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Abstract: In the last few decades, the particle swarm optimization (PSO) algorithm has
been demonstrated to be an effective approach for solving real-world optimization problems.
To improve the effectiveness of the PSO algorithm in finding the global best solution for
constrained optimization problems, we proposed an improved composite particle swarm optimization
algorithm (ICPSO). Based on the optimization principles of the PSO algorithm, in the ICPSO
algorithm, we constructed an evolutionary update mechanism for the personal best position population.
This mechanism incorporated composite concepts, specifically the integration of the ε-constraint,
differential evolution (DE) strategy, and feasibility rule. This approach could effectively balance the
objective function and constraints, and could improve the ability of local exploitation and global
exploration. Experiments on the CEC2006 and CEC2017 benchmark functions and real-world
constraint optimization problems from the CEC2020 dataset showed that the ICPSO algorithm could
effectively solve complex constrained optimization problems.
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1. Introduction

Constrained optimization is particularly challenging because certain constraints must be satisfied
while optimizing the objective function. This type of problem has a wide range of applications in
many fields, such as economics, engineering, and natural sciences. The mathematical model of the
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constrained optimization problem is expressed as follows [1]:

min f (x)
s.t. g j(x) ≤ 0, j = 1, 2, . . . , q,

h j(x) = 0, j = q + 1, q + 2, . . . ,m,
x = (x1, x2, . . . , xD),
Li ≤ xi ≤ Ui, i = 1, 2, . . . ,D,

(1.1)

where f (x) is the objective function, g(x) is an inequality constraint, h(x) is an equality constraint, x is
a decision variable, D is the dimension of decision variable, q is the number of inequality constraints,
m is the number of constraints, and Li and Ui are the lower and upper bounds of the ith component,
respectively.

For the above problem, the violation degree of any decision vector x regaiding the jth constraint
can be defined as follows:

G j(x) =
{

max(0, g j(x)), 1 ≤ j ≤ q,
max(0, |h j(x)| − δ), q + 1 ≤ j ≤ m.

(1.2)

Here, δ is the positive slack of the equality constraint. Therefore, the violation degree of decision
variable x with respect to all constraints can be defined as follows:

G(x) =
m∑

j=1

G j(x). (1.3)

If G(x) = 0, then the decision variable x is a feasible solution to the constrained optimization
problem. The goal of solving the constrained optimization problem is to find the feasible solution with
the minimum function value.

Due to the limitations of the constraints, solving a constrained optimization problem is more difficult
than solving an unconstrained optimization problem. Therefore, effectively addressing constraints
becomes the top priority. At present, the commonly used constraint processing methods include
the penalty function method [2], feasibility rule method [3], ε-constraint method [4], multiobjective
method [5], and stochastic ranking method [6]. With the development of computer technology and
optimization algorithms, intelligent optimization algorithms with a global optimization capability
and objective function gradient independence are widely used to solve constrained optimization
problems. Karaboga [7] described a modified artificial bee colony algorithm (mcABC) for constrained
optimization problems, and for constraint handling, this algorithm uses feasibility rule, consisting of
three simple heuristic rules and a probabilistic selection scheme for feasible solutions based on their
fitness values and for infeasible solutions based on their violation values. Shi [8] proposed an improved
fruit fly optimization algorithm (IFOA) with multi-strategy hybrid co-evolution, and the convergence
accuracy of the algorithm was improved through real-time dynamic updating of the optimal
information of the swarm and a local in-depth search strategy. Jia [9] proposed an improved coati
optimization algorithm (ICOA) to solve constrained engineering optimization problems. Wang [10]
proposed a compound differential evolution algorithm that balances the diversity and convergence,
improving algorithm convergence for solving constrained optimization problems. Wang [11] proposed
an improved genetic algorithm based on two-direction crossover and grouped mutation (GA-TDX)
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to efficiently solve constrained optimization problems, enhancing search efficiency by leveraging
directional information and maximizing the benefits of distinct mutation operators. Peng [12] designed
a hybrid constraint-handling technique (HCT) based on population evolution information to balance the
objective function and constraints, and proposed an evolutionary constrained optimization algorithm
with HCT (ECO-HCT) to solve solve constrained optimization problems.

Among the many intelligent optimization algorithms, the PSO algorithm [13] was proposed
by Drs. Eberhart and Kennedy in 1995 and is used by many researchers to solve constrained
optimization problems and real-world problems [14] because of its computational simplicity and
flexibility. Lu [15] proposed a double-track schema within PSO called double-track PSO (DTPSO)
to address the nonlinear constrained optimization problem. When an infeasible region blocks a
particle, the DTPSO algorithm creates a copy of the particle. Different search strategies are used
for the original and copied particles so that the algorithm can move to feasible and infeasible regions.
Liu [16] proposed a new hybrid PSO differential evolution (PSODE) algorithm to solve constrained
optimization problems. When the particles in the PSODE algorithm stagnate, the DE algorithm is
used to activate the particles to continue the optimization search. Wang [17] designed a hybrid multi-
swarm PSO algorithm (HMPSO) to address the constrained optimization problem. This algorithm
uses the parallel search operator to search for each subswarm simultaneously and the DE algorithm
to improve the state of the personal best position to better expand the search range. Guo [18] used a
feasibility-based rule to process constraints and used DE to optimize the personal best position with
the PSO algorithm (PSO-DE) to improve the convergence efficiency of the algorithm. Venter [19]
transformed all the constraints into an objective; therefore, the constrained optimization problem was
transformed into an unconstrained dual-objective optimization problem, and the model was solved
using a multi-objective PSO algorithm. Ang [20] proposed a constrained multi-swarm particle swarm
optimization without velocity (CMPSOWV), incorporating constraint handling, dual evolution phases
for robustness, and diversity maintenance schemes to overcome limitations and prevent premature
convergence in solving COPs.

Although many studies have been performed to solve constrained optimization problems with the
PSO algorithm, quickly optimizing the objective function value and controlling the constraint violation
degree are difficult at this stage, and balancing the two has always been the main research direction.
The optimization principles of the PSO algorithm depend mainly on the selection of the best position.
Therefore, generating a personal best position population while considering objective functions and
constraints is our focus. Hence, we propose a personal best position update method that integrates
the ε-constraint, DE strategy, and feasibility rule. First, this method utilizes the ε-constraint method
to give infeasible solutions located at the boundary of the feasible region the opportunity to enter the
intermediate personal best position population. Second, the DE strategy is used to further guide the
intermediate personal best position population towards the feasible region, forming an intermediate
evolutionary population. Finally, using feasibility criteria, a stricter selection is made between the
intermediate personal best position population and the intermediate evolutionary population to promote
the rapid convergence of the algorithm. Compared with previous single constraint processing methods,
this composite evolutionary updating method not only considers the objective function and constraints
simultaneously, but also utilizes the powerful optimization capabilities of the DE strategy to select the
personal best position population that can better guide the population close to the global best position,
thereby ensuring the convergence speed and accuracy of the ICPSO algorithm.
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2. The classical PSO algorithm

The PSO algorithm is a swarm intelligence algorithm proposed by simulating the foraging behavior
of a flock of birds. In the PSO algorithm, a solution to the problem is represented as a particle in a
decision space. The entire swarm is guided by the personal and global best positions and flies within the
solution space to find the optimal solution. To better balance local exploitation and global exploration,
this section introduces a PSO algorithm [21] with a linearly decreasing inertia weight. The specific
flow is as follows:
Algorithm 1. PSO algorithm

Step 1: Assume a population size N, self-cognitive coefficient c1 and social cognitive coefficient c2.
Let each particle be an individual in the D dimensional space, let the position vector of the ith particle
be xi = (xi1, xi2, · · · , xiD), let the velocity vector be vi = (vi1, vi2, · · · , viD), where i = (i, 2, · · · ,N), and
let the maximum number of iterations be T . Randomly generate N individuals to create the initial
population X(0), and set t = 0.

