
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(4): 7973–8000.
DOI: 10.3934/math.2024388
Received: 12 December 2024
Revised: 26 January 2024
Accepted: 06 February 2024
Published: 26 February 2024

Research article

Legendre spectral collocation method for solving nonlinear fractional
Fredholm integro-differential equations with convergence analysis

A. H. Tedjani1, A. Z. Amin2, Abdel-Haleem Abdel-Aty3, M. A. Abdelkawy1,4,* and Mona
Mahmoud5,*

1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, Saudi Arabia

2 Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3 Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi
Arabia

4 Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
5 Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413,

Saudi Arabia

* Correspondence: Email: maohamed@imamu.edu.sa.
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1. Introduction

For the last three decades, researchers have been drawn to fractional calculus, which has numerous
applications in engineering and physics. Fractional calculus finds utility in various fields like
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image processing [1], dynamical system control theory, signal processing, electrical networks, optics,
probability, statistics [2], and chemical physics. Fractional integro-differential equations, both linear
and nonlinear, play a pivotal role in natural sciences and engineering, solving mathematical modeling
challenges in spatiotemporal developments, biological and physical problems, epidemic modeling, and
boundary value problems [3–5]. Given that analytical solutions are often elusive, the development of
numerical methods for approximating solutions has become imperative.

The author in [6] has provided a solution to the dynamic model of atmospheric CO2 concentration
via a fractional mathematical model of the non-linear nature, but [7] computed the solution of some
Cauchy problems and diffusion equations modeled with the Hilfer-Prabhakar fractional derivative
via the Kharrat-Toma transform. The authors in [8], investigated a fractional extension of Lienard’s
equation by using a fractional operator with an exponential kernel.

In this paper, we present the Legendre-Gauss-Lobatto collocation (L-G-LC) method to solve the
non-linear fractional Fredholm integro-differential equations (non-FFIDEs), given by:

Dα1Y(s) = φ(s) +

1∫
0

η(s, t)G(Y(t))dt, (1.1)

with the initial conditions;
Y(β)(0) = 0, β = 0, 1, (1.2)

where Dα1 denotes the fractional derivative of order α1, and 0 < α1 < 2.
Physical processes such as neutron transport [9], neural networks [10], population models [11],

filtering and scattering [12], inverse problems [13], and disease spread [14] are all modeled using
Fredholm integro-differential equations (FIDEs). In [15], the Legendre collocation method was used
for fractional Volterra integro-differential equations. Whereas, in this work, we will solve fractional
Fredholm integro-differential equations and provide the convergence analysis. Many papers published
in recent years (e.g., [16, 17]) have been devoted to discussing the FIDEs. A linear fractional
Fredholm differential equation with variable coefficients has been approximated via the Taylor matrix
method [18]. While [19] introduces a robust algorithm for mathematically resolving a family of two-
dimensional FIDEs, the authors in [20] utilized the reproducing kernel method for approximating
the solution of a nonlinear FIDE, and the fractional derivative is given in the Caputo sense in this
paper. [21] used a computational method for solving a class of nonlinear Fredholm integro-differential
equations of fractional order based on the second kind of Chebyshev wavelet. [22] constructed a
method based on Haar wavelet approximation. The authors in [23] used an accurate numerical
approach based on Wilson wavelets and the collocation method, as well as the Kumar and Sloan
scheme, to numerically solve the nonlinear fractional integro-differential equations of Fredholm-
Hammerstein. [24] used Taylor expansion to solve the linear fractional integro-differential equations
of the Fredholm and Volterra types. It entails the nth-order Taylor expansion of the unknown function
at any point, yielding a system of equations for the unknown function and its m derivatives. [25]
utilized a novel iterative algorithm for solving Volterra partial integro-differential problems with a
weakly singular kernel. The author in [26] solves integro-differential equations (IDEs) by utilizing
Jacobi-Gauss quadrature, while [27] solves fractional differential and integro-differential equations
by utilizing an operational matrix method. The authors in [28] utilized the shifted Jacobi spectral
collocation method to solve IDEs, while in [29] the author used the Taylor polynomial for solving
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non-linear IDEs. [30] solved IDEs with weakly singular kernels by utilizing spline collocation, while
in [31,32] the authors find a solution to FIDEs by applying Legendre multiwavelets and a shifted Lucas
polynomial, respectively. There are several other numerical methods to consider [33, 34]. Differential
collocation schemes can be obtained by either directly approximating fractional derivative operators or
by recasting the governing differential equation into an equivalent integral equation [35]. Because
of numerical differentiation, the integral collocation scheme has better stability properties than its
differential counterpart, whereas numerical integration is inherently stable [36]. However, differential
collocation schemes must use efficient integration preconditioners to overcome ill-conditioning issues
when solving differential equations, which worsen as the number of collocation nodes increases.

