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1. Introduction

In real world applications, there might exist several nonlocal effects that influence the evolution of
a system. For instance, we usually do not have enough information about the systems under study and
its features at every point. In reality, the measurements are not made pointwise, but through some local
average. Actually, during recent decades, many mathematicians have been studying nonlocal problems
motivated by its various applications in physics, biology, and population dynamics [1–13].

Given γ ∈ (0, 1) and an initial time τ ∈ R, in this work the following problem is considered:∂tu + a(l(u))(−∆)γu + λu = f (t, x, u) + h(t, x) + αu ◦
dW
dt
, x ∈ Rn, t ≥ τ,

u(x, τ) = uτ(x), x ∈ Rn,
(1.1)

where λ and α are positive constants, a(l(u)) is a more general nonlocal operator (cf. see [14] for
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more details), l ∈ L(R; L2(Rn)), h ∈ L2
loc(R; L2(Rn)), f is a continuous function satisfying standard

dissipative and growth conditions, W is a two-sided real-valued Wiener process in a probability space,
and the symbol ◦ indicates the stochastic equation in the sense of Stratonovich integration.

Moreover, let us consider the following conditions imposed on the function a ∈ C(R;R+). Suppose
there exist some constants 0 < m ≤ M, such that

m ≤ a(s) ≤ M, s ∈ R+. (1.2)

Assume that the function f : R × Rn × R → R is a smooth nonlinearity which satisfies, for all t ∈ R
and x ∈ Rn,

f (t, x, u)u ≤ −β|u|p + ψ1(t, x), (1.3)

| f (t, x, u)| ≤ ψ2(t, x)|u|p−1 + ψ3(t, x), (1.4)

∂ f
∂u

(t, x, u) ≤ ψ4(t, x), (1.5)

where β > 0 and p ≥ 2 are constants and

ψ1 ∈ L1
loc(R; L1(Rn)), ψ2, ψ4 ∈ L∞loc(R; L∞(Rn)), ψ3 ∈ Lq

loc(R; Lq(Rn)),

with 1
p +

1
q = 1. The identification l(u) is in fact (l, u), however we keep the usual notation as in the

existing previous literature l(u) instead of (l, u) for the operator l acting on u.
We will establish the existence of a continuous cocycle for the non-autonomous fractional stochastic

differential equation with γ ∈ (0, 1),

∂tu + a(l(u))(−∆)γu + λu = f (t, x, u) + h(t) + αu ◦
dW
dt
, x ∈ Rn, t ≥ τ, (1.6)

with initial condition
u(τ, x) = uτ(x), x ∈ Rn. (1.7)

For our purpose, we need to convert the stochastic equation into a deterministic one parameterized by
ω ∈ Ω. To that end, we introduce a new variable v = v(t, τ, ω, vτ) by,

v(t, τ, ω, vτ) = e−αz(θtω)u(t, τ, ω, uτ), (1.8)

with
vτ = e−αz(θτ)ωuτ, (1.9)

where τ ∈ R is a deterministic time, t ≥ τ, ω ∈ Ω, uτ ∈ L2(Rn), and u = u(t, τ, ω, uτ) is a solution of
(1.1). Then, we find that, for t > τ,

∂tv + a(l(eαz(θtω)v))(−∆)γv + λv = αz(θtω)v

+ e−αz(θtω) f (t, x, eαz(θtω)v) + e−αz(θtω)h(t), x ∈ Rn, t ≥ τ,

v(x, τ) = vτ(x), x ∈ Rn.

(1.10)

In fact, our final goal is to prove the existence of random attractors of problem (1.1) via proving the
one of (1.10). Indeed, to state the existence of random attractors in Hγ(Rn), we need to establish the
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pullback asymptotic compactness of solutions in Hγ(Rn). The main technique is approaching the whole
domain Rn by a sequence of bounded domains Ok, k ∈ N. For each k, it is well-known that Hγ(Ok)
is compactly embedded in L2(Ok). Then, letting k → ∞, the tail estimates will help us overcome this
compactness difficulty.

We emphasize that the main innovation of our analysis is that the model contains two kinds of
nonlocal terms: one is the nonlocal diffusion coefficient a(l(u)), and the other is the nonlocal frac-
tional Laplace operator. Fractional partial differential equations arise from a variety of applications in
physics, finance, probability, and materials sciences. Hence, there are a great number of works about
fractional models which are analyzed theoretically or by computer simulations, such as [15–18] and
the references therein.

This paper is organized as follows: In the next section, we will recall definitions of non-autonomous
random dynamical systems and the fractional Laplacian operator, and introduce notation which will be
used frequently in this manuscript. In Section 3, we show the existence and uniqueness of solutions to
problem (1.1) driven by multiplicative noise. Some uniform estimates are given in Section 4 mainly
by energy estimates and a random transformation. In the last section, we establish the existence and
uniqueness of random attractors to problem (1.1).

2. Preliminaries

2.1. Non-autonomous random dynamical systems

First, we briefly review some notation and results for non-autonomous random dynamical systems
for the sake of readers’ convenience. Assume that (Ω,F ,P) is a probability space and (X, d) is a
separable metric space. We use d(A, B) to denote the Hausdorff semi-distance for nonempty subsets A
and B of X.

Definition 2.1. [19, Definition 2.1] Let (Ω,F ,P, {θt}t∈R) be a metric dynamical system. A mapping
Φ : R+ × R × Ω × X → X is called a continuous cocycle on X over (Ω,F ,P, {θt}t∈R) if for all τ ∈ R,
ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:

(i) Φ(·, τ, ·, ·) : R+ ×Ω × X → X is a (B(R+) × F × B(X),B(X))-measurable mapping;
(ii) Φ(0, τ, ω, ·) is the identity on X;

(iii) Φ(t + s, τ, ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ, ω, ·);
(iv) Φ(t, τ, ω, ·) : X → X is continuous.

Definition 2.2. [19, Definition 2.2] Let D be a collection of some families of nonempty subsets of
X. Then, Φ is said to be D-pullback asymptotically compact in X if for all τ ∈ R, ω ∈ Ω, and any
sequence tn → +∞, xn ∈ D(τ − tn, θ−tnω), the sequence

{Φ(tn, τ − tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in X.

Definition 2.3. [19, Definition 2.3] LetD be a collection of some families of nonempty subsets of X
andA = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then,A is called aD-pullback attractor of Φ if the following
conditions are satisfied:

(i) A is measurable andA(τ, ω) is compact for all τ ∈ R and ω ∈ Ω;
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(ii) A is invariant, that is, for every τ ∈ R and ω ∈ Ω,

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), t ≥ 0;

(iii) A attracts every member ofD, that is, given B ∈ D, τ ∈ R and ω ∈ Ω,

lim
t→∞

d(Φ(t, τ − t, θ−tω, B(τ − t, θ−tω)),A(τ, ω)) = 0.

The following results can be found in [20, 21] (see also [22–24]) for related results.