Step 2: Calculate or estimate the fitness of each particle in X(t).
Step 3: Update the speed and position of each particle as follows:

vt+1
id = ωvt

id + c1r1(pibestd − xt
id) + c2r2(gbestd − xt

id), (2.1)

xt+1
id = xt

id + vt+1
id , (2.2)

ω = ωmax −
t(ωmax − ωmin)

T
, (2.3)

where ωmax and ωmin are the maximum and minimum inertia weights, respectively.
Step 4: Update the personal best position of each particle pibest and the global best position gbest.
Step 5: If the termination criterion is met, then output gbest as the optimal solution, and terminate

the calculation. Otherwise, set t = t + 1, and go to Step 2.

3. An improved composite particle swarm optimization algorithm for constrained optimization
problems (ICPSO)

The classical PSO algorithm is good at searching for the best solution in unconstrained continuous
space, but has no advantageous strategy for dealing with constraints. Therefore, in this paper, an
improved composite particle swarm optimization algorithm is proposed for constrained optimization
problems. The algorithm effectively combines strategies such as the ε-constraint, DE strategy, and
feasibility rule to construct a novel method for updating the personal best position. This method
enhances the algorithm’s ability to find feasible solutions and quickly converge to the global optimal
solution.

3.1. Feasibility rule

The feasibility rule is a constraint processing mechanism proposed by Deb [22] in 2000, and the
specific rules are as follows: For two individuals xi and x j, if xi is superior to x j, one of the following
conditions should be satisfied:
(1) When G(xi) = G(x j) = 0, f (xi) < f (x j);
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(2) When G(xi) , 0 and G(x j) , 0, G(xi) < G(x j);

(3) G(xi) = 0 and G(x j) , 0.

3.2. ε-constraint

The ε-constraint method is a constraint processing mechanism proposed by Takahama and
Sakai [23] in 2010. The specific rules are as follows: For two individuals xi and x j, if xi is superior
to x j, one of the following conditions should be satisfied:

(1) When G(xi) ≤ ε
∧

G(x j) ≤ ε, f (xi) < f (x j);

(2) When G(xi) = G(x j), f (xi) < f (x j);

(3) In other cases, G(xi) = 0 < G(x j).

Here, ε =
{
ε0(1 − t

T ), i f t
T ≤ p;

0, otherwise
is a numerical value that decreases as the number of iterations

increases, ε0 is the initial threshold, usually the maximum constraint violation degree of the initial
population, and cp = − log ε0+λ

log(1−p) , where λ is 6, and p is the degree to which the information that controls
the objective function is used.

3.3. DE strategy

Although the PSO algorithm is simple and easy to implement, it is prone to becoming trapped in
a local extremum during the search process. To address this shortcoming, researchers are constantly
attempting to incorporate new strategies to enhance the global exploration ability. The DE strategy is
one of the recognized effective strategies. PSODE algorithm [16] applied the DE strategy to the current
population to help it break out of the stagnation state. However, this method uses only the DE strategy
when the threshold is reached. Thus, this method has limited effectiveness. HMPSO algorithm [17]
and PSO-DE algorithm [18] both used the DE strategy to find the personal best position population.
However, when performing the DE operation on any personal best position, three other personal best
positions are selected for mutation, and the personal best position information is not used. However,
for the PSO algorithm, the personal best position stores the historical information of the individual
flight and should not be completely discarded. Therefore, in this paper, the DE/rand/1 strategy is used
when performing the mutation operation, and the personal best position is retained as xr1 . Then, two
personal best positions are randomly selected as xr2 and xr3 . The other operations are the same as those
in the standard DE strategy. Finally, an intermediate evolutionary population with the personal best
position is generated.

3.4. Best position update strategy

The optimization of the PSO algorithm mostly depends on learning the global best position and
personal best positions. Therefore, the selection and update of the best position are particularly
important. Moreover, an effective solution to the constrained optimization problem requires a balance
between the degree of constraint violation and the objective function value. If these two indicators can
be considered simultaneously when updating the best position, this could help the algorithm converge.
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3.4.1. Personal best position population update with composite concepts

To update the personal best position population Pbest, there are two constraint selections steps
and one evolution step in the ICPSO algorithm. The first constraint selection step targets the new
population produced after PSO evolution. To expand the search space of the algorithm and fully
utilize valuable information from partially infeasible solutions, a relatively relaxed constraint violation
method, the ε-constraint method, is adopted to guide the update of the population, thus forming the
intermediate personal best position population; to increase the search speed of the algorithm, the
DE strategy is employed to optimize and evolve the intermediate personal best position population,
generating the intermediate evolutionary population. Finally, to ensure the superiority of the personal
best population Pbest, a more stringent feasibility rule with higher constraint requirements is applied
to conduct a rigorous comparison and selection between the intermediate personal best position
population and the intermediate evolutionary population. Clearly, the adoption of this composite
updating strategy to guide the update process effectively balances the two metrics of constraint
violation and objective function value, facilitating algorithm convergence. The detailed operation is
shown in Figure 1.

The t-th
population The (t+1)-th

population

PSO
Evolution

 -Constraint

Generating the
intermediate
personal best
position population

Generating an intermediate
evolutionary population

DE
Evolution

Feasibility Rule

Generating the new
personal best
position population
Pbest

Figure 1. Constraint strategies for personal best position in different periods.

3.4.2. Global best position update

The goal of constrained optimization is to find the feasible solution with the minimum function
value. To ensure that the population effectively moves to the feasible region, when updating the global
best position gbest, the feasibility rule with stronger constraints is used to guide the generation of a
new gbest.

3.5. ICPSO algorithm

The specific process of the ICPSO algorithm is as follows, and the flowchart of ICPSO algorithm is
given in Figure 2:
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N
Output the global best position

Select the global best position

Start

Calculate the fitness of each particle in the initial population
Set the initial best personal position population
initial best personal position as Pbest= X(0)

T <Tmax

Randomly initialize the position vector and speed vector

Setting the parameters c1, c2, wmax, wmin, F, R, T, N

Update the current population by Equation 2.1 and 2.2
 Renew the cross-boundary particles by Equation 3.1

Calculate the fitness of each particle in the current population

Generate the intermediate
personal best position
population

Generate the intermediate
evolutionary population

Renew the personal best position population

DE strategy

Y

T=1

feasibility rule

 -constraint method

Renew the global best position

Stop

feasibility rule

feasibility rule

Figure 2. Flowchart of the ICPSO algorithm.

Algorithm 2. ICPSO algorithm
Step 1: Randomly initialize the position vector and speed vector and set the parameters c1, c2, ωmax,

and ωmin, the crossover factor F and CR, the maximum number of iterations T , the population size N,
and t = 0.

Step 2: Calculate the fitness of each particle in the initial population, set the initial best personal
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position as Pbest = X(0), and use the feasibility rule to select the global best position gbest from the
population Pbest.

Step 3: Use speed update (Eq (2.1)) and position update (Eq (2.2)) to update the current population
and form a new population, use Eq (3.1) to address the cross-boundary particles [24]:

xt+1
i, j =


0.5(xt

i, j + L j), i f xt
i, j < L j,

0.5(xt
i, j + U j), i f xt

i, j > U j,

xt+1
i, j , otherwise.

(3.1)

Step 4: Calculate the fitness of each particle in the current population.
Step 5: Use the ε-constraint method and the current population to generate the intermediate personal

best position population.
Step 6: Apply the DE strategy to the personal best position population to form an intermediate

evolutionary population.
Step 7: Use the feasibility-based rule to compare the best personal position population and the

intermediate evolutionary population to form the final Pbest.
Step 8: Use the feasibility-based rule to select the global best position gbest from the population

Pbest.
Step 9: If the termination criterion is satisfied, output gbest as the optimal solution and terminate the

calculation. Otherwise, set t = t + 1 and go to Step 3.

3.6. Complexity analysis

We present the computational time complexity of the ICPSO algorithm below, the main steps during
one iteration for a population of size N, the dimension is D.