In the last four decades, spectral methods [37–41] have been widely used in a variety of fields.
Initially, Fourier-expanded spectral techniques were used in a few contexts, such as periodic boundary
conditions and simple geometric areas. They have recently advanced theoretically and been used as
powerful techniques to solve a variety of problems. When compared to other numerical techniques,
spectral techniques have a superior character based on thoroughness and exponential averages of
convergence. The fundamental step in all spectral techniques is to express the problem solution as
a finite series of several functions. Spectral methods include many types, such as collocation [42–45],
tau [46], Galerkin [47], and Petrov-Galerkin [48]. The coefficients will then be chosen to minimize the
absolute error. During this time, the numerical solution in the spectral collocation technique will be
implemented to nearly satisfy IDEs (see [49–51]). On the other hand, at selection points, the residuals
may be permitted to be zero. The collocation approach has been successfully applied in a wide range of
scientific and engineering areas due to its obvious advantages. Because their global nature fits well with
the nonlocal definition of fractional operators, spectral collocation methods are promising candidates
for solving fractional differential equations.

The main goal of the paper is to use the L-G-LC method for approximating non-FFIDEs with
L-GL interpolation nodes. We estimate the residuals of the aforementioned problem by using a
finite expansion of a Legendre polynomial for independent variables and L-GL quadrature points
to approximate the solution of an equation. When these equations are combined with the initial
conditions, they yield an algebraic system of (N+1) equations that can be solved. In addition,
we investigate the convergence of approximation solutions. To demonstrate the method’s accuracy,
numerical simulations of some non-FFIDEs are presented.

This paper is structured as follows: Section 2 contains some preliminary information about FDEs.
In Section 3, we utilized the L-G-LC method for building a technique to solve nonlinear FFIDEs.
Section 4 discusses the spectral collocation method’s convergence analysis. Numerical simulations are
presented in Section 5 to ensure the effectiveness of the proposed method. Some observations and
conclusions are provided in Section 6.

2. Fractional calculus

This section introduces the main definitions used in the following section as the left and right Caputo
(RL-C) definitions. [43] gives the RL-C derivative Dα

1 of order α1 as

Dα1
+ Z(%) =

1
Γ(η − α1)

(∫ %

a
(% − κ)η−α1−1Z(η)(κ)dκ

)
, η − 1 < α1 ≤ η, % > a. (2.1)
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Dα1
− Z(%) =

(−1)η

Γ(η − α1)

(∫ L

%

(κ − %)η−α1−1Z(η)(κ)dκ
)
, η − 1 < α1 ≤ η, % > a. (2.2)

The operator Dα1
± satisfies the following properties:

Dα1
± Iα1
± Z(κ) = Z(κ)Iα1

± Dα1
± Z(κ) = −

dα1e−1∑
ε=0

Z(ε)(0+)
κε

ε!
+Z(κ), (2.3)

where Dα1± and I±α1 are operators of left and right Caputo differential and integral, respectively.

Dα1
+ κ

ε =

0, for ε ∈ N0 and ε < dα1e,
Γ(ε+1)

Γ(ε+1−α1)κ
ε−α1 , for ε ∈ N0 and ε ≥ dα1e or ε < N and ε > bα1c,

(2.4)

where bα1c and dα1e denote the floor and ceiling functions, respectively, while N = {1, 2, . . .} and
N0 = {0, 1, 2, . . .}.

For α1 > 0, the fractional integrals of order α1 [43], both left-sided and right-sided, are specified as
follows:

Iα1
+ Z(%) =

1
Γ(α1)

∫ %

a
(% − κ)α1−1Z(κ)dκ, (2.5)

Iα1
− Z(%) =

1
Γ(α1)

∫ L

%

(κ − %)α1−1Z(κ)dκ. (2.6)

3. The spectral collocation method

In the next section, we will propose a Legendre spectral collocation (LSC) method for solving
Eq (1.1).

3.1. L-GL interpolation

The Legendre polynomials Lκ(%), κ = 0, 1 . . . , follow the Rodrigues formula [52]:

Lκ(%) =
(−1)κ

2κκ!
DZ((1 − %2)κ). (3.1)

Furthermore, Lκ(%) aligns with a polynomial of degree κ, resulting in the pth derivative of Lκ(%) as:

L(p)
κ (%) =

κ−p∑
ρ=0(κ+ρ=even)

Cp(κ, ρ)Lρ(%), (3.2)

where

Cp(κ, ρ) =
2p−1(2ρ + 1)Γ( p+κ−ρ

2 )Γ( p+κ+ρ+1
2 )

Γ(p)Γ( 2−p+κ−ρ

2 )Γ(3−p+κ+ρ

2 )
.
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Orthogonality is attained through the execution of the subsequent procedures:

(Lκ(%),Ll(%))χ =

1∫
−1

Lκ(%)Ll(%) χ(%) = hκαlκ, (3.3)

where χ(%) = 1, hκ = 2
2κ+1 .

