-\frac{\alpha h}{2}} R_{1}-e^{-\frac{\alpha h}{2}}\left(1-\frac{h_{D}}{2}\right) R_{2}+\frac{h}{2}\left(1-\frac{h_{D}}{2}\right) e^{-\frac{\alpha h}{2}} S_{3}+h^{2} e^{-\frac{\alpha h_{d}}{2}} M_{1}-\frac{36 Q}{h}, \Phi_{3,4}^{i}=\frac{6 Q}{h}, \\
& \Phi_{3,6}^{i}=-\frac{96 Q}{h}, \Phi_{3,7}^{i}=\frac{144 Q}{h}, \Phi_{3,8}^{i}=\frac{480 Q}{h}, \Phi_{3,9}^{i}=-\frac{480 Q}{h}, \Phi_{4,4}^{i}=-\left(1-h_{D}\right) e^{-\frac{-\alpha h}{2}} R_{1}-\left(1-h_{D}\right) e^{-\alpha h} R_{3}-\frac{18 Q}{h}, \\
& \Phi_{4,6}^{i}=\frac{144 Q}{h}, \Phi_{4,8}^{i}=-\frac{480 Q}{h}, \Phi_{5,5}^{i}=-\left(1-\tau_{D}\right) e^{-\alpha \tau_{M}} R_{4}, \Phi_{6,6}^{i}=-2 h\left(1-h_{D}\right) e^{-\alpha h}\left[S_{1}+S_{3}\right]-\frac{1536 Q}{h}, \\
& \Phi_{6,8}^{i}=\frac{5760 Q}{h}, \Phi_{7,7}^{i}=-2 h e^{-\frac{\alpha h}{2}}\left[S_{1}+S_{2}\right]-\frac{1536 Q}{h}, \Phi_{7,9}^{i}=\frac{5760 Q}{h}, \Phi_{8,8}^{i}=-\frac{8\left(1-\frac{h_{D}}{2}\right) e^{-\alpha h}}{h^{2}} M_{1}-\frac{2304 Q}{h}, \\
& \Phi_{9,9}^{i}=-\frac{8\left(1-\frac{h_{D}}{2}\right) e^{-\alpha h}}{h^{2}} M_{2}-\frac{2304 Q}{h}, \Phi_{10,10}^{i}=-\frac{\alpha}{w_{m}^{2}} I .
\end{aligned}
$$

Then, the reachable sets of system (2.1) having constraints (2.2) is bounded by an ellipsoidal bound $\bigcap \mathfrak{J}\left(P_{1 i}, 1\right)$ defined in Eq (2.6).

$i \in \nmid$

Proof of Theorem 1. Choose a new class of functional candidate for system (2.1) as follows:

$$
\begin{equation*}
V\left(x_{t}, t, r_{t}\right)=\sum_{k=1}^{5} V_{k}\left(x_{t}, t, r_{t}\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{1}\left(x_{t}, t, r_{t}\right)= & x^{T}(t) P_{1 r_{t}} x(t)=\left[\begin{array}{ll}
x^{T}(t) & \dot{x}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
P_{1 r_{t}} & 0 \\
P_{2 r_{t}} & P_{3 r_{t}}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
\dot{x}(t)
\end{array}\right] \\
V_{2}\left(x_{t}, t, r_{t}\right)= & \int_{t-h(t)}^{t-\frac{h(t)}{2}} e^{\alpha(s-t)} x^{T}(s) R_{1} x(s) d s+\int_{t-\frac{h(t)}{2}}^{t} e^{\alpha(s-t)} x^{T}(s) R_{2} x(s) d s+\int_{t-h(t)}^{t} e^{\alpha(s-t)} x^{T}(s) R_{3} x(s) d s \\
& +\int_{t-\tau(t)}^{t} e^{\alpha(s-t)} \dot{x}^{T}(s) R_{4} \dot{x}(s) d s \\
V_{3}\left(x_{t}, t, r_{t}\right)= & \int_{-h}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^{T}(s) S_{1} x(s) d s d \theta+\int_{-\frac{h}{2}}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^{T}(s) S_{2} x(s) d s d \theta \\
& +\int_{-\frac{h(t)}{2}}^{-\frac{h(t)}{t-\frac{h(t)}{2}} e^{\alpha(s-t)} x^{T}(s) S_{3} x(s) d s d \theta} \\
V_{4}\left(x_{t}, t, r_{t}\right)= & \int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{\theta}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} e^{\alpha(s-t)} x^{T}(s) M_{1} x(s) d s d u d \theta+\int_{t-\frac{h(t)}{2}}^{t} \int_{\theta}^{t} \int_{u}^{t} e^{\alpha(s-t)} x^{T}(s) M_{2} x(s) d s d u d \theta, \\
V_{5}\left(x_{t}, t, r_{t}\right)= & \int_{-h}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} \dot{x}^{T}(s) Q \dot{x}(s) d s d \theta .
\end{aligned}
$$

Furthermore, $P_{1 r_{t}}>0, P_{2 r_{t}}, P_{3 r_{t}}, R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, S_{1} \geq 0, S_{2} \geq 0, S_{3} \geq 0, M_{1} \geq 0, M_{2} \geq 0$, and $Q \geq 0$, and a scalar $\alpha>0$ are solutions of Eq (3.1).

First, we show that $V\left(x_{t}, t, r_{t}\right)$ in Eq (3.2) is a fine Lyapunov-Krasovskii functional candidate. From Eq (3.2), we have $\sum_{k=2}^{5} V_{k}\left(x_{t}, t, r_{t}\right) \geq 0$. Therefore, we get

$$
\left\{\begin{array}{l}
V\left(x_{t}, t, r_{t}\right)=\sum_{k=1}^{5} V_{k}\left(x_{t}, t, r_{t}\right) \geq V_{1}\left(x_{t}, t, r_{t}\right)=x^{T}(t) P_{1 i} x(t) \tag{3.3}\\
V\left(x_{t}, t, r_{t}\right)=0, \quad \text { when } \quad x(\theta)=0, \quad \theta \in\left[t-\rho^{*}, t\right]
\end{array}\right.
$$

Next, the derivative of $V\left(x_{t}, t, r_{t}\right)$ along the trajectory of system (2.1) is given by

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, r_{t}\right)=\sum_{k=1}^{5} \mathcal{L} V_{k}\left(x_{t}, t, r_{t}\right) \tag{3.4}
\end{equation*}
$$

From Eq (2.4), we have

$$
\begin{align*}
& \mathcal{L} V_{1}\left(x_{t}, t, i\right)=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[\sum_{j \in \mathfrak{P}} \operatorname{Pr}\{j \mid i\} x^{T}(t+\Delta) P_{j} x(t+\Delta)-x^{T}(t) P_{i} x(t)\right] \\
& =\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[\sum_{j \in \emptyset \backslash \backslash i j} \frac{P r[j, i\rangle}{P r i j} x^{T}(t+\Delta) P_{j} x(t+\Delta)+\frac{P r(i, i\}}{P r[i]} x^{T}(t+\Delta)\right. \tag{3.5}\\
& \text { - } \left.P_{i} x(t+\Delta)-x^{T}(t) P_{i} x(t)\right] \\
& =\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[\sum_{j \in \mathscr{Q} \backslash\{i\}} \frac{q_{i j}\left(F_{i}(\delta+\Delta)-F_{i}(\delta)\right.}{1-F_{i}(\delta)} x^{T}(t+\Delta) P_{j} x(t+\Delta)+\frac{1-F_{i}(\delta+\Delta)}{1-F_{i}(\delta)}\right. \\
& \text { - } \left.x^{T}(t+\Delta) P_{i} x(t+\Delta)-x^{T}(t) P_{i} x(t)\right]
\end{align*}
$$

where $F_{i}(t)$ is the cumulative distribution function of the sojourn time δ in mode i, and $q_{i j}$ is the probability density intensity of the system jump from mode i to mode j. When Δ is small, $x(t+\Delta)=$ $x(t)+\dot{x}(t) \Delta+o(\Delta)=\left(A_{i} \Delta+I\right) x(t)+B_{i} \Delta x(t-h(t))+C_{i} \Delta \dot{x}(t-\tau(t))+D_{i} \Delta w(t)+o(\Delta)$. Then, Eq (3.5) becomes