(1) Updating a particle: O(N × D);
(2) Generate the intermediate personal best position population: O(N);
(3) Generate the intermediate evolutionary population by DE strategy: O(N × D);
(4) Renew the personal best position population: O(N);
(5) Renew the global best position: O(N).
Thus, the computational time complexity of the ICPSO algorithm is O(N ×D), which demonstrates

that this algorithm is computationally efficient.

4. Numerical experiment and result analysis

4.1. Test questions and parameter settings

To further test the performance of the ICPSO, 13 constrained optimization benchmark functions
from the IEEE CEC2006 dataset and 28 constrained optimization benchmark functions from the IEEE
CEC2017 dataset were selected for testing. Table 1 shows the specific characteristics of 13 functions
from the IEEE CEC2006 dataset. D represents the number of decision variables, ρ represents the
ratio between the feasible region and the search space estimated by stochastic simulation, LI and NI
represent the numbers of linear and nonlinear inequality constraints, respectively, LE and NE represent
the numbers of linear and nonlinear equality constraints, respectively, a represents the number of active
constraint functions near the optimal solution, and f (x∗) represents the global optimal function value,
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that is, the known optimal solution of these functions. The detailed mathematical formulation are
presented in the technical report of Liang [25].

Table 1. Specific characteristics of 13 benchmark functions from the IEEE CEC2006 dataset.

Prob. f (x∗) D LI NI LE NE a ρ(%) Type of objective function
F01 -15.0000000000 13 9 0 0 0 6 0.0111% Quadratic
F02 -0.8036191042 20 0 2 0 0 1 99.9971% Nonlinear
F03 -1.0005001000 10 0 0 0 1 1 0.0000% Polynomial
F04 -30665.5386717834 5 0 6 0 0 2 52.1230% Quadratic
F05 5126.4967140071 4 2 0 0 3 3 0.0000% Cubic
F06 -6961.8138755802 2 0 2 0 0 2 0.0066% Cubic
F07 24.3062090681 10 3 4 0 0 6 0.0003% Quadratic
F08 -0.0958250415 2 0 2 0 0 0 0.8560% Nonlinear
F09 680.6300573745 7 0 4 0 0 2 0.5121% Polynomial
F10 7049.2480205286 8 3 3 0 0 6 0.0010% Linear
F11 0.7499000000 2 0 0 0 1 1 0.0000% Quadratic
F12 -1.0000000000 3 0 1 0 0 0 4.7713% Quadratic
F13 0.0539415140 5 0 0 0 3 3 0.0000% Nonlinear

Table 2 shows the specific characteristics of 28 functions from the IEEE CEC2017 dataset. E and I
represent the numbers of inequality constraints and equality constraints, respectively. The detailed
mathematical formulation of all CEC2017 functions are presented in the technical report of Wu [26].

Table 2. Specific characteristics of 28 benchmark functions from the IEEE CEC2017 dataset.

Prob. D E I Type of objective function Prob. D E I Type of objective function
C01 10 0 1 non Separable C02 10 0 1 non Separable, rotated
C03 10 1 1 Separable C04 10 0 2 non Separable
C05 10 0 2 non Separable C06 10 6 0 Separable
C07 10 2 0 Separable C08 10 2 0 Separable
C09 10 2 0 Separable C10 10 2 0 Separable
C11 10 1 1 Separable C12 10 0 2 Separable
C13 10 0 3 non Separable C14 10 1 1 non Separable
C15 10 1 1 Separable C16 10 1 1 Separable
C17 10 1 1 non Separable C18 10 1 2 Separable
C19 10 0 2 Separable C20 10 0 2 non Separable
C21 10 0 2 rotated C22 10 0 3 rotated
C23 10 1 1 rotated C24 10 1 1 rotated
C25 10 1 1 rotated C26 10 1 1 rotated
C27 10 1 2 rotated C28 10 0 2 rotated

The parameters of the ICPSO algorithm are set as follows: c1 = c2 = 2.05, ωmax = 1, ωmin = 0.4,
F = 0.7, CR = 1.0, N = 60 and number of evaluations of the fitness function= 5 × 105 for CEC2006,
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N = 100 and number of evaluations of the fitness function= 2 × 105 for CEC2017, the slack of
the equality constraint is δ = 0.0001. The algorithm was coded using MATLAB R2016a and run on a
computer with an Intel(R) Core(TM) i7-6567U central processing unit (CPU) @ 3.30 GHz or 3.20 GHz
and 8.00 GB of installed memory.

4.2. Results analysis

4.2.1. Comparison between ICPSO and its variant

To better illustrate the effectiveness of the various combinations of strategies proposed in this paper,
two improved PSO algorithms without the DE strategy were constructed: The PSO+Eps algorithm
and the PSO+Deb algorithm. The selected strategy for the constraint-guided update of the personal
best position differs between the two methods, with the former using the ε-constraint method and
the latter using the feasibility-based rule. Moreover, an improved algorithm containing the DE strategy
PSO+DE+Deb+Deb was constructed. The difference between this algorithm and the ICPSO algorithm
is that this algorithm uses the feasibility-based rule to guide the two update methods for the personal
best position. To ensure the comparability of the numerical results, the parameter settings of the four
algorithms are exactly the same. In this section, the Wilcoxon rank-sum test was used to compare
the performances of the algorithms. The null hypothesis is that there is no significant difference in
performance between the ICPSO algorithm and the other algorithms. Three symbols are used to
indicate whether there is a significant difference in performance between the ICPSO algorithm and
the other algorithms: (+) indicates that at the significance level of α = 0.05, the performance of the
ICPSO algorithm is significantly improved compared to that of the other algorithms (-) indicates that
the performance of the ICPSO algorithm is inferior to that of the other algorithms; and (=) indicates
that there is no significant difference in performance between the algorithms.

(1) Performance evaluation using CEC2006 benchmark functions
Figure 3 shows the proportion of optimal solutions that are feasible for the 13 benchmark functions

after 25 independent runs of each algorithm. As long as the constraint processing mechanism is used,
the PSO algorithm is more effective at solving the constrained optimization problem. Of course, for
functions F04 and F10, the PSO+Deb and PSO+Eps algorithms converge to an infeasible solution;
however, as long as the DE strategy is added to the algorithm, it can be guaranteed that the algorithms
can converge to the feasible domain for all 13 test problems, reflecting the effectiveness of the DE
strategy.

Figure 3. Proportion of feasible solutions for 13 benchmark functions from the IEEE
CEC2006 dataset.
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The data in Table 3 are the numerical results of the 4 algorithms after 25 independent runs of
the 13 test problems. In the table, Best is the best solution, Worst is the worst solution, Median
is the median value, Mean is the mean value, and Std is the standard deviation. Wil test is the
Wilcoxon test result. Except for F06, F11, and F12 (on which the four algorithms obtain the same
result), ICPSO outperforms the other algorithms, in particular, it has a smaller variance, indicating
that ICPSO has better stability. For F01, F02, and F13, ICPSO achieves the optimal results in terms
of both the mean and variance. For F03, F05, and F09, ICPSO and PSO+DE+Deb+Deb can obtain
the same optimal mean value, but ICPSO appears to be more stable with a smaller variance. For F10,
PSO+DE+Deb+Deb performs better than ICPSO, and PSO+Deb outperforms PSO+Eps, indicating
that for a linear problem, the constraint processing mechanism guided by the feasibility-based rule is
better than that of the ε-constraint method. The Wilcoxon rank-sum test shows that, except for F13, the
ICPSO and PSO+DE+Deb+Deb algorithms had no significant differences in performance. However,
these two algorithms are far better than the PSO+Esp and PSO+Deb algorithms, demonstrating that
the introduction of the DE strategy greatly improves the performance of the algorithm.

Table 3. Results of 4 improved PSO algorithms on 13 benchmark functions.