The L-GL quadrature method was employed to effectively compute the integrals presented earlier.
For anyZ ∈ S 2ν1−1 on the interval [−1, 1], we can express:

1∫
−1

Z(%)d% =

ν1∑
ε=0

$ν1, jZ(%ν1,ε). (3.4)

For instance, contemplate the discrete inner product:

(Z,Z)w =

ν1∑
ε=0

Z(%ν1,ε)Z(%ν1,ε)$N, j. (3.5)

In the case of L-GL, we ascertain that [53] %ν1,0 = −1, %ν1,ν1 = 1, %ν1,ε and (ε = 1, · · · , ν1 − 1)
are the zeros of (lν1(%))

′

, and $ν1,ε = 2
ν1(ν1+1)(Lν1 (%ν1 ,ε))

2 , where $ν1,ε (with 0 ≤ ε ≤ ν1) and %ν1,ε (with
0 ≤ ε ≤ ν1) serve as the Christoffel numbers and nodes within the interval [−1, 1], respectively. To
apply these polynomials in the range % ∈ (0, l1), we introduce a shifted Legendre polynomials (SLPs)

by utilizing % =
2%
l1
− 1.

If we denote by Ll1,ρ(%) the SLP Lρ

(
2%
l1
− 1

)
, then Ll1,ρ(%) can be obtained as [52]:

(ρ + 1)Ll1,ρ+1(%) = (2ρ + 1)(
2%
l1
− 1)Ll1,ρ(%) − ρLl1,ρ−1(%), ρ = 1, 2, · · · . (3.6)

The analytical representation of the SLP denoted as Ll1,ρ(%) of degree ρ is expressed as follows:

Ll1,ρ(%) =

ρ∑
κ=0

(−1)ρ+κ (ρ + κ)!
(ρ − κ)!(κ!)2Lκ

%κ. (3.7)

The condition of orthogonality is expressed as:∫ l

0
Ll1,ε(%)Ll1,κ(%)wl1(%)d% = ~κ αεκ, (3.8)

where wl1(%) = 1 and ~κ =
l1

2κ + 1
.

In terms of SLPs, a square integrable functionZ(%) in the interval (0, l) can be expressed as:

Z(%) =

∞∑
ε=0

eεLl1,ε(%), (3.9)
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where the coefficients eε are:

eε =
1
~ε

∫ l

0
Z(%)Ll1,ε(t)wl1(%)d%, ε = 0, 1, 2, · · · . (3.10)

The initial (ν1 + 1) terms of the SLPs find application in practical scenarios. Consequently, Z(%) is
formulated as follows:

Zν1(%) '
ν1∑
ε=0

eεLl1,ε(%). (3.11)

3.2. LSC scheme

In this section we solve Eq (1.1) by using the following transformations t = 2λ − 1, s = 2% − 1,
Y(2% − 1) = Z(%), φ(2% − 1) = φ(%), 2G(Y(2λ − 1) = F(Z(λ)), and η(2% − 1, 2λ − 1) = σ(%, λ), we
obtain,

Dα1Z(%) = φ(%) +

1∫
−1

σ(%, λ)F(Z(λ))dλ, (3.12)

with the initial conditions;
Z(α)(−1) = dβ, β = 0, 1. (3.13)

We used the L-G-LC method to solve non-FFIDEs with initial conditions. The LSC method for
Eq (3.12) is to explore the approximate solution in the form,

Zν1(%) =

ν1∑
ε=0

eεLε(%). (3.14)

As a result, by inserting Eq (3.14) into Eq (3.12),

Dα1Zν1(%) = I%,ν1φ(%) +

1∫
−1

I%,ν1 Iλ,ν1

[
σ(%, λ)F(Z(λ))

]
dλ, (3.15)

where I%,ν1 , Iλ,ν1 are Legendre-Gauss-Lobatto interpolation operators.
Now, we describe how we implemented our form Eq (3.15) by utilizing the Legendre-Gauss-Lobatto

interpolation, which serves as the foundation for our scheme, setting,

I%,ν1 Iλ,ν1

[
σ(%, λ)F(Z(λ))

]
=

ν1∑
ε=0

ν1∑
ı=0

eεıLε(%)Lı(λ), (3.16)

we can obtain∫ 1

−1
I%,ν1 Iλ,ν1

[
σ(%, λ)F(Z(λ))

]
dλ =

ν1∑
ε=0

ν1∑
ı=0

eεıLε(%)
∫ 1

−1
Lı(λ)dλ =

ν1∑
ε=0

eε,0Lε(%), (3.17)

where
eε,0 =

2ε + 1
2

∑
|a|∞≤N

∑
|b|∞≤N

$a$bσ(%a, λb)F(Z(λb))Lı(%a). (3.18)
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The fractional derivative ofZν1(%) is then evaluated as

Dα1Zν1(%) =

ν1∑
ε=0

eεDα1
(
Lε(%)

)
=

ν1∑
ε=0

eεξε(%). (3.19)

Utilizing Eqs (3.19) and (3.17), we can express Eq (3.12) as:
ν1∑
ε=0

eεξε(%) = ω

ν1∑
ε=0

eε,0Lε(%) +

ν1∑
ε=0

νε1Lε(%), (3.20)

where νε1 =
∑ν1
ε=0 φ(%)$εLε(%).