$$
\begin{align*}
\mathcal{L} V_{1}\left(x_{t}, t, i\right)= & \lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left[\sum_{j \in \mathscr{Q} \mid i(i)} \frac{q_{i j}\left(F_{i}(\delta+\Delta)-F_{i}(\delta)\right.}{1-F_{i}(\delta)} \xi_{1}^{T}(t) G_{i}^{T} P_{j} G_{i} \xi_{1}(t)+\frac{1-F_{i}(\delta+\Delta)}{1-F_{i}(\delta)}\right. \tag{3.6}\\
& \left.\cdot \xi_{1}^{T}(t) G_{i}^{T} P_{i} G_{i} \xi_{1}(t)-x^{T}(t) P_{i} x(t)\right],
\end{align*}
$$

where $G_{i}=\left[\begin{array}{llllll}A_{i} \Delta & B_{i} \Delta & C_{i} \Delta & D_{i} \Delta\end{array}\right], \xi_{1}(t)=\left[\begin{array}{llll}x^{T}(t) & x^{T}(t-h(t)) & \dot{x}^{T}(t-\tau(t)) & \omega^{T}(t)\end{array}\right]$.
Furthermore, utilizing the same technique as in [28], it is obtained that

$$
\left\{\begin{array}{l}
\lim _{\Delta \rightarrow 0} \frac{F_{i}(\delta+\Delta)-F_{i}(\delta)}{1-F_{i}(\delta)}=0, \tag{3.7}\\
\lim _{\Delta \rightarrow 0} \frac{1-F_{i}(\delta+\Delta)}{1-F_{i}(\delta)}=1, \\
\lim _{\Delta \rightarrow 0} \frac{F_{i}(\delta+\Delta)-F_{i}(\delta)}{\left(1-F_{i}(\delta)\right) \Delta}=\lambda_{i}(\delta)
\end{array}\right.
$$

Here, $\lambda_{i}(\delta)$ is the transition rate of the system jumping from mode i, and we define $\lambda_{i j}(\delta)=\lambda_{i}(\delta) q_{i j}$ for $j \neq i$ and $\lambda_{i i}(\delta)=-\sum_{j=1, j \neq i} \lambda_{i j}(\delta)$. Next, $\mathcal{L} V_{1}\left(x_{t}, t, i\right)$ can be rewritten as

$$
\begin{align*}
& \mathcal{L} V_{1}\left(x_{t}, t, i\right)=2\left[\begin{array}{ll}
x^{T}(t) & \dot{x}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
P_{1 i} & P_{2 i}^{T} \\
0 & P_{3 i}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{x}(t) \\
0
\end{array}\right]+x^{T}(t)\left[\sum_{j \epsilon_{\mathfrak{Q}}} \lambda_{i j}(\delta) P_{1 j}\right] x(t) \\
& =2\left[\begin{array}{ll}
x^{T}(t) & \dot{x}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
P_{1 i} & P_{2 i}^{T} \\
0 & P_{3 i}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{x}(t) \\
\binom{-\dot{x}(t)+A_{i} x(t)+B_{i} x(t-h(t))}{+C_{i} \dot{x}(t-\tau(t))+D_{i} w(t)}
\end{array}\right]+x^{T}(t)\left[\sum_{j \in \mathfrak{ß}} \lambda_{i j}(\delta) P_{1 j}\right] x(t) \\
& =x^{T}(t)\left[P_{2 i}^{T} A_{i}+A_{i}^{T} P_{2 i}\right] x(t)+2 x^{T}(t)\left[P_{1 i}-P_{2 i}^{T}+A_{i}^{T} P_{3 i}\right] \dot{x}(t)+2 x^{T}(t) P_{2 i}^{T} B_{i} x(t-h(t)) \\
& +2 x^{T}(t) P_{2 i}^{T} C \dot{x}(t-\tau(t))+2 x^{T}(t) P_{2 i}^{T} D_{i} w(t)-\dot{x}^{T}(t)\left[P_{3 i}^{T}+P_{3 i} \dot{x}(t)+2 \dot{x}^{T}(t) P_{3 i}^{T} B_{i} x(t-h(t))\right. \tag{3.8}\\
& +2 \dot{x}^{T}(t) P_{3 i}^{T} C_{i} \dot{x}(t-\tau(t))+2 \dot{x}^{T}(t) P_{3 i}^{T} D_{i} w(t)+x^{T}(t)\left[\sum_{j \in \mathfrak{\beta}} \lambda_{i j}(\delta) P_{1 j}\right] x(t), \\
& \mathcal{L} V_{2}\left(x_{t}, t, i\right) \leq x^{T}(t)\left[R_{2}+R_{3}\right] x(t)+\left(1-\frac{h_{d}}{2}\right) e^{-\frac{a h}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) R_{1} x\left(t-\frac{h(t)}{2}\right)+\dot{x}^{T}(t) R_{4} \dot{x}^{T}(t) \\
& -\left(1-h_{D}\right) e^{-\frac{\alpha h}{2}} x^{T}(t-h(t)) R_{1} x(t-h(t))-\left(1-\frac{h_{D}}{2}\right) e^{-\frac{d h}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) R_{2} x\left(t-\frac{h(t)}{2}\right) \tag{3.9}\\
& -\left(1-h_{D}\right) e^{-\alpha h} x^{T}(t-h(t)) R_{3} x(t-h(t))-\left(1-\tau_{D}\right) e^{-\alpha \tau_{M}} \dot{x}^{T}(t-\tau(t)) R_{4} \dot{x}(t-\tau(t))-\alpha V_{2},
\end{align*}
$$

$$
\begin{align*}
& \mathcal{L} V_{3}\left(x_{t}, t, i\right) \leq h x^{T}(t)\left[S_{1}+\frac{S_{2}}{2}\right] x(t)+\frac{h(t)}{2}\left(1-\frac{h(t)}{2}\right) e^{-\frac{\alpha h(t)}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) S_{3} x\left(t-\frac{h(t)}{2}\right) \\
& -\int_{t-\frac{h(t)}{2}}^{t} e^{\alpha(s-t)} x^{T}(s)\left[S_{1}+S_{2}\right] x(s) d s-\int_{t-h(t)}^{t-\frac{h(t)}{2}} e^{\alpha(s-t)} x^{T}(s)\left[S_{1}+(1-\dot{h}(t)) S_{3}\right] x(s) d s-\alpha V_{3} \\
& \leq h x^{T}(t)\left[S_{1}+\frac{S_{2}}{2}\right] x(t)+\frac{h}{2}\left(1-\frac{h_{D}}{2}\right) e^{-\frac{\alpha h}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) S_{3} x\left(t-\frac{h(t)}{2}\right)-2 h e^{-\frac{\alpha h}{2}}\left(\frac{1}{h} \int_{t-\frac{h(t)}{2}}^{t} x(s) d s\right)^{T} \\
& \cdot\left[S_{1}+S_{2}\right]\left(\frac{1}{h} \int_{t-\frac{h(t)}{2}}^{t} x(s) d s\right)-2 h\left(1-h_{D}\right) e^{-\frac{\alpha h}{2}}\left(\frac{1}{h} \int_{t-h(t)}^{t-\frac{h(t)}{2}} x(s) d s\right)^{T}\left[S_{1}+S_{3}\right]\left(\frac{1}{h} \int_{t-h(t)}^{t-\frac{h(t)}{2}} x(s) d s\right)-\alpha V_{3}, \\
& \mathcal{L} V_{4}\left(x_{t}, t, i\right)=-(1-\dot{h}(t)) \int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} e^{\alpha(s-t)} x^{T}(s) M_{1} x(s) d s d u+\left(1-\frac{\dot{h}(t)}{2}\right) \tag{3.10}\\
& \cdot \int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{\theta}^{t-\frac{h(t)}{2}} e^{-\frac{\alpha h(t)}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) M_{1} x\left(t-\frac{h(t)}{2}\right) d s d u-\left(1-\frac{h(t)}{2}\right) \int_{t-\frac{h(t)}{2}}^{t} \int_{u}^{t} e^{\alpha(s-t)} x^{T}(s) M_{2} x(s) d s d u \\
& +\int_{t-\frac{h(t)}{2}}^{t} \int_{u}^{t} x^{T}(t) M_{2} x(t) d s-\alpha V_{4} \tag{3.11}\\
& \leq \frac{h^{2}}{8} e^{-\frac{\alpha h_{d}}{2}} x^{T}\left(t-\frac{h(t)}{2}\right) M_{1} x\left(t-\frac{h(t)}{2}\right)+\frac{h^{2}}{8} x^{T}(t) M_{2} x(t)-\frac{8\left(1-\frac{h D}{2}\right) e^{-\frac{\alpha h}{2}}}{h^{2}}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} x(s) d s d u\right)^{T} \\
& \cdot M_{1}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} x(s) d s d u\right)-\frac{8\left(1-\frac{h_{D}}{2}\right)}{h^{2}}\left(\int_{t-\frac{h(t)}{2}}^{t} \int_{u}^{t} x(s) d s d u\right)^{T} M_{2}\left(\int_{t-\frac{h(t)}{2}}^{t} \int_{u}^{t} x(s) d s d u\right)-\alpha V_{4} \text {, } \\
& \mathcal{L} V_{5}\left(x_{t}, t, i\right) \leq h \dot{x}^{T}(t) Q \dot{x}(t)-\int_{t-h(t)}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s-\alpha V_{5} . \tag{3.12}
\end{align*}
$$

