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1. Introduction

The groups involved in this paper are always finite. We denote by Ω1(G) the subgroup of G
generated by its elements of order p for a fixed prime p, π(G) denotes the set of all prime divisors of
|G|, Cn denotes a cyclic group of order n, and

℧(G) = ⟨ap | a ∈ G⟩.

All unexplained notations and terminologies are standard as in [1].
The normality of subgroups plays an important role in group theory. An important topic in group

theory is to investigate the groups in which certain subgroups are assumed to be normal. There are
many remarkable examples about this topic, and the so-called Dedekind group is one typical result. A
group G is called a Dedekind group if every subgroup of G is normal in G. The structure of Dedekind
groups has been completely determined by Dedekind and Baer (see [1, Theorem 5.3.7]). A group G is
Dedekind if and only if G is abelian or the direct product of a quaternion group of order 8, an elementary
abelian 2-group, and an abelian group with all its elements of odd order. Subsequently, many authors
dealt with the generalization of Dedekind groups. Here, we mention some of them. Pic [2] considered

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024387


7956

groups in which every subgroup S is quasinormal, that is, S satisfies S H = HS for all subgroups
H of G. Buckley et al. [3] dealt with groups in which every subgroup has at most two conjugacy
classes. Bozikov and Janko [4] gave a complete classification of p-groups, all of whose noncyclic
subgroups are normal. The research [5] classified p-groups whose non-normal abelian subgroups are
cyclic. Brandl [6] and Han et al. [7] classified groups in which all non-normal subgroups are conjugate.
The further results can be found in [8–13].

One of the aims of this paper is to classify p-groups whose noncyclic subgroups are normal
completely. Our method of proof is elementary, which is different from a result in [4, Theorem 1.1].
The other aim is to give a complete classification of non-nilpotent groups whose noncyclic subgroups
are normal.

Definition 1.1. A group is called a weakly Dedekind group if all noncyclic subgroups are normal.

It is clear that the class of weakly Dedekind groups is closed under taking subgroups and quotient
groups.

Remark 1.2. A weakly Dedekind group G has a normal Sylow subgroup.

Proof. Let p be the smallest prime dividing |G|. If a Sylow p-subgroup P is normal in G, then we are
done. If P is cyclic, then P has a normal p-complement N in G. By induction, N has a normal Sylow
subgroup Q, so Q is normal in G. □

Since the structure of Dedekind groups is well known, we discuss weakly Dedekind groups, which
are not Dedekind.

Remark 1.3. Let π be a set of primes. A direct product of a π-group and a π’-group is weakly Dedekind,
but not Dedekind if and only if one factor is weakly Dedekind but not Dedekind, and the other is cyclic.

Proof. Let G = M × N be a weakly Dedekind but not Dedekind group with M a π-group and N a
π’-group. Then G has a non-normal subgroup H × K, where H ≤ M and K ≤ N. Hence, H ⋬ M or
K ⋬ N. Without loss of generality, let H ⋬ M, then H × N ⋬ G and H × N is cyclic by hypothesis.
Thus, N is cyclic, so G has the required form.

The converse is clear. □

Definition 1.4. A weakly Dedekind group that is not Dedekind and cannot be expressed as a proper
direct product of a π-group and a π’-group is called a weakly primitive Dedekind group.

Finally, we give the complete classification of weakly primitive Dedekind groups. The specific
results are as shown below.

Theorem A. Let G be a p-group. Then G is weakly primitive Dedekind if and only if G is isomorphic
to one of the following groups:

(1) the quaternion group Q16 of order 16;

(2) G = ⟨a, b, c | a4 = 1, b2 = a2, [a, b] = a2, [a, c] = [b, c] = 1, ⟨c⟩ ∩ ⟨a, b⟩ ≤ ⟨a2⟩, |c| > 2⟩;

(3) G = ⟨a, b, c, d | a4 = d2 = 1, c2 = b2 = a2, [a, b] = [c, d] = a2, [a, c] = [a, d] = [b, c] = [b, d] =
1⟩;

(4) G = ⟨a, b | apm
= 1, bpn

= 1, [b, a] = apm−1
⟩, where m, n ≥ 2;
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(5) G = ⟨a, b | ap = bpn
= 1, [a, b] = c, [a, c] = [b, c] = cp = 1⟩, where c = bpn−1

if n , 1;

(6) G = ⟨a, b | a9 = 1, b3 = a3, [a, b] = c, c3 = 1, [a, c] = 1, [b, c] = a6⟩;

(7) G = ⟨a, b, c | ap = bpn
= cp = 1, [a, b] = 1⟩, where ⟨[a, c]⟩ = ⟨bpn−1

⟩, [b, c] ∈ ⟨bpn−1
⟩ and n ≥ 2;

(8) G = ⟨a, b | a8 = 1, a4 = b4, [a, b] = a2 or a6⟩.

