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Abstract: This work introduces a novel adaptive fixed-time control strategy for nonlinear systems
subject to external disturbances. The focus pertains to the introduction of the fixed-time terminal
sliding mode control (FxSMC) technique. The proposed scheme exhibits rapid convergence, chatter-
free and smooth control inputs, and stability within a fixed time. The utilization of an adaptive
methodology in combination with the FxSMC yields the proposed strategy. This approach is employed
to address the dynamic system in the presence of external disturbances. The results obtained from the
Lyapunov analysis will provide insights into the stability of the closed-loop system in a fixed time. In
the end, the simulation results are presented in order to assess and demonstrate the effectiveness of the
methodology.
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1. Introduction

Nonlinear systems subject to external disturbances are frequently encountered in various
engineering domains, including but not limited to servo position control systems, interconnected
mechanical systems, and robotic manipulators. These systems frequently encounter uncertainties and
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disturbances that have the potential to impact the system’s performance and stability [1,2]. In order to
tackle these challenges, researchers have devised a range of control techniques, such as sliding mode
control (SMC) and adaptive control [3]. The controller that has been proposed integrates the benefits of
sliding mode control and adaptive control to enhance transient performance and obtain the robustness
of the overall dynamical system. Therefore, the disturbance does not affect, and the sliding mode
converges in a fixed-time. The utilization of an adaptation tuning approach is employed to address
system uncertainties and external disturbances that are unknown but bounded.

The SMC scheme has been used a lot in the field of nonlinear control systems because it can handle
uncertainties and disturbances well, making the system robust [4]. However, chattering occurrence in
the control input is a problem with this method. The act of chattering can result in the production of
unwanted noise inside the system, hence potentially leading to instability of the system performance [5,
6]. Several ways to stop chattering have been suggested, such as using a saturation function, adding
a boundary layer, or using an integral sliding mode [7-9]. In addition, the developments of SMC
over the years have been given as terminal SMC, nonsingular SMC, fast SMC, fast nonsingular SMC,
and finite-time SMC to obtain better tracking, fast convergence, nonsingular and chatter-free control
input [10-15]. However, the finite-time scheme is strongly influenced by the starting values of the
states to converge. Hence, a fixed-time control is an alternate scheme that can be used to compute the
convergence time and it is independent of the initial values [16].

Adaptive control is a technique that modifies the controller parameters based on the system’s current
state [17]. It is a well-known nonlinear control scheme and is often used in complex systems to
compensate the unknown nonlinear dynamics. Therefore, this method can improve the performance
and stability of a system by changing the parameters of the controller in real-time to counteract the
effects of uncertainty, nonlinearity, and external disturbances [18]. Moreover, this control approach
is extensively employed for controlling the behavior of both linear and nonlinear systems [17]. The
combination of adaptive control schemes has been found with various classical and complex control
schemes, including PI, PD, PID [19-22], sliding mode control [23, 24], Hoo robust control [25],
optimal control [26, 27], time delay control [28], multi-agent system control [29], event-triggered
control [30], fuzzy logic control [31,32], and conventional and radial basis function neural network
(NN) scheme [33, 34]. Thus, various adaptive control schemes have been designed with sliding
mode control for the nonlinear dynamics to obtain robustness, improved tracking performance, fast
convergence, non-singularity, reduced chattering, and adaptive tuning control as well [35].

Since the convergence speed varies as the initial value changes in a finite-time scheme, therefore,
fixed-time control has been used in this work which does not rely on the initial conditions of the
system states. A proposed approach is presented called novel adaptive fixed-time sliding mode
control (NAFxSMC) for addressing the control of a class of nonlinear systems that are influenced
by external disturbances. The proposed scheme integrates the benefits of sliding mode control and
adaptive control techniques. The objective is to enhance the tracking and transient performances
and to obtain the robustness of the closed-loop system. The proposed control method is designed to
achieve fast convergence of the sliding mode within a fixed time. And the adaptive approach is utilized
to compensate the unknown bounded external disturbances. Then, the verification of the fixed-time
stability of the closed-loop nonlinear system is conducted using the Lyapunov theorem analysis.

This work is organized as follows: In Section 2, the related work is given in detail. Section 3
describes the main results including the proposed adaptive sliding mode control approach and the
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stability analyses. In Section 4, the numerical simulation results are illustrated. In Section 5, the
discussion and analysis are presented. Finally, Section 6 closes the work and discusses future research
directions.