From Lemma 2, we have

$$
\begin{equation*}
-\int_{t-h(t)}^{t} \dot{x}^{T}(s) Q \dot{x}(s) d s \leq \frac{1}{h} \xi^{T}(t) \Xi \xi(t), \tag{3.13}
\end{equation*}
$$

where Ξ is the same as defined in Lemma 2, and

$$
\begin{aligned}
\xi(t)= & {\left[\begin{array}{llllll}
x^{T}(t) & x^{T}\left(t-\frac{h(t)}{2}\right) & x^{T}(t-h(t)) & \frac{1}{h}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} x(s) d s\right)^{T} & \frac{1}{h}\left(\int_{t-\frac{h(t)}{2}}^{t} x(s) d s\right)^{T} & \frac{1}{h^{2}}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} x(s) d s d u\right)^{T} \\
& \left.\frac{1}{h^{2}}\left(\int_{t-\frac{h(t)}{2}}^{t} \int_{u}^{t} x(s) d s d u\right)^{T}\right]^{T} .
\end{array} . \quad .\right.}
\end{aligned}
$$

Finally, by combining Eqs (3.5)-(3.13), we further have

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, i\right)+\alpha V\left(x_{t}, t, i\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq X^{T}(t) \Phi^{i} X(t), \tag{3.14}
\end{equation*}
$$

where Φ^{i} is the same as that defined in Theorem 1 for any $i \in \wp$, and

$$
\begin{aligned}
X(t)= & {\left[\begin{array}{lllllll}
x^{T}(t) & \dot{x}^{T}(t) & x^{T}\left(t-\frac{h(t)}{2}\right) & x^{T}(t-h(t)) & \dot{x}^{T}(t-\tau(t)) & \frac{1}{h}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} x(s) d s\right)^{T} & \frac{1}{h}\left(\int_{t-\frac{h(t)}{2}}^{t} x(s) d s\right)^{T} \\
& \frac{1}{h^{2}}\left(\int_{t-h(t)}^{t-\frac{h(t)}{2}} \int_{u}^{t-\frac{h(t)}{2}} x(s) d s d u\right)^{T} & \frac{1}{h^{2}}\left(\int_{t-\frac{h(t)}{t}}^{t} \int_{u}^{t} x(s) d s d u\right)^{T} & w^{T}(t)
\end{array}\right]^{T} . }
\end{aligned}
$$

Thus, from the matrix inequalities (3.1), we get

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, i\right)+\alpha V\left(x_{t}, t, i\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq 0, \forall i \in \wp . \tag{3.15}
\end{equation*}
$$

which means, by Lemma 3, that $V\left(x_{t}, t, i\right)=V_{1}\left(x_{t}, t, i\right)+V_{2}\left(x_{t}, t, i\right)+V_{3}\left(x_{t}, t, i\right)+V_{4}\left(x_{t}, t, i\right)+V_{5}\left(x_{t}, t, i\right) \leq$ 1 , and this results in $V_{1}\left(x_{t}, t, i\right)=x^{T}(t) P_{1 i} x(t) \leq 1$ for any $i \in \wp$, since $V_{2}\left(x_{t}, t, i\right)+V_{3}\left(x_{t}, t, i\right)+V_{4}\left(x_{t}, t, i\right)+$ $V_{5}\left(x_{t}, t, i\right) \geq 0$. This completes the proof.
Remark 3. Since $\lambda_{i j}(\delta)$ in Theorem 1 is time-varying and contains an infinite number of inequalities, it is impossible to solve by using the Linear Matrix Inequalities (LMIs). At this point, we will obtain the boundary of the reachable set according to the upper and lower bounded method in [32].
Corollary 1. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices $P_{2 i}$ and $P_{3 i}$, symmetric matrices $P_{1 i}>0$ for each mode $i \in \wp, T_{i j}>0, R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, R_{4} \geq 0, S_{1} \geq 0$, $S_{2} \geq 0, S_{3} \geq 0, M_{1} \geq 0, M_{2} \geq 0$, and $Q \geq 0$, and a scalar $\alpha>0$ satisfying the following matrix
inequalities:

$$
\Phi^{i}=\left[\begin{array}{ccccccccccc}
\widehat{\Phi}_{1,1}^{i} & \Phi_{1,2}^{i} & \Phi_{1,3}^{i} & \Phi_{1,4}^{i} & \Phi_{1,5}^{i} & 0 & \Phi_{1,7}^{i} & 0 & \Phi_{1,9}^{i} & \Phi_{1,10}^{i} & \Phi_{1,11}^{i} \tag{3.16}\\
* & \Phi_{2,2}^{i} & 0 & \Phi_{2,4}^{i} & \Phi_{2,5}^{i} & 0 & 0 & 0 & 0 & \Phi_{2,10}^{i} & 0 \\
* & * & \Phi_{3,3}^{i} & \Phi_{3,4}^{i} & 0 & \Phi_{3,6}^{i} & \Phi_{3,7}^{i} & \Phi_{3,8}^{i} & \Phi_{3,9}^{i} & 0 & 0 \\
* & * & * & \Phi_{4,4}^{i} & 0 & \Phi_{4,6}^{i} & 0 & \Phi_{4,8}^{i} & 0 & 0 & 0 \\
* & * & * & * & \Phi_{5,5}^{i} & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & * & \Phi_{6,6}^{i} & 0 & \Phi_{6,8}^{i} & 0 & 0 & 0 \\
* & * & * & * & * & * & \Phi_{7,7}^{i} & 0 & \Phi_{7,9}^{i} & 0 & 0 \\
* & * & * & * & * & * & * & \Phi_{8,8}^{i} & 0 & 0 & 0 \\
* & * & * & * & * & * & * & * & \Phi_{9,9}^{i} & 0 & 0 \\
* & * & * & * & * & * & * & * & * & \Phi_{10,10}^{i} & 0 \\
* & * & * & * & * & * & * & * & * & * & \Phi_{11,11}^{i}
\end{array}\right] \leq 0,
$$