Theorem B. Let G be a group with |π(G)| > 1. Then G is weakly primitive Dedekind if and only if G is
isomorphic to one of the following groups:

(1) G = ⟨a, b | ap = br = 1, [a, b] = at+1⟩, where

tr ≡ 1(mod p), r =
k∏

i=1

qni
i , t

r
q

ni
i . 1(mod p)

for any 1 ≤ i ≤ n;

(2) G = ⟨a, b, c | a4 = 1, b2 = a2, [a, b] = a2, c3n
= 1, ac = b, bc = ab or ba⟩;

(3) G = ⟨a, b, c | apm
= bp = cr = 1, ab = ac = a, bc = bt⟩, where

tr ≡ 1(mod p), r =
k∏

i=1

qni
i , t

r
q

ni
i . 1(mod p)

for any 1 ≤ i ≤ n;

(4) G = ⟨a, b, c | ap = bp = cr = 1, [a, b] = 1, ac = b, bc = ambn⟩, where p is a prime. Write

M =
[

0 1
m n

]
and

r =
k∏

i=1

qni
i ,

then

Mr ≡

[
1 0
0 1

]
(mod p),

where Mk has no eigenvalues (over the field of p elements Fp) or Mk (taken modulo p) is the identity

matrix for any k | r, and M
r

q
ti
i has no eigenvalues for any 1 ≤ i ≤ n.

2. Some preliminary results

We collect some lemmas, which will be frequently used in the sequel.

Lemma 2.1. Let G be a group with |π(G)| > 1. If G is weakly primitive Dedekind, then G = P ⋊ C,
where C is cyclic and q | |C/CC(P)| for any prime divisor q of |C|.

Proof. By Remark 1.2, there exists a normal Sylow subgroup P of G. Hence, P has a complement C
since G is solvable. By hypothesis, C is not normal in G, so it is cyclic.

Let Q be a Sylow q-subgroup of C for a prime q. If C = Q, the proof is complete. If C , Q, then
there exists a Hall subgroup D of C such that C = D × Q. It is clear that Q acts on P nontrivially.
Otherwise, G = PD × Q, a contradiction. Hence, q | |C/CC(P)|. □
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Lemma 2.2. Let G be a 2-group and |Ω1(Z(G))| , 2. If G is weakly primitive Dedekind, then G/Ω1(G)
has no subgroup isomorphic to the quaternion group Q8 of order 8.

Proof. Assume that there is a quaternion group KΩ1(G)/Ω1(G) of order 8 contained in G/Ω1(G). By
hypothesis, Ω1(G) is an elementary abelian subgroup of G, which is contained in Z(G). Hence,

K ∩Ω1(G) = Ω1(K).

Writing Ω = Ω1(K), then
KΩ1(G)/Ω1(G) � K/K ∩Ω1(G) = K/Ω

is a quaternion group of order 8. Choosing a minimal generating system aΩ, bΩ of K/Ω, then

a4Ω = Ω, b2Ω = a2Ω and [a, b]Ω = a2Ω.

Noting thatΩ is an elementary abelian subgroup, which is contained in Z(K), then a, b are all of order 8,
a2, b2, [a, b] are contained in Z(K), and [a, b]2 = a4. Thus,

1 = [a, b2] = [a, b]2 = a4,

a contradiction. □

Lemma 2.3. Let G be a p-group. Suppose that G does not contain the quaternion group Q8 and Z(G)
is noncyclic. If G is weakly primitive Dedekind, then Ω1(G) is an elementary abelian subgroup of type
(p, p) and

G′ ≤ Ω1(G) ≤ Φ(G) ≤ Z(G).

Proof. Since
|Ω1(Z(G))| , p,

and all noncyclic subgroups of G are normal, we have that Ω1(G) is an elementary abelian subgroup of
G which is contained in Z(G). Hence,

⟨a⟩Ω1(G) ⊴G

for any element a of G, so G/Ω1(G) is a Dedekind group. By Lemma 2.2, G/Ω1(G) is abelian.
Therefore, [a, b] ∈ Ω1(G), and the order of [a, b] is p for any two elements a, b of G, which implies
G′ ≤ Z(G). Since the order of [a, b] is p, we have

[ap, b] = [a, b]p = 1.

Thus, we get ap ∈ Z(G). Furthermore,

G′ ≤ Ω1(G) ≤ Z(G) and Φ(G) ≤ Z(G)

by the argument above.
If Ω1(G) is not an elementary abelian subgroup of type (p, p), then there are three different

subgroups, A1, A2, A3, of order p in Ω1(G) such that

A1A2A3 = A1 × A2 × A3.
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Thus, for any cyclic subgroup A of G, we have

A = AA1 ∩ AA2 ∩ AA3 ⊴G,

a contradiction, which implies that Ω1(G) is of type (p, p).
If Ω1(G) ≰ Φ(G), then G = H × B, where B is of order p. By hypothesis again, H is cyclic, which

implies that G is abelian, a contradiction. □

Lemma 2.4. Let G = P ⋊C with (|P|, |C|) = 1. If G is weakly primitive Dedekind, then

(1) Φ(P) is cyclic and C acts on Φ(P) trivially;

(2) The number of elements of any minimal generating system of P is less than or equal to 2.

Proof. (1) Suppose that Φ(P) is noncyclic or C acts on Φ(P) as nontrivial. We have Φ(P)C ⊴ G and
hence, Φ(P) must act on {Cg | g ∈ G} transitively. By Frattini’s argument,

P = Φ(P)NP(C) = NP(C),

which implies C ⊴G, so G = P ×C, a contradiction.
(2) Assume that the number of elements of any minimal generating system of Q is more than 2. We

choose a proper generating system {b1, · · · , bk, a1, · · · , al} of P such that bi ∈ NP(C), but a j < NP(C)
and the value of k are to be the maximum. By hypothesis, l ≥ 1. Let

K = ⟨b1, · · · , bk, a2, · · · , al⟩.