2. Related work

Nonlinear systems benefit from fixed-time sliding mode control, which has convergence within a
predetermined time frame and is unique in many respects. As a result, a considerable number of experts
have recently focused their efforts on examining this particular subject [36]. To successfully manage
the uncertainties and disturbances that are inherent in a nonlinear system, the authors propose the use
of fixed-time fractional-order SMC [37]. The research findings were validated, demonstrating progress
in fractional nonlinear chaotic systems using a novel synchronized fixed-time SMC technique [38]. A
fast fixed-time SMC scheme using an extreme learning machine has been developed for the dynamics
of robotic manipulator systems with uncertainties and disturbances [39]. Moreover, for a permanent-
magnet synchronous motor, a SMC based on a fixed-time observer has been proposed. The fixed-time
convergence SMC is designed to control both the inner loop, which regulates current, and the outer
loop, which tracks speed [40]. A novel anti-saturation faster fixed-time adaptive NN-SMC has been
developed for the uncertain dynamics of robotic system [41]. In [33], a robust fixed-time SMC control
has been proposed for a class of nonlinear Euler-Lagrange systems under exogenous disturbances
and uncertain dynamics. In which, a neural network is used as an adaptive estimation algorithm to
approximate the continuous uncertain dynamics. An enhanced adaptive rapid integral sliding mode
control technique has been developed with a specific focus on addressing the nonlinear dynamics
of quadrotor applications [42]. The authors came up with a new way to predict unknown external
disturbances that uses a high-order sliding mode observer [43]. When combined with exponential
fixed-time SMC, this method successfully handles the control issues that come with nonlinear Euler-
Lagrange systems [36]. Prescribed tracking performance has been obtained using proportional-integral
funnel control for unknown lower-triangular nonlinear systems [44], and neural network control for
underactuated surface vehicles [45]. This scheme enhances the control performance and allows the
freely predefined convergence rate and accuracy.

Using the aforementioned procedures, one can develop effective adaptive schemes for the regulation
of linear and nonlinear systems by utilizing a number of different types of adaptive control strategies.
This enables the estimation and reduction of unknown dynamics [17]. In order to achieve fast
responsiveness and get rid of chattering and singularity problems, the work used an adaptive finite-
time terminal sliding mode control strategy to estimate uncertainties and external disturbances [18].
The researchers put forth a fuzzy adaptive sliding mode control methodology in order to address
the existence of unfamiliar underactuated dynamics within a nonlinear system [46]. A robust
adaptive fault-tolerant control circuit design has been developed for the disturbed continuous-time
systems, converting them into analog circuits [47]. The approach is demonstrated using an adaptive
compensation scheme against actuator faults and disturbances, implementing equivalent control
circuits. The researchers proposed a novel adaptive fixed-time sliding mode control strategy to
effectively handle unknown nonlinearities and faults in robot systems [48]. A sliding mode control
technique was developed for a nonlinear robot with unknown and uncertain dynamics using an adaptive
fixed-time control approach [9]. A novel adaptive strategy using the fast terminal sliding mode control
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technique was introduced in order to tackle the issue of accurately tracking the attitude of a spaceship
with uncertain nonlinear dynamics while also considering the presence of saturation and actuator
faults [49]. In [50], the design of a sliding mode controller reinforced by an adaptive law is discussed
to control the desired state of three-story excited structure. An adaptive fractional-order sliding
mode control strategy for uncertain fractional-order nonlinear systems with Hoo adaptive observer
is proposed to estimate system states and unknown parameters [51]. Another adaptive nonlinear
sliding mode control scheme for improving the performance of controllers in AC/DC and DC/DC
converters. This control method improves the efficacy of controllers and provides reliable and efficient
performance [52].

3. Proposed scheme

The present section begins with an analysis of nonlinear dynamical systems. The subsequent
analysis designed a sliding surface and control scheme that are fixed-time and non-singular. Then,
the investigation of stability analyses completes the development of the proposed control system.

The nonlinear system can be represented as [53]:

X1 = X,

dy = f(x) + g(ou + (1), (3.1

where x = [x;,x,]7 € R, f(x) and g(x) are known functions, f(x) is a bounded continuous nonlinear
function, and g(x) is a nonlinear function with g(x) # 0. 6(¢) € R is the unknown disturbance, and
u € R represents the control input.