Merging Eqs (3.14) and (3.13), we get
ν1∑
ε=0

eεDβLL,ε(0) = φβ, β = 0, 1. (3.21)

Conversely, we can formulate

(−1)εeε = φ0, (3.22)

ν1∑
ε=0

(−1)ε−1Γ(ε + 1)(ε + 1)
L(ε − 1)!Γ(2)

eε = φ1. (3.23)

Equations (3.21)–(3.23) are equivalent to a discretized system of (ν1 + 1) algebraic equations with the
unknowns eε, ρ = 0, · · · , ν1,

(−1)εeε = φ0,
ν1∑
ε=0

(−1)ε−1Γ(ε+1)(ε+1)
L(ε−1)!Γ(2) eε = φ1,

ν1∑
ε=0

eεξε(%) = α1
∑ν1
ε=0 eε,0Lε(%) +

∑ν1
ε=0 WεLε(%).

(3.24)

At last, the system of (ν1 + 1) algebraic equations generated are solved. In our implementation, this
system has been solved using the Mathematica function. As a result,Zν1(%) can be calculated in closed
form.

4. Convergence analysis

A discussion of error analysis is included, as well as some useful lemmas.
AssumePN : L2(I)→ %N to be the L2 orthogonal projection, as defined by [53]

(PNZ(%) −Z(%), ρ) = 0, ∀ρ ∈ ZN .

Here are some definitions of weighted Hilbert spaces. For a nonnegative integer η, define [52, 53]

Hη(−1, 1) = {Z : ∂ı%Z ∈ L2(−1, 1), 0 ≤ i ≤ η},

whereas ∂ı%Z(%) =
∂ıZ(%)
∂%ı

, related to the norm and semi-norm as follows:

‖ Z ‖η= (
η∑
ı=0

‖ ∂ı%Z ‖
2)

1
2
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Zη =‖ ∂η%Z ‖ .

Lemma 1. Assume IN denotes the polynomial of degree N interpolating Z at one of these point sets,
and that the interpolation error is estimated asZ− INZ in the norms of the Sobolev spaces H1(−1, 1).
When u ∈ Hη(−1, 1) and η ≥ 1, the relationship holds, as indicated by [53].

‖ Z − INZ ‖L2(−1,1)≤ CN−η | Z |Hη,N (−1,1) . (4.1)

Lemma 2. Let Z ∈ Hη(I), I ≡ (−1, 1). The following estimates are satisfied by the interpolation
of Z (INξ) computed at any point of Jacobi Gauss points (Gauss-Radau points, Gauss-lobatto, or
Gauss) [53]:

‖ Z
′

(%) − (INZ(%))
′

‖L2
(I)
≤ CN1−η | Z |H1(I) . (4.2)

Lemma 3. Consider e(x) = Z(%) − ZN(%) to represent the error function of the solution. The
subsequent inequality is applicable in this context:

‖e‖ ≤
3∑
`=1

‖B`‖ (4.3)

where
B1 = I%,N Dα1Z(%) − Dα1Z(%)

B2 = I%,N
∫ 1

−1
(I − Iλ,N)

[
σ(%, λ)F(Z(λ))

]
dλ

B3 = I%,N
1∫
−1

Iλ,N
[
σ(%, λ)F(Z(λ)) − σ(%, λ)F(ZN(λ))

]
dλ.

Proof. By using the Caputo definition, we write the equation of non-FFIDEs as follows:

Dα1Z(%) = I%,Nφ(%) + I%,N

1∫
−1

σ(%, λ)F(Z(λ))dλ, 0 < α1 < 1 (4.4)

and when utilizing the approximate solution we have,

I%,N Dα1Z(%) = I%,Nφ(%) +

1∫
−1

I%,N Iλ,N
[
σ(%, λ)F(ZN(λ))

]
dλ. (4.5)

Subtracting (4.5) from (4.4) yields

e(%) = I%,N Dα1Z(%) − Dα1Z(%) + I%,N

1∫
−1

[
σ(%, λ)F(Z(λ)) − Iλ,N

[
σ(%, λ)F(ZN(λ))

]]
dλ (4.6)

hence

e(t) = I%,N Dα1Z(%) − Dα1Z(%) + I%,N

1∫
−1

Iλ,N
[
σ(%, λ)F(Z(λ)) − σ(%, λ)F(ZN(λ))

]
dλ. (4.7)

The desired result can be obtained directly from the above.
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4.1. Error analysis

Theorem 1. Let INZ(%) be the spectral approximate and letZ(%) be the exact solution of the equation
of non-FFIDEs and, F satisfies the Lipschitz condition with respect to its third argument with the
Lipschitz constant L < 1

M and Max|σ(%, λ)| ≤ M Then, we have the estimate

‖ EN ‖L2(I) ≤ CN−η|Dα1Z|Hη,N,(I). + c

√
(N − η + 1)!