Prob. Algorithm Best Worst Median Mean(Wil Test) Std

F01

ICPSO -15.0000 -13.0000 -15.0000 -14.7600 4.4000E-01
PSO+DE+Deb+Deb -15.0000 -12.4531 -15.0000 -14.2944(=) 1.1255E+00
PSO+Eps -15.0000 -3.0000 -9.7386 -9.9699(+) 9.4318E+00
PSO+Deb -14.9999 -2.0000 -7.0000 -7.8400(+) 1.6640E+01

F02

ICPSO -0.8036 -0.6969 -0.7866 -0.7801 6.1414E-04
PSO+DE+Deb+Deb -0.7963 -0.6604 -0.7768 -0.7638(=) 1.3364E-03
PSO+Eps -0.7831 -0.3686 -0.6056 -0.6001(+) 1.1111E-02
PSO+Deb -0.6896 -0.3919 -0.6025 -0.5794(+) 7.6440E-03

F03

ICPSO -1.0005 -1.0005 -1.0005 -1.0005 2.8144E-31
PSO+DE+Deb+Deb -1.0005 -1.0005 -1.0005 -1.0005(=) 6.0808E-31
PSO+Eps -0.9881 -0.2862 -0.9153 -0.8223(+) 4.6320E-02
PSO+Deb -0.5185 0.0000 -0.0624 -0.1005(+) 1.7213E-02

F04

ICPSO -30665.5387 -30665.5387 -30665.5387 -30665.5387 1.3786E-23
PSO+DE+Deb+Deb -30665.5387 -30665.5387 -30665.5387 -30665.5387(=) 1.3786E-23
PSO+Eps -30665.5387 -30186.1587 -30665.5387 -30607.9459(+) 2.5269E+04
PSO+Deb -30665.5387 -30665.5387 -30665.5387 -30665.5387(=) 5.4044E-12

F05

ICPSO 5126.4967 5126.4967 5126.4967 5126.4967 7.5825E-24
PSO+DE+Deb+Deb 5126.4967 5126.4967 5126.4967 5126.4967(=) 7.7548E-24
PSO+Eps 5131.0320 6112.2237 5162.0209 5324.5716(+) 1.0783E+05
PSO+Deb 5126.4967 6108.2908 5195.9861 5412.8367(+) 1.5829E+05

F06

ICPSO -6961.8139 -6961.8139 -6961.8139 -6961.8139 0
PSO+DE+Deb+Deb -6961.8139 -6961.8139 -6961.8139 -6961.8139(=) 0
PSO+Eps -6961.8139 -6961.8139 -6961.8139 -6961.8139(=) 0
PSO+Deb -6961.8139 -6961.8139 -6961.8139 -6961.8139(=) 0

Continued on next page
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Prob. Algorithm Best Worst Median Mean(Wil Test) Std

F07

ICPSO 24.3062 24.3062 24.3062 24.3062 2.7558E-28
PSO+DE+Deb+Deb 24.3062 24.3062 24.3062 24.3062(=) 6.6264E-29
PSO+Eps 24.6127 117.8906 26.6317 33.0362(+) 3.5326E+02
PSO+Deb 24.5216 192.9197 27.9271 42.5169(+) 1.6092E+03

F08

ICPSO -0.0958 -0.0958 -0.0958 -0.0958 1.2840E-34
PSO+DE+Deb+Deb -0.0958 -0.0958 -0.0958 -0.0958(=) 1.4444E-34
PSO+Eps -0.0958 -0.0958 -0.0958 -0.0958(=) 1.4444E-34
PSO+Deb -0.0958 -0.0958 -0.0958 -0.0958(=) 1.2037E-34

F09

ICPSO 680.6301 680.6301 680.6301 680.6301 5.9238E-26
PSO+DE+Deb+Deb 680.6301 680.6301 680.6301 680.6301(=) 7.3778E-26
PSO+Eps 680.6309 681.4069 680.6930 680.8072(+) 5.1920E-02
PSO+Deb 680.6319 681.1612 680.6789 680.7082(+) 1.1588E-02

F10

ICPSO 7049.2480 7250.9673 7049.2480 7065.3856 3.1196E+03
PSO+DE+Deb+Deb 7049.2480 7049.2480 7049.2480 1.4717E-23(=) 1.4717E-23
PSO+Eps 7122.9001 11100.0001 7592.5522 7903.1978(+) 7.3655E+05
PSO+Deb 7140.0571 9426.5647 7633.7621 7788.8123(+) 3.0280E+05

F11

ICPSO 0.7499 0.7499 0.7499 0.7499 1.2840E-32
PSO+DE+Deb+Deb 0.7499 0.7499 0.7499 0.7499(=) 1.2840E-32
PSO+Eps 0.7499 0.7499 0.7499 0.7499(=) 1.2840E-32
PSO+Deb 0.7499 0.7499 0.7499 0.7499(=) 1.2840E-32

F12

ICPSO -1.0000 -1.0000 -1.0000 -1.0000 0
PSO+DE+Deb+Deb -1.0000 -1.0000 -1.0000 -1.0000(=) 0
PSO+Eps -1.0000 -1.0000 -1.0000 -1.0000(=) 0
PSO+Deb -1.0000 -1.0000 -1.0000 -1.0000(=) 0

F13

ICPSO 0.0539 0.0539 0.0539 0.0539 5.7979E-34
PSO+DE+Deb+Deb 0.0539 1.0000 0.4388 0.3227(+) 5.4626E-02
PSO+Eps 0.2714 1.2208 0.9708 0.8245(+) 6.8868E-02
PSO+Deb 0.2655 2.0483 0.9216 0.8767(+) 9.9082E-02

+/ = /− PSO+DE+Deb+Deb 1/12/0 PSO+Eps 9/4/0 PSO+Deb 8/5/0

Figure 4 shows the mean convergence of the 13 functions for the 4 algorithms. The x-axis is
the number of evaluations of the fitness function, and the y-axis is the mean of the function values
for 25 runs. As shown in Figure 4, since the algorithm that uses the ε-constraint method as the
constraint-guided strategy has a moderate slack effect on the infeasible solutions in the early stage,
the convergence range is expanded and the convergence speed is reduced in the early stage. The results
for F06, F07, F10 and F11 are shown in Figure 4. The convergence is accelerated after a short period
of adjustment and is more stable for the same number of evaluations. The result for F05 in Figure 4
further shows that the ε-constraint method guides the algorithm update process. To enhance the global
search ability in the early stage, some infeasible solutions with smaller objective function values are
allowed to appear. However, as the number of evolutionary generations increases, the algorithm can
instead converge to the optimal solution more quickly and stably.
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Figure 4. Average convergence curve of 4 algorithms on 13 benchmark functions.
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(2) Performance evaluation using CEC2017 benchmark functions
In this section, the scalability of the proposed ICPSO algorithm in addressing constrained

optimization problems is further evaluated using another 28 benchmark functions that were introduced
in CEC2017. These CEC2017 benchmark problems pose a greater challenge compared to those of
CEC2006, as they encompass a broader array of constraints. Note that the experimental results of those
benchmark functions, in which both the ICPSO and the other three algorithms cannot find feasible
solutions consistently, have been excluded from the comparative analysis (C17–C19 and C26–C28).

Figure 5 shows the proportion of optimal solutions that are feasible for the 22 benchmark functions
after 25 independent runs of each algorithm. For C11, except for the ICPSO algorithm with a success
rate of 4%, all other algorithms did not obtain feasible solutions in 25 runs; for C06, the success rate of
ICPSO is 100%, PSO+DE+DEB+DEB is 96%, and the other two variants of PSO algorithms obtained
only 80% and 60%, respectively; and the PSO+Deb algorithm did not achieve a success rate of 100%
for C22. It is not difficult to find that the IPSO algorithm with a composite optimization strategy can
improve the success rate of PSO algorithm in solving these 22 constrained optimization problems.

Figure 5. Proportion of feasible solutions for 22 benchmark functions from the IEEE
CEC2017 dataset.