To calculate the tracking error, (3.1) is employed in the following manner:

é=f(x)+gx)u+o(r)— iy, (3.2)

where x, is the desired state, ¢ = x; — x4, ¢ = X; — Xy and é = ¥; — X .

Assumption 1. The following equation presents a bounded condition for an unknown external
disturbance:

60| < ¥, (3.3)

where \ is an unknown positive constant.

3.1. Fixed-time sliding surface

This section presents the design of a fixed-time nonsingular sliding surface, that enables accurate
and robust tracking performance for nonlinear systems within a fixed-time interval. Motivated by [16],

the sliding manifold is given as
_ R A 4
S oy

where e = |e|”2sign(e), constant values are 4 > 1,0 < A, < 1, and iy, 1, > 0.
The above equation can be expressed as

s= Xe+ ¥=(ee, (3.5)
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where
1

2e)= ———.
L1
2+ nilel™ ™

The derivative of (3.5) is obtained as follows:

0 =1 o=l =15 | L o= s N1 Aa—1 | Gptnilel't=2)e—ni (4 =)lel'1 =271 &2 sign(e)
§ = e el 4 72(‘:(6)8) 2 [ — . 3.6)
(m2+n1lel"1772)

Then it can be rewritten as
et L e ey el 2.0
§ = e/l e 4 /1—(:(6).6)1/}2 ! [:(e)e - m( - e[t~ ]:(e)zezﬂgn(e)] . 3.7
2
Substitution of error Eq (3.2) into (3.7), one gets

1
§ =2 el " e+ —(E(e)e) B [
2

E(e){f(x) + g(x)u + 8(F) — %4} 3.8)
(A — D)le" T E(e)*e?sign(e) | '

Given the completion of the design of the sliding manifold, the forthcoming design of the NAFxSMC
scheme for the nonlinear system aims to attain robust efficiency even in the presence of external
disturbance.

3.2. FxSMC scheme

The control FxSMC method can be formulated in the following manner, with the aim of efficiently
controlling the nonlinear system in the presence of bounded disturbances:

-1
= = g7 () (f(x) = &g + wsign(s)) + & (g) (m (1 = )lel 2" E(e)esign(e))
- g_l_(ﬂE(e)l—l//lzéZ—l//lzél//lz—l|€|/lz—l, (3.9)
=)
-1
i = — %E@HW (Isl° sign(s) + CalsiP sign(s)) (3.10)

where u; + u, = u, u; is nominal and u, is switching control inputs with condition |e|12_1 #0ife #0.
{1 and ¢, are positive constants, ¢; > 1 and 0 < ¢, < 1. Substitution of u; and u, into (3.8), one can
have

§ = —(E(e)&)""= 7 |E(e) T (&ilsI? sign(s) + Llsl sign(s)) + %E(E)(—wsign(S) +o(m)[. (G.11)

3.3. Stability analyses

In this subsection, stability analyses of the proposed control scheme have been established. The
following important lemma will be used for the fixed-time calculation.

Lemma 1 ( [9]). Considering the nonlinear system, we have
) = ft,y), y0)=yo (3.12)
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with continuous function f(t,y). Therefore, the Lyapunov candidate V(y) that satisfies:
(V) =0 & y=0,
(i) V() < —a V"' (y) = aaV(»)™,
with ay, a; > 0, by > 1 and 0 < b, < 1. Subsequently, the fixed-time can be formulated as
T < ! + ! .
ax(1=Dy)  ai(by—1)

(3.13)
For the stability of error dynamics, the Lyapunov function can be selected in the following manner:
Vi = ~é. (3.14)

Then (3.14) can be derived as
V| = eeé. (3.15)

When s = 0, we can get the dynamics from (3.4) as
& = —mle|sign(e) — mle|" sign(e).

Thus, we can obtain (3.16) by the substitution of ¢ into (3.15) as

Vi = e(-nlelsign(e) — milel" sign(e)), (3.16)
Vi = —mlef"*! = mplel . (3.17)
It can be expressed as
. A1+1 Ay+1
Vi <-m@V)T —m@v) T, (3.18)

A+l A+l Ay +1 Ap+1

Vls—n12TvlT—n22 VT

(3.19)

This expression represents that the error converges within a fixed-time, therefore, the convergence time
T, can be computed using Lemma 1.