Clearly, K is noncyclic. Moreover, KC ⊴ G and K acts on {Cg | g ∈ G} transitively. Therefore,
P = KNP(C), and there exists b ∈ NP(C) such that

P = ⟨b1, · · · , bk, b, a2, · · · , al⟩,

which contradicts the maximality of k. □

3. Some relevant results and proofs

In this section, we give some relevant results of proofs of Theorems A and B.

Theorem 3.1. Suppose that G is a 2-group containing a quaternion group of order 16. Then G is
weakly primitive Dedekind if and only if G is isomorphic to Q16.

Proof. Let
H = ⟨a, b | a8 = 1, b2 = a4, ab = a−1⟩

be a quaternion group of order 16 contained in G. Obviously ⟨b⟩ ⋬ G. Since all noncyclic subgroups
of G are normal, we have H ⊴G.

Now, we claim |Ω1(G)| = 2. Suppose |Ω1(G)| , 2 and let c < H be an element of order 2, then
⟨b2, c⟩ ⊴G, so cb = c or b2c, which implies

⟨b⟩ = H ∩ ⟨b, c⟩ ⊴G,
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a contradiction. Therefore, |Ω1(G)| = 2 and G is a quaternion group.
If |G| ≥ 32, then we can assume

G = ⟨c, b | c16 = 1, b2 = c8, cb = c−1⟩.

So
bc = bc2 < ⟨b, c4⟩ and ⟨b, c4⟩ ⋬ G,

a contradiction. Thus, G is isomorphic to Q16.
The converse is clear. □

Theorem 3.2. Let G be a 2-group containing a quaternion group K of order 8 but not 16, and G/K be
cyclic. Then G is weakly primitive Dedekind if and only if

G = ⟨a, b, c | a4 = 1, b2 = a2, [a, b] = a2, [a, c] = [b, c] = 1⟩,

where
⟨c⟩ ∩ ⟨a, b⟩ ≤ ⟨a2⟩ and |c| > 2.

Proof. Let
G = ⟨a, b, c⟩ and K = ⟨a, b | a4 = 1, b2 = a2, [a, b] = a2⟩,

where
c2m
= 1 and H = ⟨c⟩ ∩ K.

We first claim |H| , 4. If |H| = 4, we write H = ⟨a⟩ and let u ∈ ⟨c⟩ be an element of order 8, then
u2 = a. Since K is noncyclic, we have K ⊴ G and hence, [b, u] ∈ K. Let [b, u] = w. If |w| = 2, then
w = b2, bu = b3, and bu2

= b, contrary to u2 = a. If |w| = 4 and ⟨w⟩ , ⟨u2⟩, then ⟨u2,w⟩ = K and
hence, ⟨c,w⟩ = G, contrary to G′ ≤ Φ(G). Assume |w| = 4 and ⟨w⟩ = ⟨u2⟩. If w = u2, then ⟨u, b⟩ is a
quaternion group of order 16, a contradiction. If w = u6, then ⟨ub, b2⟩ ⋬ G, contrary to the hypothesis.
Therefore, we get |H| ≤ 2.

We next claim that every subgroup of K is normal in G. If not, the generator c induces an
automorphism of order 2 on K, then we can choose proper generators a, b of K such that
ac = b, bc = a. Thus, ⟨c2, a⟩ ⋬ G and ⟨c2, a⟩ is cyclic. Since |H| ≤ 2, we have c2 = 1 or c2 = a2. If
c2 = 1, then

G = ⟨a, b, c | a4 = 1, b2 = a2, [a, b] = a2, c2 = 1, ac = b, bc = a⟩.

It is easy to see that ⟨a2, c⟩ ⋬ G, a contradiction. If c2 = a2, then c4 = 1. Now, let

T = ⟨cb, c | (cb)8 = 1, (cb)4 = c2, (cb)c = (cb)−1⟩.

T is a quaternion group of order 16, a contradiction. If the generator c induces an automorphism of
order 4 on K, then we get ⟨c2, a⟩ ⋬ G, which is noncyclic, a contradiction also.

Finally, since every subgroup of K is normal in G, we can choose a proper generator c such that c
acts on K trivially. Hence,

G = ⟨a, b, c | a4 = 1, b2 = a2, [a, b] = a2, [a, c] = [b, c] = 1⟩,
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where
⟨c⟩ ∩ ⟨a, b⟩ ≤ ⟨a2⟩.

By the structure of Dedekind groups, we have |c| > 2.
The converse is clear. □

Remark 3.3. By the proof of Theorem 3.2, let K be a quaternion group of order 8 and G = ⟨K, a⟩ be
a 2-group. If G is weakly primitive Dedekind, then we can choose some proper generator a such that
G = ⟨K, a⟩, a acts on K trivially, and |⟨a⟩ ∩ K| ≤ 2.

Theorem 3.4. Let G be a 2-group containing a quaternion group of order 8 but not 16, and G/K be
noncyclic. Then G is weakly primitive Dedekind if and only if

G = ⟨a, b, c, d | a4 = d2 = 1, c2 = a2 = b2, [a, b] = [c, d] = a2, [a, c] = [a, d] = [b, c] = [b, d] = 1⟩.