The Best, Worst, Median, Mean, and Std values obtained by the compared algorithms in solving
CEC2017 benchmark functions after 25 runs are presented in Table 4. Figure 6 shows the mean
convergence of the 22 functions for the 4 algorithms. For C04, C07, C13–C16, C20, C21, and
C23, the ICPSO algorithm achieved the best results. As shown in Figure 6, ICPSO algorithm can
stably converge on these functions. For C1–C3, C5, C8–C10, C12, and C24, both ICPSO and
PSO+DE+Deb+Deb performed well, especially for C01–C03 and C05. The two algorithms stably
converged to 0 in 25 calculations. For C06, combined with the success rate and Figure 6(f), it can be
found that only ICPSO is much better than the other three algorithms in solving this problem. C11 is
difficult to solve. Except for ICPSO, other 3 algorithms cannot obtain its feasible solution. The success
rate of ICPSO is also very low. Therefore, effective solving strategies need to be set according to the
characteristics of this function. The results presented in Tables 4 show that ICPSO is superior to the
other 3 algorithms for solving the 22 functions; that is, the composite strategy for updating personal
best position can improve the ability of the PSO algorithm to solve the constrained optimization
problems. The results of the Wilcoxon test show that the performance of ICPSO is significantly better
than PSO+Eps and PSO+Deb, which is equivalent to PSO+DE+Deb+Deb. However, combined with
the success rates, the composite strategy can be used to solve these 22 problems.
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Figure 6. Average convergence curve of 4 algorithms on 22 benchmark functions.
AIMS Mathematics Volume 9, Issue 4, 7917–7944.



7932

Table 4. Results of 4 improved PSO algorithms on 22 benchmark functions.

Prob. Algorithm Best Worst Median Mean(Wil Test) Std

C01

ICPSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
PSO+DE+Deb+Deb 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00(=) 0.0000E+00
PSO+Eps 0.0000E+00 1.1795E-12 2.8984E-19 4.8992E-14(+) 5.5547E-26
PSO+Deb 8.4754E-27 1.4767E-14 4.9003E-18 8.5885E-16(+) 9.3175E-30

C02

ICPSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
PSO+DE+Deb+Deb 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00(=) 0.0000E+00
PSO+Eps 3.3494E-23 2.8319E-16 2.1563E-19 2.7667E-17(+) 5.0451E-33
PSO+Deb 1.8814E-24 7.8490E-15 2.3722E-18 7.1620E-16(+) 4.0864E-30

C03

ICPSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
PSO+DE+Deb+Deb 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00(=) 0.0000E+00
PSO+Eps 7.3610E-23 2.3752E-12 6.1935E-18 1.2111E-13(+) 2.2544E-25
PSO+Deb 7.9527E-24 4.5144E-11 2.4400E-19 1.8059E-12(+) 8.1520E-23

C04

ICPSO 1.6914E+01 4.5768E+01 3.6813E+01 3.5978E+01 3.4456E+01
PSO+DE+Deb+Deb 1.5919E+01 5.5717E+01 3.7808E+01 3.7585E+01(=) 9.1817E+01
PSO+Eps 1.8904E+01 4.7758E+01 3.7809E+01 3.8803E+01(=) 5.4940E+01
PSO+Deb 1.7924E+01 5.5717E+01 4.2783E+01 4.0969E+01(+) 7.1367E+01

C05

ICPSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
PSO+DE+Deb+Deb 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00(=) 0.0000E+00
PSO+Eps 1.4787E-11 5.5977E+00 1.7687E+00 1.9865E+00(+) 3.2524E+00
PSO+Deb 8.7359E-17 9.5023E+00 7.4434E-01 1.8852E+00(+) 6.8111E+00

C06

ICPSO 8.2871E+01 6.7691E+02 2.3032E+02 2.6020E+02 2.5461E+04
PSO+DE+Deb+Deb 9.9261E+01 2.4077E+03 4.6086E+02 5.1682E+02(+) 1.9966E+05
PSO+Eps 1.6038E+02 1.7553E+03 4.3420E+02 5.1558E+02(+) 1.3317E+05
PSO+Deb 2.5127E+02 2.5551E+03 1.0127E+03 1.1444E+03(+) 3.3382E+05

C07

ICPSO -2.5992E+02 1.5657E+02 -5.3364E+01 -5.0976E+01 7.8377E+03
PSO+DE+Deb+Deb -1.6392E+02 1.8198E+02 4.9387E+01 5.9887E+01(+) 8.1840E+03
PSO+Eps -2.2107E+02 2.5240E+02 -5.4356E-01 -2.1823E+00(=) 1.1646E+04
PSO+Deb -2.5066E+01 2.4529E+02 8.8854E+01 9.3390E+01(+) 5.6346E+03

C08

ICPSO -1.3484E-03 -1.3484E-03 -1.3484E-03 -1.3484E-03 2.8567E-22
PSO+DE+Deb+Deb -1.3484E-03 -1.3484E-03 -1.3484E-03 -1.3484E-03(=) 1.3107E-21
PSO+Eps -1.0336E-03 1.9229E-03 1.8862E-05 2.2378E-04(+) 8.0095E-07
PSO+Deb -1.0562E-03 2.1660E-03 -5.2108E-04 -2.3969E-04(+) 5.2691E-07

C09

ICPSO -4.9752E-03 -4.9752E-03 -4.9752E-03 -4.9752E-03 0.0000E+00
PSO+DE+Deb+Deb -4.9752E-03 -4.9752E-03 -4.9752E-03 -4.9752E-03(=) 0.0000E+00
PSO+Eps -4.9752E-03 1.1216E+00 -4.8661E-03 1.2915E-01(+) 9.4323E-02
PSO+Deb -4.9752E-03 4.7827E+00 -4.7996E-03 3.1463E-01(+) 1.0059E+00

C10

ICPSO -5.0965E-04 -5.0965E-04 -5.0965E-04 -5.0965E-04 1.5395E-20
PSO+DE+Deb+Deb -5.0965E-04 -5.0965E-04 -5.0965E-04 -5.0965E-04(=) 2.9316E-22
PSO+Eps -3.8375E-04 7.0034E-04 -1.1079E-04 -2.8348E-05(+) 8.0706E-08
PSO+Deb -3.9693E-04 5.9321E-04 -1.6193E-04 -4.3811E-05(+) 7.9731E-08
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Prob. Algorithm Best Worst Median Mean(Wil Test) Std

C11

ICPSO -1.4554E+00 1.5215E+00 -6.3933E-01 -2.3206E-01 8.8931E-01
PSO+DE+Deb+Deb -9.8407E-01 1.4855E+00 4.5590E-01 2.7254E-01(=) 5.8345E-01
PSO+Eps -7.3529E+02 5.5079E+00 -3.1108E+00 -2.3229E+02(+) 8.4405E+04
PSO+Deb -1.9832E+01 4.0920E+00 -1.8455E+00 -1.3276E+00(=) 2.0913E+01

C12

ICPSO -3.9879E+00 3.9879E+00 3.9879E+00 3.9879E+00 2.3666E-30
PSO+DE+Deb+Deb 3.9879E+00 3.9879E+00 3.9879E+00 3.9879E+00(=) 1.0518E-30
PSO+Eps 3.9879E+00 2.2842E+01 3.9879E+00 7.2027E+00(+) 3.7795E+01
PSO+Deb 3.9879E+00 2.2790E+01 3.9879E+00 7.1918E+00(+) 3.7575E+01

C13

ICPSO 0.0000E+00 3.9866E+00 0.0000E+00 1.5946E-01 6.3571E-01
PSO+DE+Deb+Deb 0.0000E+00 3.9866E+00 0.0000E+00 6.3785E-01(=) 2.2250E+00
PSO+Eps 6.7949E-10 6.5227E+01 2.6291E+00 1.5059E+01(+) 6.3555E+02
PSO+Deb 3.0976E-13 1.1698E+02 3.9871E+00 2.2894E+01(+) 1.0691E+03

C14

ICPSO 2.5960E+00 3.5734E+00 2.9585E+00 2.9945E+00 6.1596E-02
PSO+DE+Deb+Deb 2.4024E+00 3.6975E+00 3.0641E+00 3.0485E+00(=) 1.1024E-01
PSO+Eps 2.8896E+00 3.7035E+00 3.3127E+00 3.3353E+00(+) 3.9312E-02
PSO+Deb 3.0536E+00 3.7656E+00 3.4716E+00 3.4532E+00(+) 2.8797E-02