Proposition 2.1. [19, Proposition 2.4] Let D be an inclusion-closed collection of some families of
nonempty subsets of X, and Φ be a continuous cocyle on X over (Ω,F ,P, {θt}t∈R). If Φ is D-pullback
asymptotically compact in X and has aD-pullback attractorA inD, then theD-pullback attractorA
is unique and is given by, for each τ ∈ R and ω ∈ Ω,

A(τ, ω) =
⋂
r≥0

⋃
t≥r

Φ(t, τ − t, θ−tω,K(τ − t, θ−tω)).

2.2. Fractional Laplacian

Now, we recall some notation related to the fractional derivatives and fractional Sobolev spaces.
Given 0 < γ < 1, the fractional Laplace operator (−∆)γ is defined by,

(−∆)γu(x) = −
1
2

C(n, γ)
∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2γ dy, x ∈ Rn,

provided the integral exists, where C(n, γ) is a positive constant depending on n and γ as given by,

C(n, γ) =
(∫
Rn

1 − cos(ξ1)
|ξ|n+2γ dξ

)−1

, ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn. (2.1)

It follows from [25] that
(−∆)γu = F −1(|ξ|2γ(F u)), ξ ∈ Rn,

where F is the Fourier transform. Let Hγ(Rn) be the fractional Sobolev space defined by,

Hγ(Rn) =
{

u ∈ L2(Rn) :
∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+2γ dxdy < ∞
}
,

with norm

∥u∥Hγ(Rn) =

(∫
Rn
|u(x)|2dx +

∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+2γ dxdy
) 1

2

.

Throughout this paper, we denote by ∥ · ∥p the norm in Lp(Rn) for some p ≥ 2. Especially, we denote
the norm and the inner product of L2(Rn) by ∥ · ∥ and (·, ·), respectively. For convenience, the Gagliardo
semi-norm of Hγ(Rn) is denoted by ∥ · ∥Ḣγ(Rn), i.e.,

∥u∥2Ḣγ(Rn) =

∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|2
dxdy, u ∈ Hγ(Rn).
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We also use the notation

(u, v)Ḣγ(Rn) =

∫
Rn

∫
Rn

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2γ dxdy, u, v ∈ Hγ(Rn).

Then, for all u ∈ Hγ(Rn), we have ∥u∥2Hγ(Rn) = ∥u∥
2 + ∥u∥2

Ḣγ(Rn)
. Note that Hγ(Rn) is a Hilbert space with

inner product given by

(u, v)Hγ(Rn) = (u, v) + (u, v)Ḣγ(Rn), u, v ∈ Hγ(Rn).

By [25], we have

∥(−∆)
γ
2 u∥2 =

C(n, γ)
2
∥u∥2Ḣγ(Rn), ∀u ∈ Hγ(Rn),

hence,

∥u∥2Hγ(Rn) = ∥u∥
2 +

2
C(n, γ)

∥(−∆)
γ
2 u∥2, ∀u ∈ Hγ(Rn).

This implies that
(
∥u∥2 + ∥(−∆)

1
2 u∥2

) 1
2 is an equivalent norm of Hγ(Rn).

Let (Ω,F ,P) be the standard probability space with Ω = {ω ∈ C(R;R) : ω(0) = 0}, F the Borel
σ-algebra induced by the compact-open topology of Ω, and P the Wiener measure on (Ω,F ). Denote
by θt : Ω→ Ω the transformation

θtω(·) = ω(· + t) − ω(t), ω ∈ Ω.

Then, (Ω,F ,P, {θt}t∈R) is a metric dynamical system. Consider the following one-dimensional stochas-
tic equations:

dy + ydt = dW.

It follows from [26] that this equation has a unique stationary solution y(t) = z(θtω), where z : Ω → R
is a random variable given by z(ω) = −

∫ 0

−∞
eτω(τ)dτ for ω ∈ Ω. Moreover, there exists a θt-invariant

set of full measure Ω0 such that z(θtω) is pathwise continuous for every ω ∈ Ω0, and

lim
t→±∞

|z(θtω)|
|t|

= 0 and lim
t→±∞

1
t

∫ t

0
z(θτω)dτ = 0. (2.2)

For convenience, in the following, we will not distinguish Ω0 and Ω and use the same notation Ω for
both Ω0 and Ω.

3. Main result

To define a continuous cocycle for the fractional stochastic reaction-diffusion equation (1.1), we
first need to prove the existence and uniqueness of solutions to problem (1.10). By a solution of (1.10),
we mean that v satisfies the equation in the following sense:

Definition 3.1. Given τ ∈ R, ω ∈ Ω, and vτ ∈ L2(Rn), a continuous function v(·, τ, ω, vτ) : [τ,∞) →
L2(Rn) is called a solution of problem (1.10), if v(τ, τ, ω, vτ) = vτ, and

v ∈ L2
loc((τ,∞); Hγ(Rn)) ∩ Lp

loc((τ,∞); Lp(Rn)),
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dv
dt
∈ L2

loc((τ,∞); H−γ(Rn)) ∩ Lq
loc((τ,∞); Lq(Rn)),

and v satisfies, for every ξ ∈ Hγ(Rn) ∩ Lp(Rn),

d
dt

(v, ξ) +
C(n, γ)

2
a(l(eαz(θtω)v))

∫
Rn

∫
Rn

(v(x) − v(y))(ξ(x) − ξ(y))
|x − y|n+2γ dxdy + λ(x, ξ)

= αz(θtω)(v, ξ) + e−αz(θtω)
∫
Rn

f (t, x, eαz(θtω)v)ξ(x)dx + e−αz(θtω)
∫
Rn

h(t)ξ(x)dx,
(3.1)

in the sense of distributions on (τ,∞).

To prove the existence of solutions of (1.10) in the sense of Definition 3.1, we will approximate the
entire space Rn by a sequence of bounded domains Ok = {x ∈ Rn : |x| < k}, and then take the limit as
k → ∞. Let ρ : [0,∞)→ R be a smooth function such that 0 ≤ ρ(s) ≤ 1 for all 0 ≤ s < ∞, and

ρ(s) = 1, for 0 ≤ s ≤
1
2
, and ρ(s) = 0, for s ≥ 1.

Let us consider the non-autonomous fractional stochastic differential equation on Ok,

dvk

dt
+ a(l(eαz(θtω)vk))(−∆)γvk + λvk = αz(θtω)vk

+ e−αz(θtω) f (t, x, eαz(θtω)vk) + e−αz(θtω)h(t), x ∈ Ok, t ≥ τ,
(3.2)

with boundary condition
vk(t, x) = 0, x ∈ Rn\O, t ≥ τ, (3.3)

and initial condition

vk(τ, x) = ρ
(
|x|
k

)
vτ(x), x ∈ Ok, (3.4)

where vτ ∈ L2(Rn). Note that, in the boundary condition (3.3), we require vk = 0 on the complement
of Ok (i.e., on Rn\Ok), not just on the boundary of Ok. This boundary condition is consistent with the
definition of the nonlocal fractional Laplace operator (−∆)γ. To present the existence of solutions of
problem (3.2), for every k ∈ N we set Hk = {v ∈ L2(Rn) : v = 0 a.e. for |x| ≥ k} and Vk = {v ∈ Hγ(Rn) :
v = 0 a.e. for |x| ≥ k}. The dual space of Vk is denoted by V∗k .