N!
(N + η)−(η+1)/2

[
|F(Z(·))|H1(I) + |Z|H1(I)

]
+ LM ‖ EN ‖ .

(4.8)

Proof. In the %-direction, the interpolation operator is formally defined as I%,N : C(−1, 1)→ PN for any
Z(%) ∈ C(−1, 1)

Iν1,ν
%,NZ(%ν1,ν

` ) = Z(%ν1,ν
` ), 0 ≤ ` ≤ N. (4.9)

The Jacobi polynomial is reduced to the Legender polynomial Ln(%) in the special case on condition
that ν1 = ν = 0. We can write %` = %0,0

` , φ` = φ0,0
` , and I%,N = I0,0

%,N . Equation (4.10) can be formulated
utilizing Lemma 3 and the Gronwall inequality:

‖ e(x) ‖L2≤‖ B1 ‖L2 + ‖ B2 ‖L2 + ‖ B3 ‖L2 . (4.10)

We compute B1 by using Lemma 3, Lemma (3-3) in [54],

‖ B1 ‖L2(I)≤ CN−η|Dα1Z|Hη,N,(I). (4.11)

The quantity |B2| is subsequently approximated as follows:

‖ B2 ‖ =

∥∥∥∥∥∥I%,N

∫ 1

−1
(I − Iλ,N)[σ(%, λ)F(Z(λ))]dλ

∥∥∥∥∥∥
=

[ ∑
|ı|∞≤N

$ı

( ∫ 1

−1
(I − Iλ,N)σ(%ı, λ)F(Z(λ))dλ

)2] 1
2

.

(4.12)

By using the Cauchy inequality, we can get

‖ B2 ‖ ≤

[ ∑
|ı|∞≤N

$ı

∫ 1

−1

∣∣∣∣∣(I − Iλ,N)σ(%ı, λ)F(Z(λ))
∣∣∣∣∣2dλ

] 1
2

≤

( ∑
|ı|∞≤N

$ı

) 1
2

max
|ı|∞≤N

( ∫ 1

−1

∣∣∣∣∣(I − Iλ,N)σ(%ı, λ)F(Z(λ))
∣∣∣∣∣2dλ

) 1
2

.

(4.13)

Hence,

‖ B2 ‖ ≤ c

√
(N − η + 1)!

N!
(N + η)−(η+1)/2|F(Z(·))|. (4.14)
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We have now determined an estimate for the term |B3|. The Legendre-Gauss integration formula (3.3)
has been applied to achieve this result.

‖ B3 ‖ =

∥∥∥∥∥∥∥∥I%,N

1∫
−1

Iλ,N[σ(%, λ)F(Z(λ)) − σ(%, λ)F(ZN(λ))]dλ

∥∥∥∥∥∥∥∥
=

[ ∑
|ı|∞≤N

$ı

( 1∫
−1

Iλ,N[σ(%ı, λ)F(Z(λ)) − σ(%ı, λ)F(ZN(λ))]dλ
)2] 1

2

.

(4.15)

We obtain it by using the Cauchy-Schwarz inequality

‖ B3 ‖ ≤

[ ∑
|ı|∞≤N

$ı

1∫
−1

Iλ,N |σ(%ı, λ)F(Z(λ)) − σ(%ı, λ)F(ZN(λ))|2dλ
] 1

2

≤

[ ∑
|ı|∞≤N

$ı

∑
|`|∞≤N

$`|σ(%ı, λ`)F(Z(λ`)) − σ(%ı, λ`)F(ZN(λ`))|2
] 1

2

.

(4.16)

By using the Lipschitz condition, we can write

‖ B3 ‖ ≤ LM
[ ∑
|ı|∞≤N

$ı

∑
|`|∞≤N

|Z(λ`) −ZN(λ`)|2$`

] 1
2

≤ LM
[ ∫ 1

−1
|Iλ,N(Z(λ) −ZN(λ))|2dλ

] 1
2

,

(4.17)

which L is Lipschitz condition, and Max|σ(%, λ)| ≤ M and L < 1/M.
Furthermore, by utilizing the triangle inequality, we derive that

‖ B3 ‖≤ LM
[( ∫ 1

−1
|Iλ,NZ(λ) −Z(λ))|2dλ

) 1
2

+

( ∫ 1

−1
|Z(λ) −ZN(λ))|2dλ

) 1
2
]
. (4.18)

Moreover, we can infer from Lemma 4 that

‖ B3 ‖ ≤ c

√
(N − η + 1)!