where

$$
\begin{aligned}
& \Phi_{1,1}^{i}=\alpha P_{1 i}+P_{2 i}^{T} A_{i}+A_{i}^{T} P_{2 i}+R_{2}+R_{3}+h\left(S_{1}+\frac{S_{2}}{2}\right)+\frac{h^{2}}{8} M_{2}-\frac{18 Q}{h}++\sum_{j \in \mathfrak{Q}} \lambda_{i j} P_{1 j}+\sum_{j \in \mathcal{Q} \backslash i\}} \frac{l_{i j}^{2}}{4} T_{i j}, \\
& \Phi_{1,2}^{i}=P_{1 i}-P_{2 i}^{T}+A_{i}^{T} P_{3 i}, \Phi_{1,3}^{i}=\frac{6 Q}{h}, \Phi_{1,4}^{i}=P_{2 i}^{T} B_{i}, \Phi_{1,5}^{i}=P_{2 i}^{T} C_{i}, \Phi_{1,7}^{i}=-\frac{96 Q}{h}, \Phi_{1,9}^{i}=\frac{480 Q}{h} \text {, } \\
& \Phi_{1,10}^{i}=P_{2 i}^{T} D_{i}, \Phi_{2,2}^{i}=h Q+R_{4}-P_{3 i}^{T}-P_{3 i}, \Phi_{2,4}^{i}=P_{3 i}^{T} B_{i}, \Phi_{2,5}^{i}=P_{3 i}^{T} C_{i}, \Phi_{2,10}^{i}=P_{3 i}^{T} D_{i}, \\
& \Phi_{3,3}^{i}=\left(1-\frac{h_{d}}{2}\right) e^{-\frac{\alpha h}{2}} R_{1}-e^{-\frac{\alpha h}{2}}\left(1-\frac{h_{D}}{2}\right) R_{2}+\frac{h}{2}\left(1-\frac{h_{D}}{2}\right) e^{-\frac{\alpha h}{2}} S_{3}+h^{2} e^{-\frac{\alpha h_{d}}{2}} M_{1}-\frac{36 Q}{h}, \Phi_{3,4}^{i}=\frac{6 Q}{h} \text {, } \\
& \Phi_{3,6}^{i}=-\frac{96 Q}{h}, \Phi_{3,7}^{i}=\frac{144 Q}{h}, \Phi_{3,8}^{i}=\frac{480 Q}{h}, \Phi_{3,9}^{i}=-\frac{480 Q}{h}, \Phi_{4,4}^{i}=-\left(1-h_{D}\right) e^{-\frac{-\alpha h}{2}} R_{1}-\left(1-h_{D}\right) e^{-\alpha h} R_{3}-\frac{18 Q}{h} \text {, } \\
& \Phi_{4,6}^{i}=\frac{144 Q}{h}, \Phi_{4,8}^{i}=-\frac{480 Q}{h}, \Phi_{5,5}^{i}=-\left(1-\tau_{D}\right) e^{-\alpha \tau_{M}} R_{4}, \Phi_{6,6}^{i}=-2 h\left(1-h_{D}\right) e^{-\alpha h}\left[S_{1}+S_{3}\right]-\frac{1536 Q}{h}, \\
& \Phi_{6,8}^{i}=\frac{5760 Q}{h}, \Phi_{7,7}^{i}=-2 h e^{-\frac{\alpha h}{2}}\left[S_{1}+S_{2}\right]-\frac{1536 Q}{h}, \Phi_{7,9}^{i}=\frac{5760 Q}{h}, \Phi_{8,8}^{i}=-\frac{8\left(1-\frac{h_{D}}{2}\right) e^{-\alpha h}}{h^{2}} M_{1}-\frac{2304 Q}{h} \text {, } \\
& \Phi_{9,9}^{i}=-\frac{8\left(1-\frac{h_{D}}{2}\right) e^{-\alpha h}}{h^{2}} M_{2}-\frac{2304 Q}{h}, \Phi_{10,10}^{i}=-\frac{\alpha}{w_{m}^{2}} I, \\
& \Phi_{1,11}^{i}=\left[P_{11}-P_{1 i}, \cdots, P_{1 i-1}-P_{1 i}, P_{1 i+1}-P_{1 i}, \cdots, P_{1 N}-P_{1 i}\right], \\
& \Phi_{11,11}^{i}=-\operatorname{diag}\left\{T_{i 1}, \cdots, T_{i(i-1)}, T_{i(i+1)}, \cdots, T_{i N}\right\} \text {. }
\end{aligned}
$$

Other unknown parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound $\bigcap_{i \in \mathfrak{\beta}} \mathfrak{J}\left(P_{1 i}, 1\right)$ defined in Eq (2.6).
Proof of Corollary 1. According to Remark 1, the item $\sum_{j \in \mathfrak{\emptyset}} \lambda_{i j}(\delta) P_{1 j}$ will be handled separately, and we can get that

$$
\begin{align*}
\sum_{j \in \mathfrak{Q}} \lambda_{i j}(\delta) P_{1 j} & =\sum_{j \in \mathfrak{Q}}\left(\lambda_{i j}+\Delta \lambda_{i j}\right) P_{1 j} \\
& =\sum_{j \in \mathfrak{Q}} \lambda_{i j} P_{1 j}+\sum_{j \in \emptyset \backslash\{i\}} \Delta \lambda_{i j}\left(P_{1 j}-P_{1 i}\right) \tag{3.17}\\
& =\sum_{j \in \mathfrak{Q}} \lambda_{i j} P_{1 j}+\sum_{j \in \emptyset \backslash \backslash i j}\left[\frac{1}{2} \Delta \lambda_{i j}\left(P_{1 j}-P_{1 i}\right)+\frac{1}{2} \Delta \lambda_{i j}\left(P_{1 j}-P_{1 i}\right)\right] .
\end{align*}
$$

Meanwhile, by Lemma 4, there exist symmetric positive definite matrix $T_{i j}$ for any $\left|\Delta \lambda_{i j}\right| \leq l_{i j}$, and we have

$$
\begin{equation*}
\sum_{i \in \mathfrak{Q}} \lambda_{i j}(\delta) P_{1 j} \leqslant \sum_{j \in \mathfrak{\Re}} \lambda_{i j} P_{1 j}+\sum_{j \in \emptyset \backslash\{i j}\left[\frac{l_{i j}^{2}}{4} T_{i j}+\left(P_{1 j}-P_{1 i}\right) T_{i j}^{-1}\left(P_{1 j}-P_{1 i}\right)\right] . \tag{3.18}
\end{equation*}
$$

Thus, by the Schur complement, inequality (3.1) can be written as inequality (3.16). The proof is complete.
Remark 4. Inspired by reference [52], the mathematical expectation method is used to solve the transfer rate $\lambda_{i j}(\delta)$, Corollary 2 is derived from this approach, and the simulation result is worse than that of Corollary 1.
Corollary 2. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices $P_{2 i}$ and $P_{3 i}$, symmetric matrices $P_{1 i}>0$ for each mode $i \in \wp, R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, R_{4} \geq 0, S_{1} \geq 0, S_{2} \geq 0$, $S_{3} \geq 0, M_{1} \geq 0, M_{2} \geq 0$, and $Q \geq 0$, and a scalar $\alpha>0$ satisfying the following matrix inequalities:

$$
\Phi^{i}=\left[\begin{array}{cccccccccc}
\widetilde{\Phi}_{1,1}^{i} & \Phi_{1,2}^{i} & \Phi_{1,3}^{i} & \Phi_{1,4}^{i} & \Phi_{1,5}^{i} & 0 & \Phi_{1,7}^{i} & 0 & \Phi_{1,9}^{i} & \Phi_{1,10}^{i} \tag{3.19}\\
* & \Phi_{2,2}^{i} & 0 & \Phi_{2,4}^{i} & \Phi_{2,5}^{i} & 0 & 0 & 0 & 0 & \Phi_{2,10}^{i} \\
* & * & \Phi_{3,3}^{i} & \Phi_{3,4}^{i} & 0 & \Phi_{3,6}^{i} & \Phi_{3,7}^{i} & \Phi_{3,8}^{i} & \Phi_{3,9}^{i} & 0 \\
* & * & * & \Phi_{4,4}^{i} & 0 & \Phi_{4,6}^{i} & 0 & \Phi_{4,8}^{i} & 0 & 0 \\
* & * & * & * & \Phi_{5,5}^{i} & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & * & \Phi_{6,6}^{i} & 0 & \Phi_{6,8}^{i} & 0 & 0 \\
* & * & * & * & * & * & \Phi_{7,7}^{i} & 0 & \Phi_{7,9}^{i} & 0 \\
* & * & * & * & * & * & * & \Phi_{8,8}^{i} & 0 & 0 \\
* & * & * & * & * & * & * & * & \Phi_{9,9}^{i} & 0 \\
* & * & * & * & * & * & * & * & * & \Phi_{10,10}^{i}
\end{array}\right] \leq 0,
$$