Let b : Hγ(Rn) × Hγ(Rn)→ R be a bilinear form given by, for v1, v2 ∈ Hγ(Rn),

b(v1, v2) = λ(v1, v2) +
m
2

C(n, γ)
∫
Rn

∫
Rn

(v1(x) − v1(y))(v2(x) − v2(y))
|x − y|n+2γ dxdy.

By using the bilinear form b, we define A : Hγ(Rn)→ H−γ(Rn) by

(A(v1), v2)(H−γ,Hγ) = b(v1, v2), ∀v1, v2 ∈ Hγ(Rn),

where (·, ·)(H−γ,Hγ) is the duality pairing of H−γ(Rn) and Hγ(Rn). Since Hk and Vk are subspaces of
L2(Rn) and Hγ(Rn), respectively, we find that b : Vk × Vk → R and A : Vk → V∗k are well defined.
Indeed, we have

(A(v1), v2)(V∗k ,Vk) = b(v1, v2), ∀v1, v2 ∈ Vk,
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where (·, ·)(V∗k ,Vk) is the duality pairing of V∗k and Vk.
By means of conditions (1.2)–(1.5), it follows from [27] that, for every τ ∈ R, ω ∈ Ω, and vτ ∈

L2(Rn), problem (3.2)-(3.4) has a unique solution vk in the sense that vk(·, τ, ω, vk(τ)) : [τ,∞) → Hk is
continuous, vk(τ, τ, ω, vk(τ))(x) = ρ

(
|x|
k

)
vk(x), and

vk ∈ L2
loc((τ,∞); Vk) ∩ Lp

loc((τ,∞); Lp(Rn)),
dvk

dt
∈ L2

loc((τ,∞); V∗k ) + Lq
loc((τ,∞); Lq(Rn)), (3.5)

and vk, satisfies, for every ξ ∈ Vk ∩ Lp(Rn),

d
dt

(vk, ξ) +
C(n, γ)

2
a(l(eαz(θtω)vk))

∫
Rn

∫
Rn

(vk(x) − vk(y))(ξ(x) − ξ(y))
|x − y|n+2γ dxdy + λ(vk, ξ)

= αz(θtω)(vk, ξ) + e−αz(θtω)
∫
Ok

f (t, x, eαz(θtω)vk)ξ(x)dx + e−αz(θtω)
∫
Ok

h(t)ξ(x)dx,
(3.6)

in the sense of distributions on (τ,∞). Next, we derive uniform estimates of the solution vk with respect
to k ∈ N and prove the existence of solutions of (1.10) by taking the limit of vk when k → ∞.

Theorem 3.2. Let (1.2)–(1.5) hold. Then, for every τ ∈ R, ω ∈ Ω, and vτ ∈ L2(Rn), problem (1.10) has
a unique solution v(t, τ, ω, vτ) in the sense of Definition 3.1. This solution is (F ,B(L2(Rn)))-measurable
in ω and continuous in initial data vτ in L2(Rn). Moreover, the solution v satisfies the energy equation,

d
dt
∥v∥2 + a(l(eαz(θtω)v))C(n, γ)∥v∥2Ḣγ(Rn) + 2λ∥v∥2 = 2αz(θtω)∥v∥2

+ 2e−αz(θtω)
∫
Rn

f (t, x, eαz(θtω)v)vdx + 2e−αz(θtω)
∫
Rn

h(t)vdx,
(3.7)

for almost all t > τ.

Proof. The proof is similar to the case of bounded domains as in [27] by modifying appropriately
the conditions of the nonlinear term f . Of course, for problem (1.10) defined on the unbounded domain
Rn, we must show that all estimates on the solutions of (3.2)–(3.4) are uniform with respect to k ∈ N.
Step 1. Uniform estimates of solutions of (3.2)–(3.4). By (3.2), we obtain

1
2

d
dt

∫
Ok

|vk(x)|2dx + a(l(eαz(θtω)vk))
∫
Ok

vk(x)(−∆)γvk(x)dx + λ
∫
Ok

|vk(x)|2dx

= αz(θtω)
∫
Ok

|vk(x)|2dx + e−αz(θtω)
∫
Ok

f (t, x, eαz(θtω)vk)vkdx + e−αz(θtω)
∫
Ok

h(t)vk(x)dx.

By the boundary condition (3.3), all of the above integrals over the bounded domain Ok can be replaced
by that over the entire space Rn, and hence we have

d
dt
∥vk∥

2 + a(l(eαz(θtω)vk))C(n, γ)∥vk∥
2
Ḣγ(Rn) + 2λ∥vk∥

2

= 2αz(θtω)∥vk∥
2 + 2e−αz(θtω)( f (t, x, eαz(θtω)vk), vk) + 2e−αz(θtω)(h(t), vk).

(3.8)
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By (1.4), the nonlinear term in (3.8) satisfies,

e−αz(θtω)
∫
Rn

f (t, x, eαz(θtω)vk)vkdx ≤ e−2αz(θtω)
∫
Rn

(ψ1(t, x) − β|eαz(θtω)vk|
p)dx

≤ e−2αz(θtω)
∫
Rn
ψ1(t, x)dx − βe(p−2)αz(θtω)

∫
Rn
|vk|

pdx.

(3.9)

By Young’s inequality, we derive

e−αz(θtω)
∫
Rn

h(t)vkdx ≤
1
2

e−2αz(θtω)∥h(t)∥2 +
1
2
∥vk∥

2. (3.10)

It follows from (1.2) and (3.8)–(3.10) that

d
dt
∥vk∥

2 +C(n, γ)m∥vk∥
2
Ḣγ(Rn) + 2λ∥vk∥

2 + 2βe(p−2)αz(θtω)
∫
Rn
|vk|

pdx

≤ (2αz(θtω) + 1)∥vk∥
2 + 2e−αz(θtω)

∫
Rn
ψ1(t, x)dx + e−2αz(θtω)∥h(t)∥2.

(3.11)

By the above inequality, we see that for every fixed ω ∈ Ω and T > 0, {vk}
∞
k=1 is bounded in

L∞(τ, τ + T ; L2(Rn)) ∩ L2(τ, τ + T ; Hγ(Rn)) ∩ Lp(τ, τ + T ; Lp(Rn)), (3.12)

and
{A(vk)}∞k=1 is bounded in L2(τ, τ + T ; H−γ(Rn)). (3.13)

By (1.4) and (3.12), one can verify that

{ f (t, ·, eαz(θtω)vk)}∞k=1 is bounded in Lq(τ, τ + T ; Lq(Rn)). (3.14)

As a consequence of (3.2) and (3.12)-(3.13), we find that, for each fixed K ∈ N,{
dvk

dt

}∞
k=1

is bounded in Lq(τ, τ + T ; (Vk ∩ Lp(Rn))∗). (3.15)