Proof. Let K = ⟨a, b⟩ be a quaternion group of order 8 and H = ⟨c, d, · · · , x⟩ such that {cK, dK, · · · , xK}
is a minimal generating system of G/K. By Remark 3.3 and the structure of Dedekind groups, we can
choose a proper H such that |H ∩ K| ≤ 2 and H acts trivially on K.

If H ∩ K = 1, then
⟨u⟩ = ⟨a2, u⟩ ∩ H ⊴G

for any element u in H, which implies that H is a Dedekind group. If the exponent of H is 2, then G
itself is a Dedekind group, a contradiction. Hence, the exponent of H is greater than 2. Assume that v
is an element of order 4 and w , v2 is an element of order 2 in H, then ⟨va,w⟩ ⋬ G, a contradiction.
Hence, there is a unique element of order 2 in H, which implies that H = ⟨c, d⟩ is a quaternion group
of order 8 by hypothesis. Thus, ⟨ca, db⟩ ⋬ G, a contradiction, so |H ∩ K| = 2. In this case, there exists
an element c of order 4 in H such that c2 = a2. Hence, ⟨ca⟩ ⋬ G.

Now we claim that H is not a Dedekind group. If H is Dedekind but not a quaternion group, then
there are two elements v,w in H of order 2 that are in the center of G. Thus, we have

⟨ca⟩ = ⟨ca, v⟩ ∩ ⟨ca,w⟩ ⊴G,

a contradiction. If H is a quaternion group, then

H = ⟨c, d⟩ and K ∩ H = ⟨a2⟩.

Hence, ⟨ca, db⟩ ⋬ G, a contradiction also. Thus, our claim holds.
By the same argument as above, H cannot contain any quaternion group, then there exists an element

d of order 2 in H such that d , a2. If [c, d] = 1, then

⟨ca⟩ = ⟨ca, a2⟩ ∩ ⟨ca, d⟩ ⊴G,

a contradiction. By hypothesis, ⟨a2, d⟩ ⊴G and hence, [c, d] = a2.
Writing H1 = ⟨c, d⟩, we prove H = H1. If not, we choose H2 ≤ H such that |H2/H1| = 2, and let

e be an element of smallest possible order satisfying e ∈ H2\H1. Our proof will be divided into three
cases:

(1) |e| = 2.
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Note ⟨a2, ca⟩ ⊴G. We have
ca3 = (ca)e = cea,

so [c, e] = a2. Similarly, [d, e] = a2, and it makes [cd, e] = 1. On the other hand, ⟨e⟩ ⊴ G holds by
[a2, e] = 1, then e ∈ Z(G), a contradiction.

(2) |e| = 4.

Assume a2 = e2. If [c, e] = 1, then |ce| = 2. Therefore, H2 = ⟨H1, ce⟩, which contradicts the choice
of e. Hence, [c, e] , 1. Since ⟨a2, ca⟩ ⊴G, we have

ca3 = (ca)e = cea.

Hence, [c, e] = a2, which implies that ⟨c, e⟩ is a quaternion group, a contradiction. Assume e2 , a2.
We can choose a proper generator d of H1 such that d = e2. Hence, [d, c] = a2, thus [e, c] , 1. On the
other hand, since ⟨a2, ca⟩ ⊴G, we get

(ca)e = ca3 = cea.

Thus, ce = c3, which implies cd = c, a contradiction.

(3) |e| = 8.

Clearly, e2 = c. Since ⟨d⟩ ⋬ G and ⟨a2, d⟩ ⊴ G, we get de = da2, which implies dc = d, a
contradiction. Thus,

H = H1 = ⟨c, d⟩.

In a word,

G = ⟨a, b, c, d | a4 = d2 = 1, c2 = b2 = a2, [a, b] = [c, d] = a2, [a, c] = [a, d] = [b, c] = [b, d] = 1⟩.

Conversely, since
G′ = ⟨[u, v]g | u, v ∈ {a, b, c, d}, g ∈ G⟩ = ⟨a2⟩,

we have that all elements of G can be written as aib jckdl by computations, and where 0 ≤ i ≤ 3, 0 ≤
j, k, l ≤ 1. Furthermore, if one of i, j, k is an odd number, then

(aib jckdl)2 = a2

holds certainly. Now we consider any binary generated subgroup G1 of G. Clearly, if there exists an
odd number of i, j, k such that aib jckdl ∈ G1, then G1 ⊴ G. For any aib jckdl ∈ G1, if all of i, j, and k are
even numbers, then G1 = ⟨a2, d⟩, so G1 ⊴ G. That is, G is weakly primitive Dedekind. □

Theorem 3.5. Let G be a p-group such that G does not contain a quaternion group of order 8 and
Z(G) is noncyclic. Then G is weakly primitive Dedekind if and only if

G = ⟨a, b | apm
= 1, bpn

= 1, [a, b] = apm−1
⟩,

where m, n ≥ 2.
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Proof. Our proof will be divided into three steps:

(1) G is a 2-generated group.