Now, the Lyapunov theorem analysis will be employed in Theorem 1 to determine the stability of a
closed-loop system.

Theorem 1. The nonlinear system given in (3.1) is fixed-time stable with the suggested sliding
surface (3.4), control method designed in (3.9) and (3.10).

Proof. The function for the Lyapunov candidate is as follows:

1
V, = 5sz. (3.20)

Then V,(¢) can be computed as
Vy = s3. (3.21)

Equation (3.11) is substituted into (3.21), one can get
V> = =5 {(E@e) "7 |2(e) % (&5 sign(s) + LIt sign(s)) + 1-E(e)(—ysign(s) + 50|} (3.22)
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Simplifying the above equation with (3.3), one can formulate
Vy < =" (s + Lls). (3.23)

There are two possible cases:

1) e > 0 when é # 0,

2) "2 =0 when é = 0.

For ¢ # 0, the condition for Lyapunov fixed-time stability is always satisfied as ¢'/%~! > 0. For
¢ = 0, by substituting (3.9) and (3.10) into (3.2), we get

A
é = —ysign(s) + 6(t) - 72)5(6)1_1“2 (L1l sign(s) + Lals|* sign(s)) -
2(e
As can be easily observed, when s > 0, ¢ is negative, and when s < 0, € is positive. This implies that
¢ = 0 cannot be an attractor. Thus, no trajectory is able to remain on the ¢ = 0, every trajectory will
intersect ¢ = 0 and reach the sliding surface in fixed time. Based on Lemma 1, the fixed time 7; can
easily be calculated as

Ty < 1+l 1 +1 + e+l 1 +1
0277 (B -1 27T (-85
and then total time can be obtained as 7y = T; + 7. O

3.4. NAFxSMC scheme

The subsequent equations present a comprehensive description of the control input, incorporating
an adaptive law to address the challenges encountered by an unknown disturbance

u(t) = ur(t) + us(1) (3.24)

where u,(¢) 1s similar to (3.10), and adaptive control input is designed as

-1
uy = = g7 ) () = S + Prsign(s)) + S (g) (m (1 = D)lel 2" E(e)esign(e))
B g (D), T(e) "V gl b pla-] (3.25)

E(e)

whereas i/ is the estimation of .
The resulting adaptive law is proposed as a solution for solving unknown dynamics

b= () e g (3.26)
A
where k > 0 is known constant. Substitution of (3.24) into (3.8), one can obtain
1 n
§ = =(E(e)&)! "1 E(e)' 1 (&1s17 sign(s) + LolsI# sign(s)) + L E(e)(=sign(s) +6(0) . (3.27)
2
The use of Eq (3.24) can successfully solve the problem relating to the compensation of unknown
dynamics. Consequently, the NAFxTSM technique is employed to achieve tracking performance in

nonlinear systems under the influence of disturbances.
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Theorem 2. The nonlinear dynamics in (3.1) are fixed-time stable with the proposed sliding
surface (3.4), the control scheme given in (3.24), and the adaptive control laws (3.26).

Proof. Here is the chosen Lyapunov function:

1 1.
Vi = —5% + —iJ°, 3.28
3 2S + 2/('70 ( )

where / = i —  is the estimation error. The V;(¢) is obtained as follows
) | O
Vi=ss+—-yy. (3.29)
K

By substituting the derivative of $(¢) obtained from Eq (3.27) into Eq (3.29), we may construct the
following expression

V3 = =s(E(e)e) 7" [E(e)! " (£ilsl# sign(s) + LIl sign(s)) + LE(e)(—dsign(s) + 51| +Ldnp.  (3.30)
Based on the findings presented in (3.26) and the condition (3.3), it is possible to represent (3.30) as

’ 1/ - 1 1 L=\ =1mr o\ T 177
Vs < =T (45! + KI5l ) - L(E(0)0) T B Is| + i

(3.31)
< =t g5+ golsi
The above equation can be represented as
, [ L e
Vs < =4 (20Vs = D) T+ 6(20Vs - £92) ]
' (3.32)
Ry gl Lo\ e g2rl L%, e
= —e/" {12 2 (1 - 2KV3¢) V3 2 +{22 2 (1 - 2KV3lﬂ) V3 2.
Then (3.32) can be expressed as
Vy < =g [lef‘z” + szfzz”], (333)

where
¢+l

o)