Note that 1 < q ≤ 2 since p ≥ 2 and p and q are conjugate exponents.
Step 2. Existence of solutions of problem (3.2)–(3.4). By a diagonal process, from (3.12)–(3.14),

we find that there exists ṽ ∈ L2(Rn), such that

v ∈ L∞(τ, τ + T ; L2(Rn)) ∩ L2(τ, τ + T ; Hγ(Rn)) ∩ Lp(τ, τ + T ; Lp(Rn)),

and χ ∈ Lq(τ, τ + T ; Lq(Rn)) such that, up to a subsequence,

vk → v weak-star in L∞(τ, τ + T ; L2(Rn)), (3.16)

vk → v weakly in L2(τ, τ + T ; Hγ(Rn)) ∩ Lp(τ, τ + T ; Lp(Rn)), (3.17)

f (t, ·, eαz(θtω)vk)→ χ weakly in Lq(τ, τ + T ; Lq(Rn)), (3.18)
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dvk

dt
→

dv
dt

weakly in Lq(τ, τ + T ; (Vk ∩ Lp(Rn))∗), (3.19)

and
vk(τ, τ + T, ω)→ ṽ weakly in L2(Rn). (3.20)

Note that the embedding Hγ(OK) ↪→ L2(OK) is compact, and also note that L2(OK) ↪→ (VK ∩ Lp(Rn))∗

is continuous. Then by (3.12), (3.15), and the compactness result in [28], after an appropriate diagonal
process, we find that, up to a subsequence,

vk → v strongly in L2(τ, τ + T ; L2(OK)), ∀K ∈ N. (3.21)

By (3.21) and a diagonal process again, there exists a further subsequence (which is still denoted by
{vk}

∞
k=1) such that

vk → v for almost every (t, x) ∈ (τ, τ + T ) × Rn. (3.22)

On the one hand, since a is a continuous function and l ∈ L2(Rn), it follows from the above inequality
that

a(l(eαz(θtω)vk))→ a(l(eαz(θtω)v)), for almost every (t, x) ∈ (τ, τ + T ) × Rn. (3.23)

On the other hand, as f is continuous, by (3.22), we obtain

f (t, x, eαz(θtω)vk)→ f (t, x, eαz(θtω)v), for almost every (t, x) ∈ (τ, τ + T ) × Rn. (3.24)

By (3.14) and (3.24), we infer from Mazur’s lemma that,

f (t, ·, eαz(θtω)vk)→ f (t, ·, eαz(θtω)v), weakly in Lq(τ, τ + T ; Lq(Rn)). (3.25)

It follows from (3.18) and (3.25) that

χ = f (t, ·, eαz(θtω)v). (3.26)

Now, given ξ ∈ Hγ(Rn) ∩ Lp(Rn), denote by

ξK(x) = ρ
(
|x|
K

)
ξ(x), ∀x ∈ Rn.

By simple computations, one can verify that, for each K ∈ N, ξK ∈ Hγ(Rn) ∩ Lp(Rn) and

ξK → ξ in Hγ(Rn) ∩ Lp(Rn). (3.27)

For every k > K and ϕ ∈ C∞0 (τ, τ + T ), by (3.2)–(3.4), we deduce

−

∫ τ+T

τ

(vk, ξK)ϕ′dt +C(n, γ)
∫ τ+T

τ

a(l(eαz(θtω)vk))(vk, ξK)Ḣγ(Rn)ϕdt + λ
∫ τ+T

τ

(vk, ξK)ϕdt

= α

∫ τ+T

τ

z(θtω)(vk, ξK)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)vk), ξK)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h(t), ξK)ϕdt.

(3.28)
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Taking the limit of (3.28) as k → ∞, by (3.16)-(3.18) and (3.26), we obtain

−

∫ τ+T

τ

(v, ξK)ϕ′dt +C(n, γ)
∫ τ+T

τ

a(l(eαz(θtω)v))(v, ξK)Ḣγ(Rn)ϕdt + λ
∫ τ+T

τ

(v, ξK)ϕdt

= α

∫ τ+T

τ

z(θtω)(v, ξK)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)v), ξK)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h(t), ξK)ϕdt.

(3.29)

Taking the limit of (3.29) as K → ∞, by (3.27), we have

−

∫ τ+T

τ

(v, ξ)ϕ′dt +C(n, γ)
∫ τ+T

τ

a(l(eαz(θtω)v))(v, ξ)Ḣγ(Rn)ϕdt + λ
∫ τ+T

τ

(v, ξ)ϕdt

= α

∫ τ+T

τ

z(θtω)(v, ξ)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)v), ξ)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h(t), ξ)ϕdt.

(3.30)

Hence, we obtain that for all ξ ∈ Hγ(Rn) ∩ Lp(Rn),

d
dt

(v, ξ) +
C(n, γ)

2
a(l(eαz(θtω)v))(v, ξ)Ḣγ(Rn) + λ(v, ξ)

= αz(θtω)(v, ξ) + e−αz(θtω)( f (t, ·, eαz(θtω)v), ξ)(Lq,Lp) + e−αz(θtω)(h(t), ξ),
(3.31)

in the sense of distribution on (τ, τ + T ).
To prove the continuity of v : [τ,∞) → L2(Rn), we notice that v ∈ L2(τ, τ + T ; Hγ(Rn)) ∩ Lp(τ, τ +

T ; Lp(Rn)) and dv
dt ∈ L2(τ, τ+T ; H−γ(Rn))+Lq(τ, τ+T ; Lq(Rn)) by (3.17) and (3.19), respectively. Then,

by the argument of [28], we infer that v ∈ C([τ, τ + T ]; L2(Rn)) and

1
2

d
dt
∥v∥2 =

(
dv
dt
, v

)
(H−γ+Lq,Hγ+Lp)

, for almost every t ∈ (τ, τ + T ). (3.32)

It follows from (3.31)–(3.32), by taking ξ = v, that

1
2

d
dt
∥v∥2 +

C(n, γ)
2

a(l(eαz(θtω)))∥v∥2Ḣγ(Rn) + λ∥v∥
2

= αz(θtω)∥v∥2 + e−αz(θtω)( f (t, ·, eαz(θtω)v), v)(Lq,Lp) + e−αz(θtω)(h, v),
(3.33)

which yields the desired energy equality (3.7).
In what follows, we show v(τ) = vτ and v(τ + T ) = ṽ. To this end, we take ϕ ∈ C1([τ, τ + T ]) and
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ξ ∈ Hγ(Rn) ∩ Lp(Rn). Similar to (3.28), by (3.2)–(3.4) we deduce, for every k > K,

(vk(τ + T ), ξK)ϕ(τ + T ) − (vk(τ), ξK)ϕ(τ) =
∫ τ+T

τ

(vk, ξK)ϕ′dt

−
C(n, γ)

2

∫ τ+T

τ

a(l(eαz(θtω)vk))(vk, ξK)ϕdt − λ
∫ τ+T

τ

(vk, ξK)ϕdt

+ α

∫ τ+T

τ

z(θtω)(vk, ξK)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)vk), ξK)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h, ξK)ϕdt.