where

$$
\begin{aligned}
& \widetilde{\Phi}_{1,1}^{i}=\alpha P_{1 i}+P_{2 i}^{T} A_{i}+A_{i}^{T} P_{2 i}+R_{2}+R_{3}+h\left(S_{1}+\frac{S_{2}}{2}\right)+\frac{h^{2}}{8} M_{2}-\frac{18 Q}{h}+\sum_{j \in \mathfrak{M}} \widetilde{\lambda}_{i j} P_{1 j}, \widetilde{\lambda}_{i j}=E\left[\lambda_{i j}(\delta)\right], \\
& \Phi_{1,2}^{i}=P_{1 i}-P_{2 i}^{T}+A_{i}^{T} P_{3 i}, \Phi_{1,3}^{i}=\frac{6 Q}{h}, \Phi_{1,4}^{i}=P_{2 i}^{T} B_{i}, \Phi_{1,5}^{i}=P_{2 i}^{T} C_{i}, \Phi_{1,7}^{i}=-\frac{96 Q}{h}, \Phi_{1,9}^{i}=\frac{480 Q}{h}, \\
& \Phi_{1,10}^{i}=P_{2 i}^{T} D_{i}, \Phi_{2,2}^{i}=h Q+R_{4}-P_{3 i}^{T}-P_{3 i}, \Phi_{2,4}^{i}=P_{3 i}^{T} B_{i}, \Phi_{2,5}^{i}=P_{3 i}^{T} C_{i}, \Phi_{2,10}^{i}=P_{3 i}^{T} D_{i}, \\
& \Phi_{3,3}^{i}=\left(1-\frac{h_{d}}{2}\right) e^{-\frac{a b}{2}} R_{1}-e^{-\frac{\alpha h}{2}}\left(1-\frac{h_{D}}{2}\right) R_{2}+\frac{h}{2}\left(1-\frac{h_{D}}{2}\right) e^{-\frac{a h}{2}} S_{3}+h^{2} e^{-\frac{h_{d}}{2}} M_{1}-\frac{36 Q}{h}, \Phi_{3,4}^{i}=\frac{6 Q}{h}, \\
& \Phi_{3,6}^{i}=-\frac{96 Q}{h}, \Phi_{3,7}^{i}=\frac{144 Q}{h}, \Phi_{3,8}^{i}=\frac{480 Q}{h}, \Phi_{3,9}^{i}=--\frac{48 Q Q}{h}, \Phi_{4,4}^{i}=-\left(1-h_{D}\right) e^{-\frac{-\alpha h}{2}} R_{1}-\left(1-h_{D}\right) e^{-\alpha h} R_{3}-\frac{18 Q}{h}, \\
& \Phi_{4,6}^{i}=\frac{144 Q}{h}, \Phi_{4,8}^{i}=-\frac{480}{h}, \Phi_{5,5}^{i}=-\left(1-\tau_{D}\right) e^{-\alpha \tau_{M}} R_{4}, \Phi_{6,6}^{i}=-2 h\left(1-h_{D}\right) e^{-\alpha h}\left[S_{1}+S_{3}\right]-\frac{1536 Q}{h}, \\
& \Phi_{6,8}^{i}=\frac{5760 Q}{h}, \Phi_{7,7}^{i}=-2 h e^{-\frac{\alpha h}{2}}\left[S_{1}+S_{2}\right]-\frac{1536 Q}{h}, \Phi_{7,9}^{i}=\frac{5760 Q}{h}, \Phi_{8,8}^{i}=-\frac{8\left(1-\frac{h}{2}\right) e^{-\alpha h}}{h^{2}} M_{1}-\frac{2304 Q}{h}, \\
& \Phi_{9,9}^{i}=-\frac{8\left(1-\frac{h_{D}}{2}\right) e^{-\alpha h}}{h^{2}} M_{2}-\frac{2304 Q}{h}, \Phi_{10,10}^{i}=-\frac{\alpha}{w_{m}^{i}} I .
\end{aligned}
$$

The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound $\bigcap_{i \in \mathfrak{\Re}} \mathfrak{J}\left(P_{1 i}, 1\right)$ defined in Eq (2.6).
Proof of Corollary 2. $\lambda_{i j}(\delta)$ is handled by the same method as in [52]. The $\widetilde{\lambda}_{i j}$ can be obtained through the probability density function $f_{i}(\delta)=\frac{b}{a^{b}} \delta^{b-1} e^{-(\delta / a)^{b}}$ with respect to the sojourn time $(\delta>0)$. It is worth noting that a represents the scale parameter and b represents the shape parameter. Then, the expectation of $\lambda_{i j}$ is $E\left[\lambda_{i j}(\delta)\right]=\int_{0}^{\infty} \lambda_{i j}(\delta) f_{i}(\delta) d \delta$. After $\bar{\lambda}_{i j}$ is trivial to obtain, Corollary 2 can be proved based on Theorem 1.

Next, we consider the neutral semi-Markovian jump system with uncertainties as follows:

$$
\left\{\begin{align*}
& \dot{x}(t)-\left(C_{i}+\Delta C_{i}(t)\right) \dot{x}(t-\tau(t))=\left(A_{i}+\Delta A_{i}(t)\right) x(t)+\left(B_{i}+\Delta B_{i}(t)\right) \tag{3.20}\\
& \cdot x(t-h(t))+\left(D_{i}+\Delta D_{i}(t)\right) w(t), \\
& x\left(t_{0}+\theta\right) \equiv 0, \quad \forall \theta \in\left[-\rho^{*}, 0\right],
\end{align*}\right.
$$

where the uncertainties of the form A_{i}, B_{i}, C_{i}, and D_{i} are the known mode-dependent matrices with appropriate dimensions, and the uncertainties $\Delta A_{i}(t), \Delta B_{i}(t), \Delta C_{i}(t)$, and $\Delta D_{i}(t)$ are expressed as

$$
\left[\begin{array}{llll}
\Delta A_{i}(t) & \Delta B_{i}(t) & \Delta C_{i}(t) & \Delta D_{i}(t)
\end{array}\right]=L_{i} K_{i}(t)\left[\begin{array}{llll}
E_{1 i} & E_{2 i} & E_{3 i} & E_{4 i}
\end{array}\right]
$$

where $K_{i}(t) \in \mathbb{R}^{p \times q}$ is an unknown real and possibly time-varying matrix with Lebesgue measurable elements satisfying

$$
K_{i}^{T}(t) K_{i}(t) \leq I,
$$

and $L_{i}, E_{1 i}, E_{2 i}, E_{3 i}$, and $E_{4 i}$ are known real constant matrices which characterize how the uncertainty enters the nominal matrices A_{i}, B_{i}, C_{i}, and D_{i}. Before proceeding further, system (3.20) can be written as:

$$
\left\{\begin{array}{l}
\dot{x}(t)-C_{i} \dot{x}(t-\tau(t))=A_{i} x(t)+B_{i} x(t-h(t))+D_{i} w(t)+L_{i} u_{i}, \tag{3.21}\\
z_{i}(t)=E_{1 i} x(t)+E_{2 i} x\left(t-h(t)+E_{3 i} \dot{x}(t-\tau(t))+E_{4 i} w(t),\right.
\end{array}\right.
$$

with the constraint $u_{i}=K_{i}(t) z_{i}(t)$. We further have

$$
\begin{align*}
u^{T} u \leq & {\left[E_{1 i} x(t)+E_{2 i} x\left(t-h(t)+E_{3 i} \dot{x}(t-\tau(t))+E_{4 i} w(t)\right]^{T}\right.} \\
\cdot & \cdot\left[E_{1 i} x(t)+E_{2 i} x x\left(t-h(t)+E_{3 i} \dot{x}(t-\tau(t))+E_{4 i} w(t)\right] .\right. \tag{3.22}
\end{align*}
$$

Based on Theorem 1, we can obtain the reachable sets of uncertain neutral systems (3.21). The following Theorem 2 is a result for the no-ellipsoidal bound of a reachable set for an uncertain timedelayed system (3.21) having the constraints (2.2).
Theorem 2. Consider the uncertain time-delayed system (3.21) with constraints (2.2), and real matrices $P_{2 i}$ and $P_{3 i}$, symmetric matrices $P_{1 i}>0$ for each mode $i \in \wp, R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, R_{4} \geq 0, S_{1} \geq 0$, $S_{2} \geq 0, S_{3} \geq 0, M_{1} \geq 0, M_{2} \geq 0$, and $Q \geq 0$, and scalars $\alpha>0, \varepsilon_{i}>0$ satisfying the following matrix inequalities:

$$
\Psi^{i}=\left[\begin{array}{ccc}
\Phi^{i} & \Psi_{1,2}^{i} & \Psi_{1,3}^{i} \tag{3.23}\\
* & -\varepsilon_{i} I & 0 \\
* & * & -\varepsilon_{i} I
\end{array}\right] \leq 0,
$$

where

$$
\begin{aligned}
& \Psi_{1,2}^{i}=\left[\begin{array}{lllllllllll}
L_{i}^{T} P_{2 i} & L_{i}^{T} P_{3 i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{T}, \\
& \Psi_{1,3}^{i}=\left[\begin{array}{lllllllllll}
\varepsilon_{i} E_{1 i} & 0 & 0 & \varepsilon_{i} E_{2 i} & \varepsilon_{i} E_{3 i} & 0 & 0 & 0 & 0 & 0 & \varepsilon_{i} E_{4 i}
\end{array}\right]^{T} .
\end{aligned}
$$

The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (3.21) having constraints (2.2) are bounded by an ellipsoidal bound $\bigcap_{i \in_{\mathcal{Y}}} \mathfrak{J}\left(P_{1 i}, 1\right)$ defined in Eq (2.6).
Proof of Theorem 2. Applying a similar method to that in the proof of Theorem 1, we can obtain