If not, choose three generators u, v,w in a minimal generating system of G. By Lemma 2.3, up , 1,
vp , 1, up and vp are contained in Z(G), which implies that

H = ⟨up, vp,w⟩

is abelian. Again by Lemma 2.3, Ω1(G) is of type (p, p), so H is cyclic or a direct product of two cyclic
subgroups. If H is cyclic, then up ∈ ⟨w⟩. Hence, there exists a maximal cyclic subgroup ⟨w⟩ in ⟨u,w⟩.
By hypothesis, G does not contain any quaternion group and there exists an element u1 ∈ ⟨u,w⟩ of
order p such that

⟨u,w⟩ = ⟨u1,w⟩.

By Lemma 2.3, we know Ω1(G) ≤ Φ(G). Hence, u ∈ ⟨w⟩, which contradicts the choice of u. If H is a
direct product of two cyclic subgroups, then H is 2-generated. Assume H = ⟨up, vp⟩, then w ∈ ⟨u, v⟩,
which contradicts the choice of w. By the same argument as above, we get H , ⟨up,w⟩ and H , ⟨vp,w⟩
also, a contradiction.

(2) G is a meta-cyclic group.

Suppose that G is not meta-cyclic. Let {a, b} be a generating system satisfying

apm
= 1, bpn

= apt
, [a, b] = c

and let b be a generator of smallest possible order. Obviously, c < ⟨a⟩ or ⟨b⟩. If p = 2, n = t = 1, then

(ab−1)2 = a2b−2[b−1, a] = [ab−1, a].

Hence,
G = ⟨a, ab−1⟩ and ⟨ab−1⟩ ⊴G,

that is, G is meta-cyclic, a contradiction. If p = 2, n = 1, t > 1, then by Lemma 2.3, we have
a2t−1
∈ Z(G), (b−1a2t−1

)2 = 1, so
G = ⟨a, b−1a2t−1

⟩,

which contradicts Lemma 2.3. Assume p , 2 or n , 1. If apt
, 1, then |b| > pn. By the choice of b,

n ≤ t. Since (
ba−pt−n)pn

= bpn
a−pt [

a−pt−n
, b
]( pn

2

)
=
[
a−pt−n

, b
]( pn

2

)
,

we can get
(ba−pt−n

)pn
= 1

provided p , 2 or n , 1. Now,
G = ⟨a, ba−pt−n

⟩,

which contradicts the choice of b. Hence, apt
= 1, that is, ⟨a⟩ ∩ ⟨b⟩ = 1. By Lemma 2.3, we assume

that
c = aipm−1

b jpn−1
, p ∤ i, p ∤ j.
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Let r be a natural number satisfying jr ≡ 1(mod p). Then,

[ar, airpm−n
b] = airpm−1

b jrpn−1
= (airpm−n

b)pn−1
.

Hence,
G = ⟨ar, airpm−n

b⟩ and ⟨airpm−n
b⟩ ⊴G,

a contradiction.

(3) Completing the proof.

By (1) and (2), we can choose two generators a, b of G such that apm
= 1, bpn

= apt
, and [a, b] ∈ ⟨a⟩,

where the order of b comes to the smallest. Now, we show apt
= 1. If apt

, 1, then [a, b] ∈ ⟨b⟩. By the
choice of b, we get n ≤ t. If p = 2, n = t = 1, and m = 2, then G is a quaternion group of order 8, a
contradiction. If p = 2, n = t = 1, and m > 2, then

(a−1b)2 = a−2b2[b, a−1] = a2m−1
.

Writing d = a−1b, then
G = ⟨a, d⟩ = ⟨a, a−2m−2

d⟩.

Hence,
(a−2m−2

d)2 = a−2m−1
d2 = 1,

contrary to the choice of b. If p = 2, n = 1, and t > 1, then by Lemma 2.3, we have

a2t−1
∈ Z(G), (b−1a2t−1

)2 = 1 and G = ⟨a, b−1a2t−1
⟩,

contrary to Lemma 2.3. So, we assume p , 2 or n , 1. Since

(
ba−pt−n

)pn

= bpn
a−pt [

a−pt−n
, b
]( pn

2

)
=
[
a−pt−n

, b
]( pn

2

)
,

we get
(ba−pt−n

)pn
= 1

provided p , 2 or n , 1. Now,
G = ⟨a, ba−pt−n

⟩,

which contradicts the choice of b. Thus, apt
= 1, and therefore,

G = ⟨a, b | apm
= 1, bpn

= 1, [b, a] = apm−1
⟩,

where m, n ≥ 2.
Conversely, it is clear that

G′ = ⟨apm−1
⟩.

For any proper subgroup of G, which is binary generated, since G is also a binary generated group, we
have

|HΦ(G)/Φ(G)| ≤ p.
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If
HΦ(G)/Φ(G) = 1,

then
H ≤ Φ(G) = Z(G),

so H ⊴ G. If
|HΦ(G)/Φ(G)| = p,

then we can choose the appropriate generating system u, v of H such that u < Φ(G), v ∈ Φ(G). Let

u = ai1 pm1 b j1 pn1
, v = ai2 pm2 b j2 pn2

,

where at least one of i1 and j1 is more than 0, as well as i2 and j2, which prime to p, at least one of
m1, n1 is 0, m2 and n2 are both more than 0. If j1 or j2 is 0, then apm−1

∈ H, so H ⊴ G. Now we can
assume that j1 and j2 are both more than 0. Without loss of generality, we can choose the appropriate
power of u, v (still written as u, v) such that H = ⟨u, v⟩, where

u = ai1 pm1 bpn1
, v = ai2 pm2 bpn2

.