(3.34)

Proceeding as before, by (3.4), (3.16)–(3.18), (3.20), and (3.26) we obtain from the above equality that,
as k → ∞,

(ṽ, ξK)ϕ(τ + T ) − (vτ, ξK)ϕ(τ) =
∫ τ+T

τ

(v, ξK)ϕ′dt

−
C(n, γ)

2

∫ τ+T

τ

a(l(eαz(θtω)v))(v, ξK)ϕdt − λ
∫ τ+T

τ

(v, ξK)ϕdt

+ α

∫ τ+T

τ

z(θtω)(v, ξK)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)v), ξK)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h, ξK)ϕdt.

(3.35)

As K → ∞ in the above equality, by (3.27) we find, for all ξ ∈ Hγ(Rn) ∩ Lp(Rn), that

(ṽ, ξ)ϕ(τ + T ) − (vτ, ξ)ϕ(τ) =
∫ τ+T

τ

(v, ξ)ϕ′dt

−
C(n, γ)

2

∫ τ+T

τ

a(l(eαz(θtω)v))(v, ξ)ϕdt − λ
∫ τ+T

τ

(v, ξ)ϕdt

+ α

∫ τ+T

τ

z(θtω)(v, ξ)ϕdt +
∫ τ+T

τ

e−αz(θtω)( f (t, ·, eαz(θtω)v), ξ)(Lq,Lp)ϕdt

+

∫ τ+T

τ

e−αz(θtω)(h, ξ)ϕdt.

(3.36)

On the other hand, by (3.31) we find that the right hand side of equality (3.36) is given by

(v(τ + T ), ξ)ϕ(τ + T ) − (v(τ), ξ)ϕ(τ),

and therefore, we obtain

(v(τ + T ), ξ)ϕ(τ + T ) − (v(τ), ξ)ϕ(τ) = (ṽ, ξ)ϕ(τ + T ) − (vτ, ξ)ϕ(τ). (3.37)
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By choosing ϕ ∈ C1([τ, τ + T ]) with ϕ(τ) = 1 and ϕ(τ + T ) = 0, we obtain from (3.37), that for all
ξ ∈ Hγ(Rn) ∩ Lp(Rn),

(v(τ), ξ) = (vτ, ξ). (3.38)

Similarly, by choosing ϕ ∈ C1([τ, τ+T ]) with ϕ(τ) = 0 and ϕ(τ+T ) = 1, we infer from (3.37) that, for
all ξ ∈ Hγ(Rn) ∩ Lp(Rn),

(v(τ + T ), ξ) = (ṽ, ξ). (3.39)

By (3.38)–(3.39), we have

v(τ) = vτ and v(τ + T ) = ṽ in L2(Rn), (3.40)

which along with (3.20) implies that

vk(τ + T, τ, ω)→ v(τ + T ) weakly in L2(Rn). (3.41)

Similar to (3.41), one can verify that, for every t ≥ τ, as k → ∞

vk(t, τ, ω)→ v(t) weakly in L2(Rn). (3.42)

Note that (3.31) and (3.42) indicate that v is a solution of problem (3.2)–(3.4) in the sense of Defi-
nition 3.1, and (3.33) shows that v satisfies the energy equation (3.7).

Step 3. Uniqueness and measurability of solutions. Suppose v1 and v2 are solutions of (3.2)–(3.4).
Then, for ṽ = v1 − v2, we have

dṽ
dt
+

(
a(l(eαz(θtω)v1))(−∆)γv1 − a(l(eαz(θtω)v2))(−∆)γv2

)
+ λṽ

= αz(θtω)ṽ + e−αz(θtω)
(

f (t, ·, eαz(θtω)v1) − f (t, ·, eαz(θtω)v2)
)
,

(3.43)

from which by (1.5) and the Lipschitz assumption imposed on function a, we find that for each T > 0,
there exists c1 > 0 such that, for all t ∈ [τ, τ + T ],

d
dt
∥ṽ∥2 ≤ c1∥ṽ∥2.

Then, the uniqueness and continuity of solutions for initial data in L2(Rn) follow immediately.
Since the solution of problem (3.2)–(3.4) is unique, by (3.42), we see the whole sequence (not just

a subsequence) vk(t, τ, ω, vk(τ)) → v(t, τ, ω, vτ) weakly in L2(Rn) for any t ≥ τ and ω ∈ Ω. Because
vk(t, τ, ω, vk(τ)) is measurable in ω ∈ Ω as provided in [26], we infer that the weak limit v(t, τ, ω, vτ) is
also measurable in ω, which completes the proof. □

Based on Theorem 3.2, we can define a continuous cocycle for problem (1.10). Note that if v is a
solution of (3.2)-(3.4), then by (1.8) we see that u is a solution of (3.2)-(3.4), where u is given by

u(t, τ, ω, uτ) = eαz(θtω)v(t, τ, ω, vτ),

with uτ = eαz(θτω)vτ. Define a mapping Φ : R × R × Ω × L2(Rn) → L2(Rn) such that for every t ∈ R,
τ ∈ R, ω ∈ Ω, and uτ ∈ L2(Rn),

Φ(t, τ, ω, uτ) = u(t + τ, τ, θ−τω, uτ) = eαz(θtω)v(t + τ, τ, θ−τω, vτ), (3.44)
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where vτ = e−αz(ω)uτ. It follows from Theorem 3.2 that Φ is a continuous cocycle in L2(Rn) over
(Ω,F ,P, {θt}t∈R). The main purpose of this paper is to prove the existence of attractors of Φ in L2(Rn).
To that end, we recall that a family of bounded nonempty subsets of L2(Rn), D = {D(τ, ω) : τ ∈ R, ω ∈
Ω}, is tempered if for every c > 0, τ ∈ R and ω ∈ Ω,

lim
t→−∞

ect∥D(τ + t, θtω)∥ = 0,

where the notation ∥D∥ for a subset D of L2(Rn) is understood as ∥D∥ = supu∈D ∥u∥. The collection of
all tempered families of bounded nonempty subsets of L2(Rn) is denoted byD, that is,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D is tempered in L2(Rn)}. (3.45)

In this case, aD-pullback attractor is also called a tempered attractor sinceD given by (3.45) contains
all tempered families of bounded nonempty subsets of L2(Rn).

From now on, we assume that, for every τ ∈ R,∫ 0

−∞

emλs
(
∥h(s + τ, ·)∥2 + ∥ψ1(s + τ, ·)∥L1(Rn)

)
ds < ∞. (3.46)

When deriving the existence of tempered pullback absorbing sets, we will further assume that h and ψ1

are tempered in the sense that, for every c > 0,

lim
r→−∞

ecr
∫ 0

−∞

eλs
(
∥h(s + r, ·)∥2 + ∥ψ1(s + r, ·)∥L1(Rn)

)
ds = 0. (3.47)

It is clear that (3.46)–(3.47) do not imply that h is bounded in L2(Rn) when t → ∞.

4. Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of the nonlocal fractional stochastic
differential equations in Hγ(Rn) as well as the uniform estimates on the tails of solutions for large space
and time variables. The estimates in L2(Rn) are given below.