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, i\right)+\alpha V\left(x_{t}, t, i\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq X^{T}(t) \Phi^{i} X(t)+2 x^{T}(t) P_{2 i}^{T} L_{i} u_{i}+2 \dot{x}^{T}(t) P_{3 i}^{T} L_{i} u_{i}, \tag{3.24}
\end{equation*}
$$

where Φ^{i} is the same as defined in Theorem 1 for any $i \in \wp$.
From inequalities (3.22), one can see that the following equation holds for any nonnegative scalar ε_{i} :

$$
\begin{align*}
& \mathcal{L} V\left(x_{t}, t, i\right)+\alpha V\left(x_{t}, t, i\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq\left[\begin{array}{ll}
X^{T}(t) & u_{i}^{T}
\end{array}\right]\left[\begin{array}{cc}
\Phi^{i} & \Psi_{1,2}^{i} \\
* & -\varepsilon_{i} I
\end{array}\right] \\
& \quad \cdot\left[\begin{array}{c}
X(t) \\
u_{i}
\end{array}\right]+\varepsilon_{i}\left\{\left[E_{1 i} x(t)+E_{2 i} x\left(t-h(t)+E_{3 i} \dot{x}(t-\tau(t))\right.\right.\right. \tag{3.25}\\
& \left.\quad+E_{4 i} w(t)\right]^{T}\left[E_{1 i} x(t)+E_{2 i} x(t-h(t))+E_{3 i} \dot{x}(t-\tau(t))+E_{4 i} w(t)\right]
\end{align*}
$$

where Φ^{i} and $\Psi_{1,2}^{i}$ are the same as defined in Theorem 2. By using Lemma 5, the matrix inequalities (3.23) imply

$$
\begin{equation*}
\mathcal{L} V\left(x_{t}, t, i\right)+\alpha V\left(x_{t}, t, i\right)-\frac{\alpha}{w_{m}^{2}} w(t)^{T} w(t) \leq 0, \forall i \in \wp \tag{3.26}
\end{equation*}
$$

which means, by Lemma 3, that $V\left(x_{t}, t, i\right)=V_{1}\left(x_{t}, t, i\right)+V_{2}\left(x_{t}, t, i\right)+V_{3}\left(x_{t}, t, i\right)+V_{4}\left(x_{t}, t, i\right)+V_{5}\left(x_{t}, t, i\right) \leq$ 1 , and this results in $V_{1}\left(x_{t}, t, i\right)=x^{T}(t) P_{1 i} x(t) \leq 1$ for any $i \in \wp$. This completes the proof.
Remark 5. When the reachable set is estimated by an ellipsoidal technique, the smaller the ellipsoidal boundary set is, the closer it is to the actual reachable set boundary. As in reference [53], that is, maximizing ρ subject to $\rho I \leq P_{1 i}$, is equivalent to the following optimization problem:

$$
\begin{align*}
& \operatorname{minimize} \\
& \text { s.t } \quad\left(\bar{\rho}=\frac{1}{\rho}\right) \tag{3.27}\\
& \text { s. }\left\{\begin{array}{cc}
\text { (a) } & {\left[\begin{array}{cc}
\bar{\rho} I & I \\
I & P_{1 i}
\end{array}\right] \geq 0,} \\
\text { (b) } & \operatorname{Eqs}(3.1), \text { or (3.16), or (3.19), or (3.23). }
\end{array}\right.
\end{align*}
$$

Remark 6. The matrix inequalities in Theorems 1 and 2 contain only one non-convex scalar $\alpha>0$, and these become LMIs by fixing the scalar α. The feasibility check of a matrix inequality having only one non-convex scalar parameter is numerically tractable, and a local optimum value of α can be found by fminsearch.m.

4. Numerical examples

In this section, the validity of the main results derived above is illustrated by the following three examples.
Example 1. Consider system (2.1) with time-varying delays as follows:

$$
\left\{\begin{array}{l}
\dot{x}(t)-C_{i} \dot{x}(t-\tau(t))=A_{i} x(t)+B_{i} x(t-h(t))+D_{i} w(t), \tag{4.1}\\
x\left(t_{0}+\theta\right) \equiv 0, \quad \forall \theta \in\left[-\rho^{*}, 0\right]
\end{array}\right.
$$

where $w^{T}(t) w(t) \leq 1$. The parameters of system (4.1) are introduced as follows: $A_{1}=\left[\begin{array}{cc}-2 & -1 \\ 0 & -2\end{array}\right]$, $A_{2}=\left[\begin{array}{cc}-3 & 0 \\ 0 & -2\end{array}\right], A_{3}=\left[\begin{array}{cc}-1 & 0 \\ -1 & -2\end{array}\right], B_{1}=\left[\begin{array}{cc}-1.2 & 0 \\ -1 & -1\end{array}\right], B_{2}=\left[\begin{array}{cc}-2 & 0 \\ -1.5 & -0.5\end{array}\right], B_{3}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, $C_{1}=\left[\begin{array}{cc}0.1 & 0 \\ 0 & 0.1\end{array}\right], C_{2}=\left[\begin{array}{cc}0.2 & 0 \\ 0 & 0.2\end{array}\right], C_{3}=\left[\begin{array}{cc}0.3 & 0 \\ 0 & 0.3\end{array}\right], D_{1}=\left[\begin{array}{c}-0.13 \\ 0.15\end{array}\right], D_{2}=\left[\begin{array}{c}-0.12 \\ 0.35\end{array}\right], D_{3}=$ $\left[\begin{array}{c}-0.2 \\ 0.3\end{array}\right], h=\tau_{M}=0.2, h_{d}=0.1, h_{D}=\tau_{D}=0.75, \tau(t)=h(t)=0.1+0.1 \sin (t), w(t)=\sin (t)$.

According to the same method in [32], parameters for the three modes are chosen as $i=1, a=2, b=$ $1.8, \lambda_{11}(\delta)=-1.04 \delta^{0.8}, \lambda_{12}(\delta)=0.52 \delta^{0.8}, \lambda_{13}(\delta)=0.52 \delta^{0.8} ; i=2, a=3, b=1.8, \lambda_{22}(\delta)=-0.5 \delta^{0.8}$, $\lambda_{21}(\delta)=0.25 \delta^{0.8}, \lambda_{23}(\delta)=0.25 \delta^{0.8} ; i=3, a=4.5, b=1.8, \lambda_{33}(\delta)=-0.24 \delta^{0.8}, \lambda_{31}(\delta)=0.12 \delta^{0.8}$, $\lambda_{32}(\delta)=0.12 \delta^{0.8}$. Then, $\lambda_{i j}$ and $l_{i j}$ can be obtained as in Remark 1, and the bounds of $\lambda_{i j}(\delta)$ are denoted by the following two matrices:

$$
\underline{\lambda}_{i j}=\left[\begin{array}{ccc}
-1.4 & 0.7 & 0.7 \\
0.4 & -0.8 & 0.4 \\
0.1 & 0.1 & -0.2
\end{array}\right], \quad \bar{\lambda}_{i j}=\left[\begin{array}{ccc}
-2.6 & 1.3 & 1.3 \\
1 & -2 & 1 \\
0.7 & 0.7 & -1.4
\end{array}\right]
$$

Moreover, the $\widetilde{\lambda}_{i j}$ are obtained by the same method as in [52], the details of which are as follows:

$$
\tilde{\lambda}_{i j}=\left[\begin{array}{ccc}
-1.6038 & 0.8019 & 0.8019 \\
0.5333 & -1.0666 & 0.5333 \\
0.3540 & 0.3540 & -0.7080
\end{array}\right] .
$$

By solving the optimization problem (3.27), the maximum value of ρ in different methods and the corresponding feasible matrices are obtained in Table 1. Using the LMIs toolbox to solve the theoretical results of Corollaries 1 and 2, the computational time is 3.9930 seconds and 3.8212 seconds.

Table 1. The results of Corollaries 1 and 2.
$\left.\begin{array}{cccc}\hline \alpha & \rho & P_{11} & P_{12} \\ \hline 3.1 & 5.4430\end{array} \begin{array}{ccc}52.1001 & 21.6797 \\ 21.6797 & 41.4409\end{array}\right] \quad\left[\begin{array}{cc}35.8567 & 4.9769 \\ 4.9769 & 18.5069\end{array}\right]\left[\begin{array}{cc}14.1468 & 7.6204 \\ 7.6204 & 17.0268\end{array}\right]$

Figures 1 and 2 show a possible mode evolution and the reachable state from the origin of the neutral semi-Markovian jump system respectively. Figure 3 manifests that Corollary 1 is less conservative than Corollary 2. Simulation results are shown in Table 1, and it is not difficult to see from Figure 1 that the reachable set is in the intersection of ellipsoidal bounds, and thus both methods are valid.