N!
(N + η)−(η+1)/2|Z| + LM ‖ EN ‖ . (4.19)

Consequently, the combination of (4.11), (4.14), and (4.19) results in the desired conclusion of this
theorem.

5. Numerical results

We examine several examples to validate the proposed methodology’s effectiveness and accuracy.
The absolute error (AE) is defined as the difference between the exact and measured values of an
approximate solution. The programs used in this work are run on a PC with an Intel(R) Core(TM)

AIMS Mathematics Volume 9, Issue 4, 7973–8000.



7983

i7-10510U CPU running 1.80 GHz and 2.30 GHz, with 2.00 GB of RAM, and Mathematica version 12
running the code.

The definition of the absolute error (AEs) is as follows:

E(%) =| Z(%) −ZApprox(%) | . (5.1)

WhereZApprox(%) andZ(%) are the approximate and exact solutions at z, respectively.
Example 1. First, we present non-FFIDEs.

Dα1Z(%) = F(%) +
1∫

0
(%λ + %2λ2)(Z(λ))2dλ,

Z(0) = 0.
(5.2)

While F(%) is derived from the exact solutionZ(%) = %3 − %5 with α1 = 0.9.
The methodology outlined in Section 3.2 is applied to address the problem. The outcomes presented

in Table 1 depict the AE corresponding to various choices of ν1. The AE for Example 1 is illustrated
in Figure 1 for ν1 = 6, while the AE is illustrated in Figure 2 for ν1 = 12. Additionally, Figure 3
displays the numerical approximation of κν1(%) for various fractional orders (α1). From Table 1 and
Figures 1 and 2, it is evident that the proposed algorithm yields a highly accurate approximation of the
exact solution, even with a minimal number of collocation points. The results highlight the superior
accuracy of our method. Taking α1 = 0.5 and ν1 = 12, we obtainZν1(%) of Example 1 as

Z12(%) = − 2.77556 × 10−17 − 6.55032 × 10−15% + 3.72147 × 10−13%2

+ %3 + 7.95231 × 10−11%4 − %5 + 1.80595 × 10−9%6

− 4.43547 × 10−9%7 + 7.19967 × 10−9%8 − 7.65684 × 10−9%9

+ 5.12803 × 10−9%10 − 1.96105 × 10−9%11 + 3.26391 × 10−10%12.

(5.3)

Taking α1 = 0.7 and ν1 = 12, we obtainZν1(%) of Example 1 as

Z12(%) =2.77556 × 10−17 − 1.55431 × 10−15% + 9.50351 × 10−14%2

+ %3 + 1.84204 × 10−11%4 − %5 + 3.69927 × 10−10%6

− 8.54932 × 10−10%7 + 1.31104 × 10−9%8 − 1.32461 × 10−9%9

+ 8.48264 × 10−10%10 − 3.12294 × 10−10%11 + 5.03782 × 10−11%12.

(5.4)

Taking α1 = 0.9 and ν1 = 12, we obtainZν1(%) of Example 1 as

Z12(%) =0. − 4.44089 × 10−15% + 1.9007 × 10−13%2

+ %3 + 3.32756 × 10−11%4 − %5 + 7.05267 × 10−10%6

− 1.70713 × 10−9%7 + 2.75091 × 10−9%8 − 2.91912 × 10−9%9

+ 1.9581 × 10−9%10 − 7.52261 × 10−10%11 + 1.26101 × 10−10%12.

(5.5)
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Table 1. AE of Example 1 for ν1 = 6 and ν1 = 12.

ν1 = 6 ν1 = 12
0 6.93889 × 10−18 5.27633 × 10−18

0.1 6.56823 × 10−11 3.81986 × 10−17

0.2 4.33603 × 10−10 4.69485 × 10−17

0.3 1.34643 × 10−9 8.92014 × 10−18

0.4 3.03353 × 10−9 2.8328 × 10−17

0.5 5.71581 × 10−9 9.45104 × 10−17

0.6 9.60907 × 10−9 7.40932 × 10−16

0.7 1.49258 × 10−8 2.36254 × 10−16

0.8 2.18756 × 10−8 5.14069 × 10−16

0.9 3.06637 × 10−8 4.8150 × 10−16

1.0 4.14886 × 10−8 4.23968 × 10−16

0.0 0.2 0.4 0.6 0.8 1.0

0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

�

E
[�

]

Figure 1. The curve of AE as a function of % in Example 1 is plotted for ν1 = 6 and α1 = 0.9.
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Figure 2. The curve of AE as a function of % in Example 1 is plotted for ν1 = 12 and
α1 = 0.9.
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Figure 3. This graph illustrates κν1 for Example 1 at fractional orders α1 =

0.1, 0.3, 0.5, 0.7, 0.9, with ν1 = 12.
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Example 2. The following non-FFIDEs are considered [21]:Dα1Z(%) = 1
Γ( 1