If m1 ≤ m2, then
1 , upm2−m1 v−1.

Since H is noncyclic, then
upm2−m1 v−1 ∈ ⟨a⟩

by computations. Thus,
apm−1

∈ ⟨upm2−m1 v−1⟩.

Therefore, H ⊴ G. Similarly, if m1 > m2, the result holds. So G is weakly primitive Dedekind. □

By Theorem 3.5, the following remark holds.

Remark 3.6. Let G be a p-group such that G does not contain a quaternion group of order 8 and Z(G)
is noncyclic. If G is weakly primitive Dedekind, then

Ω1(G) = ⟨Ω1(⟨a⟩) | a ∈ G, |a| > p⟩.

Theorem 3.7. Let G be a p-group such that G does not contain a quaternion group of order 8 and Z(G)
is cyclic. Then G is weakly primitive Dedekind if and only if G is isomorphic to one of the following
groups:

(1) G = ⟨a, b | ap = bpn
= 1, [a, b] = c, [a, c] = [b, c] = cp = 1⟩, where c = bpn−1

if n , 1;

(2) G = ⟨a, b | a9 = 1, b3 = a3, [a, b] = c, c3 = 1, [a, c] = 1, [b, c] = a6⟩;

(3) G = ⟨a, b, c | ap = bpn
= cp = 1, [a, b] = 1⟩, where ⟨[a, c]⟩ = ⟨bpn−1

⟩, [b, c] ∈ ⟨bpn−1
⟩, n ≥ 2;

(4) G = ⟨a, b | a8 = 1, a4 = b4, [a, b] = a2 or a6⟩.
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Proof. Let C be a subgroup of order p in Z(G). By hypothesis, there exists another subgroup A of order
p, which is different from C. Since Z(G) is cyclic, we have A ⋬ G. Hence, we obtain that AC ⊴G by
hypothesis, which implies

|G/NG(A)| = p.

Thus,
Φ(G) ≤ NG(A) = CG(A).

We claim ⟨ap⟩ ⊴G for any a ∈ G. If C ≰ ⟨a⟩, then ⟨a⟩C ⊴G and

⟨ap⟩ = ℧(⟨a⟩C) ⊴G.

If C ≤ ⟨a⟩, then
A⟨a⟩ = AC⟨a⟩ ⊴G,

so
⟨ap⟩ = ℧(A⟨a⟩) ⊴G.

Let H be any cyclic subgroup of G whose order is greater than p. Then C is the unique subgroup of
order p in H since ⟨ap⟩ ⊴G for any a ∈ G. Hence,

⟨Ω1(⟨a⟩) | a ∈ G, |a| > p⟩ = C.

We claim that CG(A) is abelian. If not, then there exists at least one non-normal subgroup in CG(A)
by hypothesis. Since A and C are both contained in Z(CG(A)), we get that

Ω1(CG(A)) = ⟨Ω1(⟨a⟩) | a ∈ CG(A), |a| > p⟩ ≤ ⟨Ω1(⟨a⟩) | a ∈ G, |a| > p⟩ = C

by Remark 3.6, which contradicts A ≤ Ω1(CG(A)).
Since CG(A) is abelian, then CG(A) is a direct product of some cyclic subgroups. In fact, the number

of direct product factors of CG(A) is at most two by hypothesis. On the other hand, A cannot be
contained in any cyclic subgroup. Thus, there is an element u such that

CG(A) = A⟨u⟩ = A × ⟨u⟩ and Ω1(⟨u⟩) = C.

For any H ≤ G, we have HAC ⊴G, so

HAC/(AC) ⊴G/(AC),

which implies that G/(AC) is a Dedekind group. Our proof will be divided into two cases as shown
below.

Case 1. G/(AC) is abelian.

Obviously, for any g, h ∈ G, we have [g, h] ∈ AC and [g, h]p = 1 by the structure of Dedekind
groups.

We claim gp ∈ Z(G) for any g ∈ G. If g < CG(A), then

G = ⟨g,CG(A)⟩.

AIMS Mathematics Volume 9, Issue 4, 7955–7972.



7967

By what has been shown in the first paragraph, we know

|G/CG(A)| = p.

Thus, gp ∈ CG(A) and gp ∈ Z(G) by the fact that CG(A) is abelian. If g ∈ CG(A), then g ∈ CG(AC). So
g ∈ CG([g, h]) and

[gp, h] = [g, h]p = 1

for any h ∈ G. Furthermore, gp ∈ Z(G) and ℧(G) ≤ Z(G).
Let A = ⟨a⟩. Since CG(A) = ⟨a, u⟩ is a maximal subgroup of G, there exists a generator b of G such

that G = ⟨a, u, v⟩. Hence, there is a subset of {a, u, v} which can form a minimal generating system of
G. Obviously, anyone of {a}, {u}, {v}, {a, u} is not a minimal generating system of G.

Suppose that {a, v} is a minimal generating system of G. Let bpn
= 1 and [a, v] = c. Since c ∈ AC

and [a, vp] = 1, then
[a, c] = [v, c] = cp = 1.