Figure 1. Random jumping mode $r(t)$ of the neutral semi-Markovian jump system (4.1).

Figure 2. The time responses of state variable $x(t)$ of the neutral semi-Markovian jump system (4.1).

Figure 3. The comparative bounding ellipsoids and the state trajectories by Corollaries 1 and 2 for system (4.1).

Example 2. Consider the following semi-Markovian jump system studied in [32]:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{i} x(t)+D_{i} w(t) \tag{4.2}\\
x\left(t_{0}+\theta\right) \equiv 0, \quad \forall \theta \in\left[-\rho^{*}, 0\right]
\end{array}\right.
$$

where $A_{1}=\left[\begin{array}{cc}0 & 1 \\ -10.88 & -2\end{array}\right], A_{2}=\left[\begin{array}{cc}0 & 1 \\ -8 & -2\end{array}\right], D_{1}=D_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \omega^{T}(t) \omega(t) \leq \omega_{m}^{2}=1$.

By using Corollary 2 and solving the optimization problem (3.27), we can obtain $\rho=1.9$ when $\alpha=$ 1.1. The corresponding results are obtained in Table 2. Figure 4 indicates the ellipsoidal boundaries of system (4.2), and it is evident that the results of Corollary 2 get significant improvement over those in [32].

Table 2. Comparison results of Corollary 2 and [32].

| α | ρ | P_{1} | P_{2} | Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | 1.9 | $\left.\begin{array}{cc}20.7347 & 1.0226 \\ 1.0226 & 1.9975\end{array}\right]$ | $\left.\begin{array}{cc}20.7345 & 1.0226 \\ 1.0226 & 1.9975\end{array}\right]$ | Corollary 2 |
| | | 17.2762 0.8429
 0.9147 1.7101 | $\left[\begin{array}{cc}13.5858 & 1.0078 \\ 1.0078 & 1.7956\end{array}\right]$ | $[32]$ |

Figure 4. Comparision of the ellipsoidal bounds of Corollary 2 and [32].

Example 3. Consider the following uncertain neutral semi-Markovian jump systems (see Figure 5):

$$
\left\{\begin{array}{lr}
\dot{x}(t)-\left(C_{i}+L_{i} K(t) E_{1 i}\right) \dot{x}(t-\tau(t))=\left(A_{i}+L_{i} K(t) E_{2 i}\right) x(t)+\left(B_{i}+L_{i} K(t) E_{3 i}\right) \tag{4.3}\\
& \cdot x(t-h(t))+\left(D_{i}+L_{i} K(t) E_{4 i}\right) w(t), \\
x\left(t_{0}+\theta\right) \equiv 0, \quad \forall \theta \in\left[-\rho^{*}, 0\right], &
\end{array}\right.
$$

where $L 1=L 2=L 3=\left[\begin{array}{cc}0.1 & 0 \\ 0 & 0.1\end{array}\right], E_{11}=E_{12}=E_{13}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], E_{21}=E_{31}=E_{22}=E_{32}=E_{23}=$ $E_{33}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], E_{41}=E_{42}=E_{43}=\left[\begin{array}{l}0.1 \\ 0.1\end{array}\right], \varepsilon 1=\varepsilon 2=\varepsilon 3=1, K(t)=\sin (t)$. The other parameters are introduced in Example 1.

Figure 5. The boundaring ellipsoids of the uncertain neutral semi-Markovian jump systems (4.3).

The transition rate problem is solved using the expected technique in order to seek a less conservative boundary of the reachable set for uncertain systems, and the maximum value of ρ and the corresponding feasible matrices are obtained by finding the local optimal value of α. When $\alpha=0.5, \rho=13.2$, and the corresponding feasible matrices are $P_{11}=\left[\begin{array}{ll}43.6548 & 26.2615 \\ 26.2615 & 37.7218\end{array}\right]$, $P_{12}=\left[\begin{array}{cc}25.7136 & 8.7409 \\ 8.7409 & 22.6792\end{array}\right]$, and $P_{13}=\left[\begin{array}{cc}24.7843 & 7.4360 \\ 7.4360 & 25.0682\end{array}\right]$.

5. Conclusions

In this paper, the reachable set problem of neutral semi-Markovian jump systems with timevarying delays and uncertain neutral semi-Markovian jump systems is investigated. First, a novel and appropriate Lyapunov functional is constructed. Furthermore, its derivative is reduced by the improved integral inequality, and the reachable set boundary of the neutral semi-Markovian jump system under zero initial conditions is given by an ellipsoid in terms of LMIs. Finally, a numerical example is given to verify the effectiveness of the obtained results. Comparing the upper and lower bound method and the mathematical expectation method for dealing with the transition rate, we get the bound of the reachable set less conservatively.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported by Natural Science Foundation Project of Guizhou Minzu University (No. GZMUZK[2023]YB12), Guizhou Provincial Science and Technology Projects (No. ZK[2021]016). The Natural Science Research Project of Department of Education of Guizhou Province (No. QJJ[2022]015; No. QJJ[2022]047). Doctoral Fund Project of Guizhou Minzu University (No. 2013(006)).

Conflict of interest

The authors declare no conflict of interest.