2 )
(8

3

√
%3 − 2

√
%) − %

1260 +
1∫

0
%λ(Z(λ))4dλ,

Z(0) = 0,
(5.6)

where α1 = 0.5 and the exact solutionZ(%) = %2 − %. We examine the convergence and computational
processing time of our approach. It is evident that our proposed method outperforms Chebyshev
wavelet [21]. Table 2 presents the root mean square errors between Chebyshev wavelet [21] and
the current method across different ν1 values, along with the corresponding CPU time in seconds.
Furthermore, in Figure 4, we represent the logarithmic graphs of ME (i.e., log10 ME) obtained by the
proposed method with different values of ν1. It is demonstrated from the results of this example that
the present scheme provides very highly accurate approximation of the solution for the problems and
yields accurate convergence rates.

Table 2. Root mean square errors for Example 2 and the corresponding CPU time (in
seconds).

Chebyshev wavelet [21] Present method and CPU time
ν1 = 8 ν1 = 16 ν1 = 32 ν1 = 8 time ν1 = 12 time ν1 = 14 time

6.0 × 10−5 1.5 × 10−6 2.3 × 10−7 2.1 × 10−17 6.3 1.7 × 10−17 7.1 1.1 × 10−17 8.2

2 4 6 8 10 12 14

-15

-10

-5

0

ν1

L
o
g
1
0
M
E

Figure 4. Convergence for Example 2.

Example 3. Consider the following non-FFIDEs:Dα1Z(%) = F(%) +
1∫

0
(% + λ)2(Z(λ))3dλ,

Z(0) = Z
′

(0) = 0,
(5.7)
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where F is from exact solutionZ(%) = %3 − %2.
The outcomes of the L-G-LC method for various ν1 values are presented in Table 3. In Figure 5, we

graph the AE curve of Example 3 for ν1 = 5 and ν1 = 8. The concordance between the curves ofZ(%)
and ZApprox(%) from Example 3 is illustrated in Figure 6. From the results, we verify that our scheme
reveals superior accuracy, even for just a few points.
Example 4. Consider the following non-FFIDEsDα1Z(%) = F(%) +

1∫
0

(%λ)(Z(λ))2dλ,

Z(0) = 0,
(5.8)

where F is from exact solutionZ(%) = e−0.5%sin(π%).
The outcomes of the L-G-LC method for various ν1 values are displayed in Table 4. Furthermore,

in Figure 7, we depict the logarithmic graphs of ME (i.e., log10 ME) obtained by the proposed method
for various values of ν1 and α1 = 0.2, 0.5, 0.9. Thus, we have illustrated that the present method offers
a precise approximation for problems characterized by nonlinearity and lack of smoothness.

Table 3. AE of Example 3 for ν1 = 5 and ν1 = 8.

ν1 = 5 ν1 = 8
0.1 9.47702 × 10−7 1.76628 × 10−17

0.2 2.45058 × 10−6 2.71915 × 10−17

0.3 3.44428 × 10−6 3.75761 × 10−17

0.4 3.80608 × 10−6 5.33192 × 10−17

0.5 3.95518 × 10−6 5.39188 × 10−17

0.6 4.45308 × 10−6 1.71356 × 10−16

0.7 5.60389 × 10−6 1.69977 × 10−16

0.8 7.05468 × 10−6 1.83947 × 10−16

0.9 7.39584 × 10−6 1.96828 × 10−16

1.0 3.76138 × 10−6 2.73561 × 10−16

Table 4. Maximum absolute error (MAE) of Example 4 for ν1 = 6, ν1 = 8, ν1 = 10, ν1 = 14.

ν1 ν1 = 6 ν1 = 8 ν1 = 10 ν1 = 14
MAX 8.3 × 10−5 8.07 × 10−7 4.65 × 10−9 4.17 × 10−14
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Figure 5. The AE curve versus % in Example 3 for α = 0.5, and ν1 = 5 and ν1 = 8,
respectively.
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Figure 6. TheZApprox(%) andZ(%) for Example 3 when for ν1 = 5 and ν1 = 8, respectively.
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Figure 7. Convergence for Example 4.

Example 5. Finally, we present non-FFIDEs.

Dα1Z(%) = 1 − %

4 +
1∫

0
(%λ)(Z(λ))2dλ,

Z(0) = 0,
(5.9)

where the exact solutionZ(%) = % for α1 = 1.

Table 5 exhibits the root mean square errors with α1 = 1. The exact and approximate solutions are
graphed in Figure 8 for α1 = 1. Figure 9–12 show the AE curve versus % in Example 5 for ν1 = 12
with various α1 = 0.25, 0.5, 0.75, 1, respectively. Moreover, in the absence of exact solutions, we have
plotted the approximate solutions for various values of α1. The results show that our technique achieves
greater accuracy, even for a few points.

Table 5. Root mean square errors of Example 5.