If n , 1, then c ∈ ⟨vp⟩ as c ∈ Z(G), so vp ∈ Z(G) and Z(G) is cyclic. Moreover, we can choose some
proper a such that c = vpn−1

. Hence,

G = ⟨a, v | ap = vpn
= 1, [a, v] = c, [a, c] = [v, c] = cp = 1⟩,

where c = vpn−1
if n , 1. By choosing some proper symbols, G is a group of type (1).

Suppose that {u, v} is a minimal generating system of G. Since Ω1(⟨u⟩) = C, we have up , 1. If
a < Φ(G), then there exists a generator w such that ⟨a,w⟩ = G. By the same argument as above, we
also get that G is a group of type (1). Assume a ∈ Φ(G). Since ℧(G) ≤ Z(G), we get a ∈ G′. Let
a = [u, v]. Then

⟨[a, v]⟩ = C ≤ ⟨u⟩.

On the other hand, since vp ∈ Z(G), we have ⟨vp⟩ ≨ ⟨u⟩.
We claim ⟨up⟩ = ⟨vp⟩. If not, then ⟨vp⟩ ≨ ⟨up⟩. Since up ∈ Z(G), then ⟨up⟩ is a maximal subgroup of

⟨up, v⟩. Hence, there exists an element w ∈ ⟨up, v⟩ of order p such that v ∈ ⟨up,w⟩, so G = ⟨u,w⟩. Now,
⟨[u,w]⟩ = C since ⟨w,C⟩ ⊴G, which implies G′ = C, contrary to a ∈ G′. Thus, our claim holds and

G = ⟨u, v | upn
= 1, ⟨up⟩ = ⟨vp⟩, a = [u, v], c1 = [a, v], ap = 1, c1 ∈ Ω1(⟨u⟩), [a, u] = 1⟩.

Obviously, |G| = pn+2. If p = 2, then
(vu)2 = v2u2a

and a ∈ ℧(G), which contradicts ℧(G) ≤ Z(G). If p ≥ 5, then

(vu)p = vpupap(p−1)/2c(p−2)(p−1)p/6
1 = vpup.

By choosing proper elements u, v such that vp = u−p, we get (vu)p = 1. Since ⟨vu,C⟩ ⊴G and C ≤ ⟨u⟩,
we have

G = ⟨v, u⟩ = ⟨vu, u⟩ and |⟨vu, u⟩| = pn+1,

contrary to |G| = pn+2. Hence, p = 3. By choosing proper elements u, v such that u3 = v3, we have
c1 = u6 by

(vu)3 = v3u3a3c1 = u6c1,
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so
G = ⟨u, v | u9 = 1, v3 = u3, a = [u, v], a3 = 1, [a, u] = 1, [a, v] = u6⟩.

By choosing some proper symbols, G is a group of type (2).
Suppose that {a, u, v} is a minimal generating system of G. Let |u| = pn. Since ⟨a, u⟩ is a maximal

subgroup of G, we have |G| = pn+2. On the other hand,

⟨u⟩ ≨ ⟨u, v⟩ ≨ G,

so ⟨u⟩ is a maximal subgroup of ⟨u, v⟩. Hence, there exists an element w of order p satisfying ⟨u, v⟩ =
⟨u,w⟩, so G = ⟨a, u,w⟩. Obviously, A⟨w⟩ cannot be a subgroup of G. If not, then

A = AC ∩ A⟨w⟩ ⊴G,

a contradiction. On the other hand, AC⟨w⟩ is a subgroup of G, so ⟨[a,w]⟩ = C. Since [u,w] ∈ ⟨w⟩C
and [up,w] = 1, then [u,w] ∈ C. Thus,

G = ⟨a, u,w | ap = upn
= wp = 1, [a, u] = 1⟩,

where
⟨[a,w]⟩ = ⟨upn−1

⟩, [u,w] ∈ ⟨upn−1
⟩, n ≥ 2.

By choosing some proper symbols, G is a group of type (3).
Case 2. G/(AC) is non-abelian.
In this case, we have that G/(AC) is a direct product of a quaternion group and an elementary

abalian 2-group. Write K = AC, C = ⟨c1⟩, and A = ⟨a⟩. Let

T/K = ⟨uK, vK | u4K = K, v2K = u2K, [u, v]K = u2K⟩

be a quaternion subgroup of G/K. Then u2v−2 ∈ K and [u, v] ∈ u2K. Since

⟨Ω1(⟨g⟩) | g ∈ G, |g| > p⟩ = C,

we have u4 = v4 = c1 and u8 = 1. By the symmetry of u and v, we choose some proper generators (we
still call them u and v) of T such that

T = ⟨u, v | u8 = 1, u4 = v4 = c1, u2v2 = a, [u, v] = u2 or u6⟩.

Obviously, u ∈ CG(a) and v < CG(a).
Now, we show G = T . If G , T , then there exists an element w ∈ G\T . By hypothesis, the exponent

of G is less than 8. On the other hand,

CG(A) = A × ⟨u⟩

and u ∈ CG(a), hence, we get CG(a) = ⟨a, u⟩. If w ∈ CG(a), then w ∈ ⟨a, u⟩, contrary to w < T . If
w < CG(a), then wv ∈ CG(a) and wv ∈ ⟨a, u⟩, a contradiction also. Thus, we get G = T . By choosing
some proper symbols, G is a group of type (4).