References

1. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnam, Linear matrix inequalities in systems and control theory, SIAM, Philadelphia, PA, 1994.
2. J. H. Gillula, G. M. Hoffmann, H. Huang, M. P. Vitus, C. J. Tomlin, Applications of hybrid reachability analysis to robotic aerial vehicles, Int. J. Robot. Res., 30 (2011), 335-354. https://doi.org/10.1177/0278364910387173
3. F. Parise, M. E. Valcher, J. Lygeros, Computing the projected reachable set of stochastic biochemical reaction networks modeled by switched affine systems, IEEE T. Automat. Contr., 63 (2018), 3719-3734. https://doi.org/10.1109/TAC.2018.2798800
4. W. Lin, Z. Yang, Z. Ding, Reachable set estimation and safety verification of nonlinear systems via iterative sums of squares programming, J. Syst. Sci. Complex., 35 (2022), 1154-1172. https://doi.org/10.1007/s11424-022-1121-9
5. J. Wang, C. Yang, J. Xia, Z. G. Wu, H. Shen, Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE T. Fuzzy Syst., 30 (2022), 1889-1899. http://dx.doi.org/10.1109/TFUZZ.2021.3070125
6. H. Zhang, W. Li, J. Zhang, Y. Wang, J. Sun, Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders, IEEE T. Neur. Net. Lear., 34 (2023), 7453-7466. http://dx.doi.org/10.1109/TNNLS.2022.3143867
7. H. Zhang, J. Zhang, Y. Cai, S. X. Sun, J. Y. Sun, Leader-following consensus for a class of nonlinear multiagent systems under event-triggered and edge-event triggered mechanisms, IEEE T. Cybernetics, 52 (2022), 7643-7654. http://dx.doi.org/10.1109/TCYB.2020.3035907
8. J. Tian, S. Zhong, Y Wang, Improved exponential stability criteria for neural networks with time-varying delays, Neurocomputing, 97 (2012), 164-173. https://doi.org/10.1016/j.neucom.2012.05.018
9. C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481485. http://dx.doi.org/10.1016/j.automatica.2017.07.056
10. T. Zhao, B. Zhou, W. Michiels, Stability analysis of linear time-varying time-delay systems by nonquadratic Lyapunov functions with indefinite derivatives, Syst. Control Lett., 122 (2018), 77-85. http://dx.doi.org/10.1016/j.sysconle.2018.09.012
11. S. Mondie, A. V. Egorov, M. A. Gomez, Stability conditions for time delay systems in terms of the Lyapunov matrix, IFAC-PapersOnLine, 51 (2018), 136-141. http://dx.doi.org/10.1016/j.ifacol.2018.07.212
12. S. Luo, F. Deng, A note on delay-dependent stability of Itô-type stochastic time-delay systems, Automatica, 105 (2019), 443-447. http://dx.doi.org/10.1016/j.automatica.2019.03.005
13. Z. Y. Li, S. Shang, J. Lam, On stability of neutral-type linear stochastic timedelay systems with three different delays, Appl. Math. Comput., 360 (2019), 147-166. http://dx.doi.org/10.1016/j.amc.2019.04.070
14. A. Aleksandrov, D. Efimov, Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation, Nonlinear Anal.-Hybri., 42 (2021), 101090. http://dx.doi.org/10.1016/j.nahs.2021.101090
15. K. Cui, Z. Song, S. Zhang, Stability of neutral-type neural network with Lévy noise and mixed time-varying delays, Chaos Soliton. Fract., 159 (2022), 112146. http://dx.doi.org/10.1016/j.chaos.2022.112146
16. Y. Chen, J. Lam, B. Zhang, Estimation and synthesis of reachable set for switched linear systems, Automatica, 63 (2016), 63122-63132. https://doi.org/10.1016/j.automatica.2015.10.033
17. W. Xiang, H. D. Tran, T. T. Johnson, Output reachable set estimation for switched linear systems and its application in safety verification, IEEE T. Automat. Contr., 62 (2017), 5380-5387. https://doi.org/10.1109/TAC.2017.2692100
18. S. Baldi, W. Xiang, Reachable set estimation for switched linear systems with dwell-time switching, Nonlinear Anal.-Hybri., 29 (2018), 2920-2933. https://doi.org/10.1016/j.nahs.2017.12.004
19. J. Li, J. Zhao, Reachable set estimation for switched linear systems with state-dependent switching and bumpless transfer based event-triggered control, ISA T., 139 (2023), 179-190. https://doi.org/10.1016/j.isatra.2023.04.031
20. S. Jin, Y. Pang, X. Zhou, A. Y. Yan, W. Wang, W. B. Hu, Robust finite-Time control and reachable set estimation for uncertain switched neutral systems with time delays and input constraints, Appl. Math. Comput., 407 (2021), 126321. https://doi.org/10.1016/j.amc.2021.126321
21. J. Huang, Y. Shi, Stochastic stability of semi-Markov jump linear systems: An LMI approach, In: 2011 50th IEEE conference on decision and control and european control conference, 2011, 4668-4673. http://dx.doi.org/10.1109/CDC.2011.6161313
22. Y. Wei, J. H. Park, J. Qiu, L. G. Wu, Sliding mode control for semiMarkovian jump systems via output feedback, Automatica, 81 (2017), 133-141. http://dx.doi.org/10.1016/j.automatica.2017.03.032
23. M. Zhang, J. Huang, Y. Zhang, Stochastic stability and stabilization for stochastic differential semiMarkov jump systems with incremental quadratic constraints, Int. J. Robust Nonlin., 31 (2021), 6788-6809. https://doi.org/10.1002/rnc. 5643
24. F. Li, L. Wu, P. Shi, Stochastic stability of semi-Markovian jump systems with mode-dependent delays, Int. J. Robust Nonlin., 24 (2014), 3317-3330. https://doi.org/10.1002/rnc. 3057
25. H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic modedependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791
26. B. Wang, Q, Zhu, Stability analysis of discrete-time semi-Markov jump linear systems, IEEE T. Automat. Contr., 65 (2020), 5415-5421. https://doi.org/10.1109/TAC.2020.2977939
27. J. Huang, Y. Shi, Stochastic stability and robust stabilization of semi-Markov jump linear systems, Int. J. Robust Nonlin., 23 (2013), 2028-2043. https://doi.org/10.1002/rnc. 2862
28. M. Zhang, J. Huang, G. Zong, X. Zhao, Y. Zhang, Observer design for semi-Markov jump systems with incremental quadratic constraints, J. Franklin I., 358 (2021), 5599-5622. https://doi.org/10.1016/j.jfranklin.2021.05.001
29. H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic modedependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791
30. J. Wang, Z. Chen, H. Shen, J. D. Cao, Fuzzy \mathcal{H}_{∞} control of semi-Markov jump singularly perturbed nonlinear systems with partial information and actuator saturation, IEEE T. Fuzzy Syst., 31 (2023), 4374-4384. https://doi.org/10.1109/TFUZZ.2023.3284609
31. S. Sun, X. Dai, R. Xi, Y. L. Cai, X. P. Xie, C. H. Zhang, Reachable set estimation for Itô stochastic semi-Markovian jump systems against multiple time delays, Int. J. Control Autom., 20 (2022), 2857-2867. https://doi.org/10.1007/s12555-021-0679-7
32. X. Ma, Y. Zhang, J. Huang, Reachable set estimation and synthesis for semi-Markov jump systems, Inform. Sci., $\mathbf{6 0 9}$ (2022), 376-386. https://doi.org/10.1016/j.ins.2022.07.069
33. L. Zhang, B. Niu, N. Zhao, X. D. Zhao, Reachable set estimation of singular semi-Markov jump systems, J. Franklin I., 360 (2023), 12535-12551. https://doi.org/10.1016/j.jfranklin.2021.07.053
34. L. Zhang, Y. Cao, Z. Feng, N. Zhao, Reachable set synthesis for singular systems with timevarying delay via the adaptive event-triggered scheme, J. Franklin I., 359 (2022), 1503-1521. https://doi.org/10.1016/j.jfranklin.2021.11.032
35. H. Zhang, H. Ren, Y. F. Mu, J. Han, Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming, IEEE T. Cybernetics, 52 (2022), 12832-12842. https://doi.org/10.1109/TCYB.2021.3090067
36. C. Shen, S. Zhong, The ellipsoidal bound of reachable sets for linear neutral systems with disturbances, J. Franklin I., 348 (2011), 2570-2585. https://doi.org/10.1016/j.jfranklin.2011.07.017
37. J. Li, Q. Zhu, Stability of neutral stochastic delayed systems with switching and distributed-delay dependent impulses, Nonlinear Anal.-Hybri., 47 (2023), 101279. https://doi.org/10.1016/j.nahs.2022.101279
38. K. Q. Gu, An integral inequality in the stability problem of time-delay systems, In: Proceedings of the 39th IEEE conference on decision and control (Cat. No. 00CH37187), Sydney, NSW, Australia, 3 (2000), 2805-2810. https://doi.org/10.1109/CDC.2000.914233
39. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860-2866. https://doi.org/10.1016/j.automatica.2013.05.030
40. P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varing delays, Automatica, 47 (2011), 235-238. https://doi.org/10.1016/j.automatica.2010.10.014
41. P. G. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378-1396. https://doi.org/10.1016/j.jfranklin.2015.01.004
42. F. Yang, J. He, J. Wang, M. Wang, Auxiliary-function-based double integral inequality approach to stability analysis of load frequency control systems with interval time-varying delay, IET Control Theory A., 12 (2018), 601-612. https://doi.org/10.1049/iet-cta.2017.1187
43. R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Stability analysis of interval timevarying delayed neural networks including neutral time-delay and leakage delay, Chaos Soliton. Fract., 114 (2018), 433-445. https://doi.org/10.1016/j.chaos.2018.07.041
44. R. Chen, M. Guo, S. Zhu, Y. Q. Qi, M. Wang, J. H. Hu, Reachable set bounding for linear systems with mixed delays and state constraints, Appl. Math. Comput., 425 (2022), 127085. https://doi.org/10.1016/j.amc.2022.127085
45. J. H. Lee, J. H. Kim, P. G. Park, A generalized multiple-integral inequality based on free matrices: Application to stability analysis of time-varying delay systems, Appl. Math. Comput., 430 (2022), 127288. https://doi.org/10.1016/j.amc.2022.127288
46. J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058
47. H. Ren, G. Zong, L. Hou, Y. Yang, Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay, ISA T., 67 (2017), 19-29. https://doi.org/10.1016/j.isatra.2017.01.013
48. M. Zheng, Y. Zhou, S. Yang, L. N. Li, Robust \mathcal{H}_{∞} control of neutral system for sampled-data dynamic positioning ships, IMA J. Math. Control I., 36 (2019), 1325-1345. https://doi.org/10.1093/imamci/dny029
49. Z. Zuo, Y. Wang, New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations, IEE P.-Contr. Theor. Ap., 153 (2006), 623-626. https://doi.org/10.1049/ipcta:20045258
50. X. G. Liu, M. Wu, R. Martin, Delay-dependent stability analysis for uncertain neutral systems with time-varying delays, Math. Comput. Simulat., 75 (2007), 15-27. https://doi.org/10.1016/j.matcom.2006.08.006
51. J. K. Tian, L. L. Xiong, J. X. Liu, X. J. Xie, Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay, Chaos Soliton. Fractal., 40 (2009), 1858-1866. https://doi.org/10.1016/j.chaos.2007.09.068
52. H. Shen, M. Chen, Z. G. Wu, J. D. Cao, J. H. Park, Reliable event-triggered asynchronous extended passive control for semi-Markov jump fuzzy systems and its application, IEEE T. Fuzzy Syst., 28 (2019), 1708-1722. https://doi.org/10.1109/TFUZZ.2019.2921264
53. Z. Feng, J. Lam, On reachable set estimation of singular systems, Automatica, 52 (2015), 146-153. https://doi.org/10.1016/j.automatica.2014.11.007
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