Lemma 4.1. Under conditions (1.3)-(1.5) and (3.46), for every σ ∈ R, τ ∈ R, ω ∈ Ω, and D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, α) > 0 such that, for all t ≥ T, the solution v
of system (1.10) satisfies

∥v(σ, τ − t, θ−τω, vτ−t)∥2 +
1
2

m
∫ σ−τ

−t
ζ(s)∥v(s + τ, τ − t, θ−τω, vτ−t)∥2Hγ(Rn)ds

+ 2β
∫ σ−τ

−t
ζ(s)e(p−2)αz(θsω)∥v(s + τ, τ − t, θ−τω, vτ−t)∥ppds

≤ M1 + M1

∫ σ−τ

−∞

ζ(s)
(
h(s + τ)∥2 + ∥ψ1(s + τ)∥L1(Rn)

)
ds,

(4.1)

where ζ(s) = e
5
4λ−2α

∫ s
0 z(θrω)dr, eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω), and M1 is a positive constant independent of

τ, ω and D.
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Proof. The proof is similar to the case of bounded domains as in [27]. For the reader’s convenience,
we outline the main ideas here. First, by (1.2)-(1.3) and (3.7), we have

d
dt
∥v(t, τ, ω, vτ)∥2 + mC(n, γ)∥v(t, τ, ω, vτ)∥2Ḣγ(Rn) + 2λ∥v(t, τ, ω, vτ)∥2

+ 2βe(p−2)αz(θtω)
∫
Rn
|v(t, τ, ω, vτ)|pdx ≤ 2αz(θtω)∥v(t, τ, ω, vτ)∥2

+ 2e−αz(θtω)
∫
Rn

h(t)v(t, τ, ω, vτ)dx + 2e−2αz(θtω)∥ψ1∥L1(Rn).

(4.2)

Note that Young’s inequality implies that

2e−αz(θtω)
∫
Rn

h(t)v(t, τ, ω, vτ)dx ≤
1
4
λ∥v(t, τ, ω, vτ)∥2 +

4
λ

e−2αz(θtω)∥h(t)∥2, (4.3)

which, along with (4.2), yields
d
dt
∥v(t, τ, ω, vτ)∥2 + mC(n, γ)∥v(t, τ, ω, vτ)∥2Ḣγ(Rn) +

1
2
λ∥v(t, τ, ω, vτ)∥2

+ (
5
4
λ − 2αz(θtω))∥v(t, τ, ω, vτ)∥2 + 2βe(p−2)αz(θtω)

∫
Rn
|v(t, τ, ω, vτ)|pdx

≤
4
λ

e−2αz(θtω)∥h(t)∥2 + 2e−2αz(θtω)∥ψ1∥L1(Rn).

(4.4)

Solving (4.4) for ∥v∥2 on the interval (τ− t, σ) by introducing the integrating factor e
5
4λ−2α

∫ t
0 z(θrω)dr, and

the replacing ω by θ−τω, we obtain

∥v(σ, τ − t, θ−τω, vτ−t)∥2 +
λ

2

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥v(s, τ − t, θ−τω, vτ−t)∥2ds

+ 2β
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre(p−2)αz(θs−τω)∥v(s, τ − t, θ−τω, vτ−t)∥ppds

+ mC(n, γ)
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥v(s, τ − t, θ−τω, vτ−t∥
2
Ḣγ(Rn)ds

≤ e
5
4λ(τ−t−σ)−2α

∫ τ−t
σ

z(θr−τω)dr∥vτ−t∥
2 +

4
λ

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥h(s)∥2ds

+ 2
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥ψ1(s)∥L1(Rn)ds.

(4.5)

Since eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) with D ∈ D, by (3.2) one can verify that

lim
t→∞

e
5
4λ(τ−t−σ)−2α

∫ τ−t
σ

z(θr−τω)dr∥vτ−t∥
2 = 0. (4.6)

On the other hand, by (3.46) and (3.2) we find that, for all σ ≥ τ − t,∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥h(s)∥2ds

≤

∫ σ

−∞

e
5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥h(s)∥2ds < ∞,
(4.7)
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and ∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥ψ1(s)∥L1(Rn)ds

≤

∫ σ

∞

e
5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥ψ1(s)∥L1(Rn)ds < ∞.
(4.8)

It follows from (4.7)–(4.8) that there exists T = T (τ, ω,D, α) > 0 such that, for all t ≥ T ,

∥v(σ, τ − t, θ−τω, vτ−t)∥2 +
λ

2

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥v(s, τ − t, θ−τω, vτ−t)∥2ds

+ 2β
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre(p−2)αz(θs−τω)∥v(s, τ − t, θ−τω, vτ−t)∥ppds

+ mC(n, γ)
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥v(s, τ − t, θ−τω, vτ−t∥
2
Ḣγ(Rn)ds

≤ 1 +
4
λ

∫ σ

−∞

e
5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dre−2αz(θs−τω)∥h(s)∥2ds

+ 2
∫ σ

−∞

e
5
4λ(s−σ)−2α

∫ s
σ

z(θr−τω)dr∥ψ1(s)∥L1(Rn)ds.

After performing a change of variable, the desired estimates follow from the above inequality immedi-
ately; for more details, see [27, Lemma 4.1]. □

After a consequence of Lemma 4.1, we see that problem (1.10) has a tempered pullback absorbing
set in L2(Rn).

Corollary 4.2. Under conditions (1.3)–(1.5) and (3.47), for every τ ∈ R, ω ∈ Ω and D = {D(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D) > 0 such that the solution v of (1.10) with eαz(θ−tω)vτ−t ∈

D(τ − t, θ−tω) satisfies, for all t ≥ T,

v(τ, τ − t, θ−τω, vτ−t) ∈ B(τ, ω), (4.9)

where B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} is given by,

B(τ, ω) = {v ∈ L2(Rn) : ∥v∥2 ≤ R(τ, ω)},

with R = R(τ, ω) being a positive number given by,

R = M1 + M1

∫ 0

−∞

e
5
4λs−2α

∫ s
0 z(θrω)dre−2αz(θsω)

(
∥h(s + τ)∥2 + ∥ψ1(s + τ)∥2

)
ds. (4.10)

Moreover, R = {R(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered in the sense that, for any c > 0,

lim
t→∞

e−ctR(τ − t, θ−tω) = 0. (4.11)

Proof. (4.9) follows from Lemma 4.1 if we take σ = τ, and the convergence of (4.11) can be proved
in the same way as in the case of bounded domains, which can be found in [14,27,29]. The details are
omitted here. □
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Next, we derive uniform estimates of solutions in Hγ(Rn) for which we further assume that the
function ψ4 in (1.5) belongs to L∞(R; L∞(Rn)), and the nonlinearity f satisfies, for all t, u ∈ R, x and
y ∈ Rn,

| f (t, x, u) − f (t, y, u)| ≤ |ψ5(x) − ψ5(y)|, (4.12)

where ψ5 ∈ Hγ(Rn).

Lemma 4.3. Under conditions (1.3)–(1.5), (4.12), and (3.46), for every τ ∈ R, ω ∈ Ω, and D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, α) > 0 such that, for any t ≥ T, the solution
v of problem (1.1) with eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) satisfies

∥v(τ, τ − t, θ−τω, vτ−t)∥2Hγ(Rn)

≤ M2 + M2

∫ 0

−∞

e
5
4λs−2α

∫ s
0 z(θrω)dre−2αz(θsω)

(
1 + ∥g(s + τ)∥2 + ∥ψ1(s + τ)∥L1(Rn)

)
ds,

where M2 is a positive constant independent of τ, ω, and D.