C15

ICPSO 5.4977E+00 1.8064E+01 1.1781E+01 1.2158E+01 6.8429E+00
PSO+DE+Deb+Deb 8.6393E+00 1.8064E+01 1.1781E+01 1.2912E+01(=) 6.4810E+00
PSO+Eps 5.4977E+00 1.8064E+01 1.1781E+01 1.2912E+01(=) 8.1260E+00
PSO+Deb 1.1781E+01 2.1206E+01 1.4922E+01 1.6053E+01(+) 1.1416E+01

C16

ICPSO 2.0420E+01 5.6549E+01 4.3982E+01 4.1155E+01 1.1700E+02
PSO+DE+Deb+Deb 3.1416E+01 8.7964E+01 4.3982E+01 4.6433E+01(=) 1.4456E+02
PSO+Eps 2.5133E+01 6.9115E+01 5.0265E+01 4.8757E+01(=) 9.8384E+01
PSO+Deb 5.0265E+01 8.3252E+01 6.2832E+01 6.4088E+01(+) 9.7051E+01

C20

ICPSO 4.9902E-01 1.3840E+00 8.0014E-01 8.4173E-01 4.7821E-02
PSO+DE+Deb+Deb 5.2126E-01 1.5701E+00 8.0599E-01 9.0244E-01(=) 7.8540E-02
PSO+Eps 4.5423E-01 1.6113E+00 9.4499E-01 9.6239E-01(+) 6.0995E-02
PSO+Deb 5.8430E-01 1.2462E+00 9.5933E-01 9.5106E-01(+) 3.0787E-02

C21

ICPSO 3.9879E+00 3.9879E+00 3.9879E+00 3.9879E+00 3.2951E-30
PSO+DE+Deb+Deb 3.9879E+00 1.4603E+01 3.9879E+00 4.4125E+00(=) 4.5070E+00
PSO+Eps 3.9879E+00 2.2850E+01 3.9879E+00 9.0290E+00(+) 6.1512E+01
PSO+Deb 3.9879E+00 2.2793E+01 3.9880E+00 9.9733E+00(+) 5.4571E+01

C22

ICPSO 3.4625E-27 3.9866E+00 3.6837E-27 9.5678E-01 3.0196E+00
PSO+DE+Deb+Deb 3.4625E-27 3.9866E+00 3.4625E-27 6.3785E-01(=) 2.2250E+00
PSO+Eps 3.0195E-07 1.9152E+05 4.3250E+00 1.0107E+04(+) 1.5656E+09
PSO+Deb 2.9269E-03 2.0452E+05 1.4042E+01 1.6059E+04(+) 3.0775E+09

C23

ICPSO 2.4447E+00 3.6105E+00 2.9945E+00 2.9792E+00 1.0704E-01
PSO+DE+Deb+Deb 2.4089E+00 3.4898E+00 2.9703E+00 2.9962E+00(=) 5.3903E-02
PSO+Eps 2.8923E+00 3.7480E+00 3.4481E+00 3.4188E+00(+) 4.5688E-02
PSO+Deb 3.0375E+00 3.7435E+00 3.5176E+00 3.4698E+00(+) 3.3942E-02
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Prob. Algorithm Best Worst Median Mean(Wil Test) Std

C24

ICPSO 8.6393E+00 1.8064E+01 1.1781E+01 1.2032E+01 5.6915E+00
PSO+DE+Deb+Deb 5.4977E+00 1.4922E+01 1.1781E+01 1.2032E+01(=) 4.8690E+00
PSO+Eps 8.6393E+00 1.8064E+01 1.4922E+01 1.3666E+01(+) 5.7573E+00
PSO+Deb 1.1781E+01 2.4347E+01 1.4922E+01 1.5802E+01(+) 1.3587E+01

C25

ICPSO 2.5133E+01 6.9115E+01 4.3982E+01 4.4359E+01 1.0287E+02
PSO+DE+Deb+Deb 2.0420E+01 6.2832E+01 4.3982E+01 4.1532E+01(=) 1.5135E+02
PSO+Eps 3.7699E+01 7.6969E+01 5.1836E+01 5.5166E+01(+) 1.7258E+02
PSO+Deb 4.3982E+01 8.1681E+01 6.2832E+01 6.1387E+01(+) 1.0896E+02

+/ = /− PSO+DE+Deb+Deb 2/20/0 PSO+Eps 18/4/0 PSO+Deb 21/1/0

4.2.2. Comparison and analysis regarding algorithms in other studies

To further validate the performance of the ICPSO algorithm in solving constrained problems, the
ICPSO algorithm was compared with two intelligent algorithms proposed in recent years and three
improved PSO algorithms with the DE strategy for CEC2006 benchmark functions; and compared
with three new intelligent algorithms for CEC2017 benchmark functions. The data of all comparison
algorithms are derived from cited references, the main parameters of each algorithm were set
as follows:

mcABC algorithm: The number of evaluations of the fitness function was 2.5 × 105, and the
correction rate was 0.8;

IFOA algorithm: N = 100, T = 5000, Selection probability P = 0.8;

PSO-DE algorithm: c1 = c2 = 1.5, ωmax = 0.8, ωmin = 0.4, F = 0.95, CR = 0.95;

HMPSO algorithm: The number of evaluations of the fitness function was 3× 105, N = 60, the size
of each sub-swarm Ns = 8, F = 0.7, CR = 1.0, T = 2500;

PSODE algorithm: The number of evaluations of the fitness function was ∈ [1.06×104, 1.401×105],
F ∈ [0.9, 1.0], and CR ∈ [0.95, 1];

CMPSOWV algorithm: N = 100, subpopulation Nk = 10 with k = 1, · · · , 10, acceleration
coefficients c1 = c2 = c3 = 4.1/3;

GA-TDX algorithm: N = 100, T = 1000, Penalty parameter m = 1010, the proportion of the best
group in the population β = 0.2, the shape parameter γ = 6;

ECO-HCT algorithm: The number of evaluations of the fitness function was 2 × 105, N = 50,
F = 0.8, CR = 0.9, Elite replacement strategy control parameters ωmin = 0.2, ωmax = 0.8, Archive A2

size α1 = 40.

Table 5 shows that the ICPSO algorithm achieves the optimal mean function values for F03–F09
and F11–F13. The standard deviations for F08 and F11 obtained by the ICPSO algorithm are inferior
to those obtained by the HMPSO and PSO-DE algorithms, respectively; however, the accuracy of
ICPSO is greater than 10−30, which reflects the stability of this algorithm. For F01, F02, and F10, the
performance of the ICPSO algorithm needs to be improved.
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Table 5. Results of ICPSO and other 5 algorithms on 13 benchmark functions.

Pro. Ind. mcABC [7] IFOA [8] PSO-DE [18] HMPSO [17] PSODE [16] ICPSO

F01
Mean -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -14.7600
Std 0 0 0 0 2.1E08 4.4000E-01

F02
Mean -0.8017 -0.8037 -0.8036 -0.8028 -0.7567 -0.7801
Std 3.9463E-03 2.39E-06 4.50E-03 2.6784E-03 3.3E-02 6.1414E-04

F03
Mean -1.0039 -1.0005 -1.0000 -1.0000 -1.0005 -1.0005
Std 3.610E-4 9.94E-16 6.20E-16 2.0501E-03 3.8E-12 2.8144E-31

F04
Mean -30665.538 -30665.538 -30665.538 -30665.538 -30665.5387 -30665.5387
Std – 2.18E-11 3.71E-12 7.4260E-12 8.3E-10 1.3786E-23

F05
Mean 5221.833 5126.4954 5154.8009 5126.497 – 5126.4967
Std 1.3474E+02 2.47E-08 1.60E+02 2.9529E-12 – 7.5825E-24

F06
Mean -6961.814 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139
Std – 1.82E-12 1.90E-12 0 2.3E-09 0

F07
Mean 24.4096 24.3064 24.3064 24.3064 24.3064 24.3064
Std 8.2581E-02 1.29E-04 1.10E-14 1.4025E-11 1.3E-06 2.7558E-28

F08
Mean -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
Std – 8.33E-17 2.80E-17 0 1.3E-12 1.2840E-34

F09
Mean 680.6301 680.6301 680.6301 680.6301 680.6301 680.6301
Std 4.217E-03 2.02E-08 4.50E-13 2.8892E-13 4.6E-13 5.9238E-26

F10
Mean 7246.649 7 049.2607 7049.2480 7049.2480 7049.2480 7065.3856
Std 1.8107E+02 6.40E-03 4.90E-12 1.2125E-10 3.0E-05 3.1196E+03

F11
Mean 0.75 0.75 0.7500 0.7499 0.7500 0.7499
Std 2.69E-05 2.70E-11 0 1.1331E-16 2.5E-07 1.2840E-32

F12
Mean -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
Std 0 0 0 0 0 0

F13
Mean 0.9126 0.0540 – 0.2932 – 0.0539
Std 1.3273E-01 6.98E-05 – 1.4041E-01 – 5.7979E-34

Note: Where, ‘–’ is not involved in the literature.