Second kind Chebyshev wavelet [21]
(k = 3,M = 2) (k = 4,M = 2) (k = 5,M = 2) (k = 4,M = 1)

2.9700e−007 1.8610e−008 1.1645e−009 1.6745e−005

Our method at different values of ν1

4 6 8 12
5.12745 × 10−17 4.23208 × 10−17 4.95392 × 10−18 3.54902 × 10−18
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Figure 8. The approximate solutions for various values of α1.
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Figure 9. The AE curve versus % in Example 5 for ν1 = 12 and α1 = 0.25.
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Figure 10. The AE curve versus % in Example 5 for ν1 = 12 and α1 = 0.5.
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Figure 11. The AE curve versus % in Example 5 for ν1 = 12 and α1 = 0.75 .
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Figure 12. The AE curve versus % in Example 5 for ν1 = 12 and α1 = 1.

Example 6. The following non-FFIDE with non-smooth solution is considered [55]:

D
1
2Z(%) =

√
π

2 −
1
4 + 1

2

1∫
0

(Z(λ))2dλ,

Z(0) = 0,
(5.10)

where the exact solutionZ(%) =
√
%.

When the solution to a problem is not sufficiently smooth, the performance of a numerical scheme,
particularly its order of convergence, can degrade significantly. This means that the accuracy of the
approximation does not improve as quickly as expected when the grid or step size is refined. However,
this challenge can be addressed effectively by incorporating fractional-order Legendre functionsLε(λγ)
into the numerical approach. These functions extend the traditional Legendre polynomials to fractional
orders, providing greater flexibility and adaptability. By tailoring the basis functions to better match
the problem’s irregularities, fractional-order Legendre functions can enhance the approximation’s
accuracy, maintaining or even improving the order of convergence despite the lack of smoothness in
the solution. Figure 13 presents the AE of Example 6 for γ = 1

2 and ν1. Figure 14 compares the exact
and approximate solutions. We applied our technique by using fractional-order in this example with
a non-smooth solution and we can see from the outcomes that the suggested scheme yields superior
accuracy. Additionally, it should be noted that good approximations can be made with only a few
points.
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Figure 13. The curve of AE as a function of % in Example 6 is plotted for γ = 1
2 .
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Figure 14. TheZApprox(%) andZ(%) for Example 6 for γ = 1
2 .
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Example 7. Consider the following non-FFIDE with non-smooth solution [55]:D
1
2Z(%) = F(%) +

1∫
0

sin(% + λ)(Z(λ))2dλ,

Z(0) = 0,
(5.11)

where F(%) is obtained from the exact solutionZ(%) = %
1
2 − 1

3!%
3
2 + 1

5!%
5
2 .

For solving the nonsmooth solution, we used fractional-order Legendre Lε(λγ). For our algorithm, we
get the maximum errors shown in Table 6, for various values of ν1 and γ. In Table 6 we compare our
method with the approach presented in [55], in terms of the MAE. From the results, we verify that our
scheme reveals superior accuracy, even for just a few points.

Table 6. MAE of Example 7 at different values of ν1.

Method in [55]
(ν1 = 20, α1 = 1

4 ) (ν1 = 20, α1 = 1
2 ) (ν1 = 20, α1 = 3

4 ) (ν1 = 20, α1 = 1)
3.6870e−14 1.5224e−20 5.8209e−03 2.3830e−02

Our method
(ν1 = 8, γ = 1

4 ) (ν1 = 8, γ = 1
2 ) (ν1 = 8, γ = 3

4 ) (ν1 = 8, γ = 1)
2.98244 × 10−14 1.5576 × 10−14 5.64913 × 10−15 1.15437 × 10−02

6. Conclusions

In this study, we introduce a precise and efficient numerical algorithm based on the L-G-LC method
to solve non-FFIDEs with initial value problems. The resolution of the nonlinear algebraic equations
system was employed to solve the problem. Utilizing the LGL points as collocation nodes in the
approximate solution preserves spectral convergence for the spatial variable. To illustrate the efficacy
of the derived numerical algorithm, numerical examples were presented. The algorithm demonstrates
efficiency, applicability to various operators, and extensibility to multi-dimensional problems, laying
the foundation for future research. In subsequent investigations, we aim to address fractional integro-
differential equations involving generalized formulations.

In conclusion, based on the theoretical formulation and numerical illustrations, we confirm that:

(1) The presented method yields accurate and reliable solutions, when compared with other
approaches.

(2) The error decays exponentially as ν1 → ∞ in the case of smooth solutions.

(3) An upper bound for the absolute error in the approximate solution can be determined.

(4) If the solution is not smooth, then the order of convergence of the numerical scheme may
deteriorate. However, this can be prevented by using fractional order Legendre functions.

Furthermore, we will study in the future a variable-order and stochastic fractional integro-
differential equation with a non-smooth solution by utilizing a combination of the finite difference
and spectral methods.
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