Proof. Multiplying (1.10) by (−∆)γv, we obtain

d
dt
∥(−∆)

γ
2 v∥2 + 2a(l(eαz(θtω)v))∥(−∆)γv∥2 + 2(λ − αz(θtω))∥(−∆)

γ
2 v∥2

= 2e−αz(θtω)
(

f (t, x, eαz(θtω)v), (−∆)γv
)
+ 2e−αz(θtω) (h(t), (−∆)γv) .

(4.13)

We now estimate the right-hand side of (4.13). For the first term, by (1.5) and (4.11) we have Cnγ =

C(n, γ), and

2e−αz(θtω)
(

f (t, x, eαz(θtω)v), (−∆)γv
)
= 2e−αz(θtω)

(
(−∆)

γ
2 f (t, x, eαz(θtω)v), (−∆)

γ
2 v

)
= Cnγe−αz(θtω)

(
f (t, ·, eαz(θtω)v), v

)
Ḣγ(Rn)

= Cn,γe−αz(θtω)
∫
Rn

∫
Rn

(
f (t, x, eαz(θtω)v(x)) − f (t, y, eαz(θtω)v(y))

)
B(x, y)dxdy

= Cn,γe−αz(θtω)
∫
Rn

∫
Rn

(
f (t, x, eαz(θtω)v(x)) − f (t, y, eαz(θtω)v(x))

)
B(x, y)dxdy

+Cn,γe−αz(θtω)
∫
Rn

∫
Rn

(
f (t, y, eαz(θtω)v(x)) − f (t, y, eαz(θtω)v(y))

)
B(x, y)dxdy

≤ Cn,γe−αz(θtω)
∫
Rn

∫
Rn

|ψ5(x) − ψ5(y)||v(x) − v(y)|
|x − y|n+2γ dxdy

+Cnγ

∫
Rn

∫
Rn

ψ4(t, y)(v(x) − v(y))2

|x − y|n+2γ dxdy

≤ Cnγe−αz(θtω)∥ψ5∥Ḣγ(Rn)∥v∥Ḣγ(Rn) +Cn,γ∥ψ4∥L∞(R,L∞(Rn))∥v∥2Ḣγ(Rn)

≤
1

2m
Cnγe−2αz(θtω)∥ψ5∥

2
Hγ(Rn) +

(m
2
+ ∥ψ4∥L∞(R,L∞(Rn))

)
Cnγ∥v∥2Ḣγ(Rn)

≤
1

2m
Cnγe−2αz(θtω)∥ψ5∥

2
Hγ(Rn) +

(
m + 2∥ψ4∥L∞(R,L∞(Rn))

)
∥(−∆)

γ
2 v∥2,

(4.14)
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where B(x, y) = v(x)−v(y)
|x−y|n+2γ . For the last term on the right-hand side of (4.13), we have

2
∣∣∣e−αz(θtω)(h(t), (−∆)γv)

∣∣∣ ≤ m
2
∥(−∆)γv∥2 +

2
m

e−2αz(θtω)∥h(t)∥2. (4.15)

It follows from (4.13)–(4.15) and (1.2) that,

d
dt
∥(−∆)

γ
2 v∥2 + m∥(−∆)γv∥2 + 2(λ − αz(θtω))∥(−∆)

γ
2 v∥2

≤ c1∥(−∆)
γ
2 v∥2 +

(
2
m
∥h(t)∥2 + c2

)
e−2αz(θtω).

(4.16)

Given t ∈ R+, τ ∈ R, and ω ∈ Ω, let s ∈ (τ−1, τ). Multiplying (4.16) by e
∫ t

0 ( 5
4λ−2αz(θsω))ds and integrating

over (s, τ), we infer that

∥(−∆)
γ
2 v(τ, τ − t, ω, vτ−t)∥2 ≤ e

∫ s
τ

( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(s, τ − t, ω, vτ−t)∥2

+ c1

∫ τ

s
e
∫ ζ
τ

( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(ζ, τ − t, ω, vτ−t)∥2dζ

+

∫ τ

s
e
∫ ζ
τ

( 5
4λ−2αz(θξω))dξ

(
2
m
∥h(ζ)∥2 + c2

)
e−2αz(θζω)dζ.

(4.17)

Integrating again with respect to s on (τ − 1, τ), we obtain

∥(−∆)
γ
2 v(τ, τ − t, ω, vτ−t)∥2

≤

∫ τ

τ−1
e
∫ s
τ

( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(s, τ − t, ω, vτ−t)∥2ds

+ c1

∫ τ

τ−1
e
∫ ζ
τ

( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(ζ, τ − t, ω, vτ−t)∥2dζ

+

∫ τ

τ−1
e
∫ ζ
τ

( 5
4λ−2αz(θξω))dξ

(
2
m
∥h(ζ)∥2 + c2

)
e−2αz(θζω)dζ.

(4.18)
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Substituting θ−τω for ω, we deduce from (4.18) that

∥(−∆)
γ
2 v(τ, τ − t, θ−τω, vτ−t)∥2

≤

∫ τ

τ−1
e
∫ s
τ

( 5
4λ−2αz(θξ−τω))dξ∥(−∆)

γ
2 v(s, τ − t, θ−τω, vτ−t)∥2ds

+ c1

∫ τ

τ−1
e
∫ ζ
τ

( 5
4λ−2αz(θξ−τω))dξ∥(−∆)

γ
2 v(ζ, τ − t, θ−τω, vτ−t)∥2dζ

+

∫ τ

τ−1
e
∫ ζ
τ

( 5
4λ−2αz(θξ−τω))dξ

(
2
m
∥h(ζ)∥2 + c2

)
e−2αz(θζ−τω)dζ

≤

∫ 0

−1
e
∫ s

0 ( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(s + τ, τ − t, θ−τω, vτ−t)∥2ds

+ c1

∫ τ

τ−1
e
∫ ζ

0 ( 5
4λ−2αz(θξω))dξ∥(−∆)

γ
2 v(ζ + τ, τ − t, θ−τω, vτ−t)∥2dζ

+

∫ τ

τ−1
e
∫ ζ

0 ( 5
4λ−2αz(θξω))dξ

(
2
m
∥h(ζ + τ)∥2 + c2

)
e−2αz(θζω)dζ,

(4.19)

which, along with Lemma 4.1 for σ = τ, implies the desired estimates. □
To prove the pullback asymptotic compactness of the cocycle associated with problem (1.10) on

the unbounded domain Rn, we need to derive the uniform estimate on the tail parts of the solutions for
large space variables when the time is large enough.

Lemma 4.4. Suppose the conditions of Lemma 4.1 hold. Then, for every ε > 0, τ ∈ R, ω ∈ Ω, and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, ε, α) > 0, K = K(τ, ω, ε) ≤ 1 such that,
for all t ≥ T and k ≥ K, the solution v of problem (1.10) with eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) satisfies∫

|x|≥k
|v(τ, τ − t, θ−τω, vτ−t)(x)|2dx ≤ ε.