In Table 6, ∇ represents a method cannot achieve at least a feasible solution on a benchmark
function at the end of 25 runs. From Table 6, we observe that ICPSO is able to solve these CEC2017
benchmark functions, achieving 8 best mean values and 6 second-best mean values. This indicates
promising search accuracies in solving these challenging problems. Moreover, other algorithms such
as CMPSOWV, GA-TDX, and ECO-HCT are reported to be able to produce 6, 6, and 10 best mean
values, respectively, in solving all CEC2017 benchmark functions. Specifically, for C11, ECO-HCT
fails to produce a feasible solution.
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Table 6. Results of ICPSO and other 3 algorithms on 22 benchmark functions.

Pro. Ind. CMPSOWV [20] GA-TDX [11] ECO-HCT [12] ICPSO

C01
Mean 1.77E-02 2.00E-17 0.00E+00 0.00E+00
Std 1.60E-02 5.23E-17 0.00E+00 0.00E+00

C02
Mean 3.39E+00 2.31E-16 0.00E+00 0.00E+00
Std 8.22E-01 1.10E-15 0.00E+00 0.00E+00

C03
Mean 1.20E-02 1.67E+04 0.00E+00 0.00E+00
Std 1.41E-02 1.20E+04 0.00E+00 0.00E+00

C04
Mean 1.37E+01 2.81E+01 3.87E+01 3.60E+01
Std 1.06E-01 5.84E+00 2.20E+01 3.45E+01

C05
Mean 4.70E-01 4.80E-01 0.00E+00 0.00E+00
Std 3.02E-01 1.32E+00 0.00E+00 0.00E+00

C06
Mean 7.61E+01 9.06E+01 1.79E+02 2.60E+02
Std 2.50E+00 4.94E+01 7.68E+01 2.55E+04

C07
Mean -7.02E+01 9.77E+01 -4.24E+01 -5.10E+01
Std 3.72E+01 5.91E+01 8.80E+01 7.78E+03

C08
Mean -1.21E-03 1.07E+02 -1.35E-03 1.35E-03
Std 2.28E-04 2.42E-06 2.03E-14 2.86E-22

C09
Mean -4.47E-03 1.86E+0 5.98E-03 -4.98E-03
Std 7.70E-04 3.19E-01 3.86E-02 0.00E+00

C10
Mean -5.09E-04 4.34E-07 -5.10E-04 -5.10E-04
Std 9.81E-06 6.98E-07 3.17E-09 1.54E-20

C11
Mean -3.37E+01 3.07E+00 ∇ -2.32E-01
Std 9.63E+01 2.27E+00 ∇ 8.89E-01

C12
Mean 4.44E+00 2.58E-07 6.73E+00 3.99E+00
Std 5.41E-01 2.17E-07 5.80E+00 2.37E-30

C13
Mean 9.19E+00 7.99E-01 1.59E-01 1.59E-01
Std 1.43E-01 1.63E+00 7.97E-01 6.36E-01

C14
Mean 1.13E+00 6.37E-01 2.38E+00 2.99E+00
Std 1.34E-02 3.31E-01 1.40E-02 6.16E-02

C15
Mean 1.05E+01 4.67E+00 1.74E+01 1.22E+01
Std 4.76E+00 2.57E+00 2.40E+00 6.84E+00

C16
Mean 6.28E+01 1.28E+01 1.25E+01 4.12E+01
Std 9.29E+00 6.87E+00 5.97E+00 1.17E+02

C20
Mean 8.01E-01 2.35E-01 1.28E+00 8.42E-01
Std 1.28E-01 1.07E-01 2.18E-01 4.78E-02

C21
Mean 7.87E+00 4.25E-01 7.31E+00 3.99E+00
Std 2.29E+00 2.12E+00 6.82E+00 3.30E-30

C22
Mean 9.41E+01 2.29E+10 1.58E-24 9.57E-01
Std 8.07E+01 9.31E+10 3.08E-24 3.02E+00

Continued on next page
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Pro. Ind. CMPSOWV [20] GA-TDX [11] ECO-HCT [12] ICPSO

C23
Mean 2.82E+00 7.19E-01 2.38E+00 2.98E+00
Std 4.51E-01 2.57E-01 1.25E-02 1.07E-01

C24
Mean 5.68E+00 8.04E+00 7.38E+00 1.20E+01
Std 4.66E-02 2.04E+00 4.16E+00 5.69E+00

C25
Mean 7.10E+01 3.63E+03 1.64E+01 4.44E+01
Std 8.98E+00 4.96E+03 7.62E+00 1.03E+02

4.3. Engineering applications

To further verify the performance of ICPSO, four real-world application examples are used [27].
The ICPSO algorithm is tested against three of latest evolutionary algorithms: the self-adaptive
spherical search algorithm (SASS) [28], L-SHADE for constrained optimization with Lévy flight
(COLSHADE) [29], and modified covariance matrix adaptation evolution strategy (sCMAgES) [30].

4.3.1. Pressure vessel design

The goal of this problem is to optimize the cost of vessel welding, material, and formation. This
problem has four constraints that need to be satisfied, and four variables are used to calculate the
objective function: Shell thickness, head thickness, inner radius, and vessel length (excluding the
head). The current theoretical optimal solution is 5885.3327736. The mathematical model of this
problem is as follows:

min f (x) = 1.7781z2x2
3 + 0.6224z1x3x4 + 3.1661z2

1x4 + 19.84z2
1x4

s.t. g1(x) = 0.00954x3 − z2 ≤ 0,
g2(x) = 0.0193x3 − z1 ≤ 0,
g3(x) = x4 − 240 ≤ 0,
g4(x) = −πx2

3x4 −
4
3πx3

3 + 1296000 ≤ 0,
z1 = 0.0625x1,

z2 = 0.0625x2,

10 ≤ x3, x4 ≤ 200,
1 ≤ x1, x2 ≤ 99(integer).

(4.1)

Table 7. Results of each algorithm in pressure vessel design.

Prob. ICPSO SASS sCMAgES COLSHADH
Best 6059.7143 6059.7143 6059.7143 6059.7143
Worst 6059.7143 6059.7143 6370.7797 6090.5262
Median 6059.7143 6059.7143 6063.7632 6059.7143
Mean 6059.7143 6059.7143 6088.6007 6062.1793
Std 1.7868E-17 3.7130E-12 6.6365E+01 8.359059
Feasible rate 100 100 100 100
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Table 7 lists the calculation results of the four algorithms for the pressure vessel design problem.
The overall results have certain deviations from the optimal solution. However, the ICPSO and SASS
algorithms perform slightly better than the other two algorithms, and the ICPSO algorithm outperforms
the SASS algorithm in terms of standard deviation by 5 orders of magnitude, indicating that the ICPSO
algorithm is more stable.