Conversely, it is easy to check that anyone of types (1)–(4) is weakly primitive Dedekind. □
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4. Proofs of Theorems A and B

In this section, we complete the proofs of Theorems A and B.

Proof of Theorem A. It follows from Theorems 3.1–3.7 clearly. □

proof of Theorem B. By Lemma 2.1, Lemma 2.4, and the structure of Dedekind groups, we have G =
P⋊C with P,C of coprime order, P is of type (1) or (5) in Theorem A, or a cyclic p-group, a quaternion
group Q8, or Cpm ×Cp, C is a cyclic subgroup of G, and q | |C/CC(P)| for any prime divisor q of |C|. In
the first place, P can’t be the group of type (1) in Theorem A since

C/CC(P) ≲ Aut(P)

and Aut(Q16) is a 2-group.
If P is a group of type (5) in Theorem A, let R

P = ⟨u, v | up = vpn
= 1, [u, v] = w, [u,w] = [v,w] = wp = 1⟩,

where w = vpn−1
if n , 1, then ⟨u,w⟩ ⊴ G. If C acts on ⟨u,w⟩ trivially, then C ⊴ G, a contradiction.

Hence, C acts on ⟨u,w⟩ nontrivially. By Lemma 2.4, C acts trivially on ⟨w⟩. Hence, there exists a
C-invariant subgroup in ⟨u,w⟩ (without loss of generality, write this subgroup ⟨u⟩) such that C acts
nontrivially on ⟨u⟩. Hence, ⟨u⟩C ⊴G and

⟨u⟩ = ⟨u,w⟩ ∩ ⟨u⟩C ⊴G,

a contradiction.
If P is cyclic and |P| = pm, then p ≥ 3 since the automorphism group of a 2-group is a 2-group and

C/CC(P) ≲ Aut(P).

We claim m = 1. If not, then Ω1(P) ≤ Φ(P). By Lemma 2.4, C acts trivially on Φ(P). Of course, C
acts trivially on Ω1(P). Thus, C must act trivially on P, a contradiction. Therefore, P is of order p.

Let
G = ⟨a, b | ap = 1, br = 1, ab = bt⟩

and

r =
k∏

i=1

qni
i .

For any 1 ≤ i ≤ n and any prime divisor q of |C|, we have

t
r

q
ni
i . 1(mod p)

since q | |C/CC(P)|, so G is a group of type (1).
If

P = ⟨a, b | a4 = 1, b2 = a2, [a, b] = a2⟩

and C = ⟨c⟩, then ac = b, bc = ab or ba by the structure of Aut(P) and 2 ∤ r. Furthermore, r = 3n since
q | |C/CC(P)| for any prime divisor q of |C|, so G is a group of type (2).
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If P is a group of type Cpm ×Cp and C acts decomposably on P, then by Lemma 2.4, C acts on Φ(P)
trivially and all noncyclic subgroups are normal in G. Hence, we choose proper generators a, b, c such
that

G = ⟨a, b, c | apm
= bp = cr = 1, ab = ac = a, bc = bt⟩,

where t . 1(mod p), tr ≡ 1(mod p). Clearly, ⟨b, c⟩ is of type (1). Thus,

G = ⟨a, b, c | apm
= bp = cr = 1, ab = ac = a, bc = bt⟩,

where

tr ≡ 1(mod p), r =
k∏

i=1

qni
i , t

r
q

ni
i . 1(mod p)

for any 1 ≤ i ≤ n, so G is a group of type (3).
If P is of type Cpm × Cp and C acting on P is indecomposable, then by Lemma 2.4, C acts on Φ(P)

trivially and all noncyclic subgroups are normal in G. Hence, m = 1, and we can choose three proper
generators a, b, c such that ap = bp = cr = 1, where ab = a, ac = b, and bc = ambn. Now, take P as a
vector space in Fp and c as a linear transformation of P, then the matrix induced by c is

M =
[

0 1
m n

]
.

Since cr = 1, we have

Mr ≡

[
1 0
0 1

]
(mod p).

On the other hand, for any subgroup K of C, we easily know that K must act on P trivially if K acts on
P reducibly. Thus, the matrix Mk corresponding to the generator of K either has no eigenvalues or is
an identity matrix in Fp. Therefore,

G = ⟨a, b, c | ap = bp = cr = 1, [a, b] = 1, ac = b, bc = ambn⟩.

Let

M =
[

0 1
m n

]
.

Thus,

Mr ≡

[
1 0
0 1

]
(mod p),

where Mk has no eigenvalues or is an identity matrix in Fp for any k | r. Let

r =
k∏

i=1

qni
i .

M
r

q
ti
i has no eigenvalues since q | |C/CC(P)| for any 1 ≤ i ≤ n and any prime divisor q of |C|, so G is a

group of type (4).
Conversely, it is easy to check that anyone of types (1)–(4) is weakly primitive Dedekind. □
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5. Conclusions

We give the complete classification of p-groups whose noncyclic subgroups are normal. Our method
of proof is elementary, which is different from Bozikov and Janko’s in [4], and give the complete
classification of non-nilpotent groups whose noncyclic subgroups are normal.
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