Proof. The proof of this lemma follows that of Lemma 4.4 in [19], so we omit the details here. □

5. Existence of random attractors

In this section, we prove the existence and uniqueness of tempered pullback attractors for the non-
local fractional stochastic differential equation (1.1). To that end, we need to establish the existence of
tempered random absorbing sets and the pullback asymptotic compactness of the cocycle Φ.

Lemma 5.1. Under conditions (1.2)-(1.5) and (3.46), the cocyle Φ has a closed measurable pullback
absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, and for every τ ∈ R and ω ∈ Ω, the set K(τ, ω) is
defined by

K(τ, ω) = {u ∈ L2(Rn) : ∥u∥2 ≤ e2αz(ω)R(τ, ω)},

where R(τ, ω) is the same as in (4.10).

Proof. First, by (3.2) and (4.11), we see that K ∈ D, that is, for every c > 0,

lim
t→∞

e−ct∥K(τ − t, θ−tω)∥ = 0.
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On the other hand, by (1.8), we have

u(τ, τ − t, θ−τω, uτ−t) = eαz(ω)v(τ, τ − t, θ−τω, vτ−t) with uτ−t = eαz(θ−tω)vτ−t. (5.1)

Then, it follows from Corollary 4.2 that, for every D ∈ D and uτ−t ∈ D(τ − t, θ−tω), there exists
T = T (τ, ω,D, α) > 0 such that for all t ≥ T ,

v(τ, τ − t, θ−τω, vτ−t) ∈ B(τ, ω), (5.2)

where B(τ, ω) is the same set as in (4.9). By (5.1)-(5.2), we find that, for all t ≥ T ,

u(τ, τ − t, θ−τω, uτ−t) ∈ K(τ, ω),

which along with (3.44) implies that, for all t ≥ T ,

Φ(t, τ − t, θ−tω, uτ−t) ∈ K(τ, ω).

This shows that K is a D-pullback absorbing set of Φ. It is clear that R(τ, ω) is measurable in ω ∈ Ω,
which implies the measurability of K(τ, ω) in ω ∈ Ω. □

The uniform estimates of the solutions of problem (1.1) in Hγ(Rn) is given below.

Lemma 5.2. Assume the conditions of Lemma 4.3 hold. For every τ ∈ R, ω ∈ Ω, and D = {D(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D there exists T = T (τ, ω,D, α) > 0 such that, for any t ≥ T, the solution u of problem
(1.1) with uτ−t ∈ D(τ − t, θ−tω) satisfies

∥u(τ, τ − t, θ−τω, uτ−t)∥2Hγ(Rn)

≤ M3 + M3

∫ 0

−∞

e
5
4λ−2α

∫ s
0 z(θrω)dre−2αz(θsω)

(
1 + ∥h(s + τ)∥2 + ∥ψ1(s + τ)∥L1(Rn)

)
ds,

where M3 = M2e2αz(ω) and M2 is the same positive constant as in Lemma 4.3.

Proof. This estimate follows from (5.1) and Lemma 4.3 immediately. □
Based on Lemma 4.4, one can derive the uniform estimates on the tails of solutions of problem (1.1)

as stated below.

Lemma 5.3. Suppose the conditions of Lemma 4.3 are true. Then, for every ε > 0, τ ∈ R, ω ∈ Ω, and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D there exists T = T (τ, ω,D, ε, α) > 0, K = K(τ, ω, ε) ≥ 1 such that,
for all t ≥ T and k ≥ K, the solution u of problem (1.1) with uτ−t ∈ D(τ − t, θ−tω) satisfies∫

|x|≥k
|u(τ, τ − t, θ−τω, uτ−t)(x)|2dx ≤ ε.

Proof. This is an immediate consequence of Lemma 4.4 together with the arguments of the proof
of Lemma 5.1. The details are omitted here. □

The next lemma is concerned with theD-pullback asymptotic compactness of Φ.

Lemma 5.4. Under conditions (1.2)–(1.5), (4.12), and (3.47), for every τ ∈ R, ω ∈ Ω, and D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, the sequence Φ(tn, τ − tn, θ−tnω, u0,n) has a convergence subsequence in
L2(Rn) whenever tn → ∞ and u0,n ∈ D(τ − tn, θ−tnω).
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Proof. By (3.44), we have

Φ(tn, τ − tn, θ−tnω, u0,n) = u(τ, τ − tn, θ−τω, u0,n),

which, along with Lemma 5.3, shows that for every ε > 0, τ ∈ R, and ω ∈ Ω, there exist K =
K(τ, ω, ε) ≥ 1 and N1 = N1(τ, ω,D, ε) ≥ 1 such that, for all n ≥ N1,

∥Φ(tn, τ − tn, θ−tnω, u0,n)∥L2(|x|≥K) ≤
ε

2
. (5.3)

By Lemma 5.2, we find there exists N2 = N2(τ, ω,D, ε) ≥ N1 such that, for all n ≥ N2,

∥Φ(tn, τ − tn, θ2,−tnω, u0n)∥Hγ(|x|<K) ≤ L(τ, ω),

where L(τ, ω) is a positive constant. Since γ ∈ (0, 1), the embedding Hγ(|x| < K) ↪→ L2(|x| < K)
is compact, which together with (5.3) implies that {Φ(tn, τ − tn, θ2,−tnω, u0,n}

∞
n=1 has a finite cov-

ering in L2(Rn) of balls of radii less than ε. As a consequence, we infer that the sequence
{Φ(tn, τ − tn, θ2,−tnω, u0,n)}∞n=1 is precompact in L2(Rn). □

We now present our main result of this paper as follows.

Theorem 5.5. Suppose (1.2)–(1.5), (4.12), and (3.47) hold. Then, the cocycle Φ of problem (1.1) has
a uniqueD-pullback attractorA = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in L2(Rn).

Proof. This is an immediate consequence of Lemmas 5.1 and 5.4 and Proposition 2.1. □

6. Conclusions and future work

We studied the existence and uniqueness of weak solutions, as well as the existence and uniqueness
of random attractors, to a kind of nonlocal fractional stochastic reaction-diffusion equations in Rn by
doing an appropriate change of variables. The limitation of this method is obvious: it is only helpful
when the noise is additive or (linear) multiplicative. Therefore, in the next step, it is worth analyzing
this model, but driven by a more general nonlinear noise. In this case, the method used in this paper
fails. Instead, it is necessary to find another technique to establish the results, for example, the Wong-
Zakai approximation can be a good option to handle this problem or the theory of mean weak random
attractors.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

The research has been supported by the Nature Science Foundation of Jiangsu Province (Grant No.
BK20220233).

AIMS Mathematics Volume 9, Issue 4, 8020–8042.



8040

Conflict of interest

Tomás Caraballo is an editorial board member for AIMS Mathematics and was not involved in the
editorial review or the decision to publish this article. All authors declare that there are no competing
interests.

References

1. M. Chipot, Elements of Nonlinear Analysis, Birkhäuser, Basel, 2000.
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