4.3.2. Weight minimization of a reducer

This problem involves the design of a small aircraft engine reducer. The current theoretical optimal
solution is 2994.4244658. The mathematical model of this problem is as follows:

min f (x) = 0.7854x2
2x1(14.9334x3 − 43.0934 + 3.3333x2

3) + 0.7854(x5x2
7 + x4x2

6)
−1.508(x2

7 + x2
6) + 7.447(x3

7 + x3
6)

s.t. g1(x) = −x1x2
2x3 + 27 ≤ 0,

g2(x) = −x1x2
2x2

3 + 397.5 ≤ 0,
g3(x) = −x2x4

6x3x−3
4 + 1.93 ≤ 0,

g4(x) = −x2x4
7x3x−3

5 + 1.93 ≤ 0,

g5(x) = 10x−3
6

√
16.91 × 106 + (745x4x−1

2 x−1
3 )2 − 1100 ≤ 0,

g6(x) = 10x−3
7

√
157.5 × 106 + (745x5x−1

2 x−1
3 )2 − 850 ≤ 0,

g7(x) = x2x3 − 40 ≤ 0,
g8(x) = −x1x−1

2 + 5 ≤ 0,
g9(x) = x1x−1

2 − 12 ≤ 0,
g10(x) = 1.5x6 − x4 + 1.9 ≤ 0,
g11(x) = 1.1x7 − x5 + 1.9 ≤ 0,
0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 2.6 ≤ x1 ≤ 3.6,
5 ≤ x7 ≤ 5.5, 7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9.

(4.2)

Table 8 lists the calculation results of the weight minimization problem for the reducer. For this
problem, all the algorithms obtain similar results. The stability of ICPSO, SASS, and COLSHADE is
similar, and all reach 10−13, indicating that the ICPSO algorithm is stable and effective at solving this
type of problem.

Table 8. Results of each algorithm in pressure vessel design.

Prob. ICPSO SASS sCMAgES COLSHADH
Best 2994.4245 2994.4245 2994.4245 2994.4245
Worst 2994.4245 2994.4245 2994.4245 2994.4245
Median 2994.4245 2994.4245 2994.4245 2994.4245
Mean 2994.4245 2994.4245 2994.4244 2994.4245
Std 8.6529E-13 4.6412E-13 2.7723E-12 4.5475E-13
Feasible rate 100 100 100 100
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4.3.3. Design of tension/compression springs (Case 1)

The goal of this problem is to optimize the weight of a tension or compression spring. This problem
contains four constraints and uses three variables to calculate the weight: The wire diameter, average
coil diameter, and number of active coils. The current theoretical optimal solution is 0.012665232788.
The mathematical model of this problem is as follows:

min f (x) = x2
1x2(2 + x3)

s.t. g1(x) = 1 − x3
2 x3

71785x4
1
≤ 0,

g2(x) = 4x2
2−x1 x2

12566(x2 x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0,

g3(x) = 1 − 140.45x1
x2

2 x3
≤ 0,

g4(x) = x1+x2
1.5 − 1 ≤ 0,

0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,
2.00 ≤ x3 ≤ 15.00.

(4.3)

Table 9 lists the calculation results for the tension/compression spring design problem (Case 1).
For this problem, all the algorithms obtain similar results. Among them, SASS is the most stable,
followed by ICPSO, with a standard deviation of 10−24, which is far lower than those of sCMAgES
and COLSHADE, demonstrating the stability of the ICPSO algorithm in solving this problem.

Table 9. Results of each algorithm in pressure vessel design.

Prob. ICPSO SASS sCMAgES COLSHADH
Best 1.2665E-02 1.2665E-02 1.2665E-02 1.2665E-02
Worst 1.2665E-02 1.2665E-02 1.2686E-02 1.2665E-02
Median 1.2665E-02 1.2665E-02 1.2666E-02 1.2665E-02
Mean 1.2665E-02 1.2665E-02 1.2668E-02 1.2665E-02
Std 6.3188E-24 0 4.6358E-06 1.0625E-07
Feasible rate 100 100 100 100

4.3.4. Design of tension/compression springs (Case 2)

The goal of this problem is to optimize the volume of steel wire needed to construct a helical
compression spring. There are three design variables in this problem, namely, the outer diameter
(continuous variable), the number of spring coils (integer variable), and the spring wire diameter
(discrete variable). This problem contains eight nonlinear inequality constraints, and the current
theoretical optimal solution is 2.6138840583. The mathematical model of this problem is as follows:
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min f (x) = π
2 x2 x2

3(x1+2)
4

s.t. g1(x) = 8000G f x2

πx3
3
− 189000 ≤ 0,

g2(x) = l f − 14 ≤ 0,
g3(x) = 0.2 − x3 ≤ 0,
g4(x) = x2 − 3 ≤ 0,
g5(x) = 3 − x2

x3
≤ 0,

g6(x) = σp − 6 ≤ 0,
g7(x) = σp +

700
K + 1.05(x1 + 2)x3 − l f ≤ 0,

g8(x) = 1.25 − 700
K ≤ 0,

G f =
4 x2

x3
−1

4 x2
x3
−4
+ 0.615x3

x2
,

K = 11.5×106 x4
3

8x1 x3
2
, σp =

300
K ,

l f =
100
K + 1.05(x1 + 2)x3,

1 ≤ x1(integer) ≤ 70,
0.6 ≤ x2(contimuous) ≤ 3,
x3(discreate) ∈ {0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014, 0.015,
0.0162, 0.0173, 0.018, 0.020, 0.023, 0.025, 0.028, 0.032, 0.035, 0.041, 0.047, 0.054,
0.063, 0.072, 0.080, 0.092, 0.0105, 0.120, 0.135, 0.148, 0.162, 0.177, 0.192, 0.207,
0.225, 0.263, 0.283, 0.307, 0.0331, 0.362, 0.394, 0.4375, 0.500}.

(4.4)

Table 10 lists the calculation results for the tension/compression spring design problem (Case 2).
For this problem, except for the sCMAgES algorithm, the algorithms all obtain similar results. Among
them, the ICPSO algorithm is the most stable, with a standard deviation of 10−31, which is far lower
than those of the other algorithms, demonstrating the high stability of the ICPSO algorithm in solving
this problem.

Table 10. Results of each algorithm in pressure vessel design.

Prob. ICPSO SASS sCMAgES COLSHADH
Best 2.6586 2.6586 2.8523 2.6586
Worst 2.6586 2.6586 6.7397 2.6995
Median 2.6586 2.6586 3.8786 2.6586
Mean 2.6586 2.6586 4.2369 2.6618
Std 2.05433E-31 4.5325E-16 1.0566E+00 1.1105E-02
Feasible rate 100 100 100 100

5. Conclusions

Our results present the improved composite particle swarm optimization algorithm
algorithm (ICPSO) for solving constrained optimization problems. We develop a new method
for updating the personal best position population, which is a composite strategy consisting of two
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constrained selections steps and one evolution step. The method utilizes the relaxation mechanism
of the ε-constraint to absorb some “excellent” infeasible solutions into the intermediate personal best
position population. To accelerate convergence, the DE strategy is used to optimize this population
and generate the intermediate evolutionary population. Finally, using a feasibility rule method
with strict constraint control, we select individuals with better constraint violation degrees from
the two intermediate populations to enter the personal best position population, thereby guiding the
population to efficiently converge towards the global optimal position. To verify the effectiveness of
the composite strategy in the ICPSO algorithm, we construct three comparative algorithms that use
partial strategies: PSO+EPS, PSO+Deb, and PSO+DE+Deb+Deb. The numerical results indicate
that the composite strategy in the ICPSO algorithm is effective. When one or more components are
missing, the convergence performance of the algorithm is significantly reduced. Finally, comparing
the performance of the ICPSO algorithm to that of other algorithms demonstrated the effectiveness
and stability of the proposed algorithm for solving the 13 functions from CEC2006, 22 functions from
CEC2017, and 4 real-world constraint optimization problems.

In the future, we will mostly focus on two areas. First, more effective mechanisms based on ICPSO
will be considered to handle more complex constrained optimization problems, such as large-scale
constrained optimization problems [31] and multi-objective constrained optimization problems [32].
Second, more effective and targeted operators will be designed to form an operator pool, enabling the
ICPSO algorithm to solve more real-world problems.
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