¢+l

L=o2%(1- L) .
2KV3

The sliding surface will reach in fixed-time T'y,. The settling time 7'y, is calculated using Lemma 1
as

Ak
Li=427(1-
1=4 ( Vs

1 1
< 1+l + e+l "
Li(5—-1) L(1-=—

the equation for the overall settling time can be determined as 7, = T, + Ty,. Therefore, the nonlinear
system is employed to accurately control states and maintain the stability of the system in a fixed time.
Moreover, a thorough examination of stability analyses is conducted. O

TsZ
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Remark 1. By applying the proposed NAFxSMC method, which incorporates the fixed-time sliding
surface (3.4), adaptive SMC scheme (3.24), and adaptive rule (3.26), to the dynamics of the nonlinear
system (3.1), it is formulated that the convergence of tracking error within a fixed-time interval is
obtained. The complete designed model is shown in Figure 1. The reason for this is that the strategy
being given utilizes a technique of adaptive fixed-time sliding mode control in order to attain enhanced
performance. The findings of the computational model will be provided in the subsequent section.
Lemma 1 implies that the selection of the parameters as {; and n; can significantly influence the fixed-
time, as specified by T,. When assigning significant values to these parameters, the rate of convergence
will be enhanced accordingly.

e(t)

. 1/} _ %E(e)l/)tzél/)\z—l|s|
2

-1
g (DA~ s,
Sliding surface S(l) === E(e)

E(e)
X, X

1d>""2d f 5
e SN Y- A x(g, |s|" sign(s) +¢,
y | :

Uy ==g " () (f (x)= %, +ysign(s))

s u(7) X = X1 _xl > Xy

X = f(x) +8(x)u+4(t)

” sign(.s'))

4

g (%) _
= ('I'M' +)
- é:((i))l‘ B(e) Vi g Vig Vi

Vi1 E(e)zéz“'ig"(e))

|

(4

Figure 1. Proposed block diagram.

4. Numerical simulations results

To evaluate the simulation efficacy and validate the proposed NAFxSMC technique, two
applications are employed to execute the nonlinear system in the presence of disturbances. The
provided simulations aim to show the efficacy of the NAFxSMC under unknown disturbance. To
validate the performance of the proposed scheme, two examples are given, and the consequences of
these investigations are elucidated through the utilization of MATLAB/Simulink simulations.
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4.1. Example 1

To validate the efficacy of the proposed scheme, the NAFXSMC has been applied to the nonlinear
model given as [16]:
X =0(t) +u). 4.1)

The main objective of the proposed control is to ensure that the trajectories of the system align with
the desired signal x,; = sin(t). The proposed control parameters are chosen as: n7; = 100,17, = 30, =
300,4 = 100,4; = 1.95,1;, = 0.9,¢; = 1.5 and ¢, = 0.7. Then, the initial conditions of states are
given as x;(0) = 0.1 and x,(0) = 0. Moreover, the parameter of adaptive law is x = 1, its initial value is
¥ (0) = 0.3 and the disturbance is d(¢) = 30sin(¢) + 15sin(10¢). The states’ tracking is given in Figures 2
and 3, tracking errors e and ¢ are depicted in Figures 4 and 5, control input applied to the system is
shown in Figure 6, and adaptive estimation of the unknown dynamics is depicted in Figure 7.

08 = B

T (t)

041~ il

0.2~ /” i

ok Reference | |
- NAFxSMC
0.2 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t(s)
Figure 2. State x; trajectory with disturbance.
1 - |
0.5 —“‘ |
o -
0.5 5‘ -
it 4
sk 7
&

2 il
25 UL B

I Reference
3 -~ NAFxSMC|
3.5 t‘f =
—4‘# 1 1 1 1 1 -
0 0.5 1 1.5 2 2.5 3

Figure 3. State x, trajectory with disturbance.
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012

04
0.08 |
0.06 —“
0.04 |

0.02

-0.02

300

250 o

200

50

-50

—NAFxSMC
T T T T T T T T T
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t(s)
Figure 4. Error e with disturbance.
— NAFxSMC
T T T T T i
0.5 1 1.5 2 25 3
t(s)
Figure 5. Error ¢ with disturbance.

AIMS Mathematics

0.5 1 15 2

25 3

Figure 6. Control input with disturbance.
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— NAFxSMC, 1)

Adaptive variable

Figure 7. Adaptive parameter.

From Figures 2-5, it is shown that the proposed scheme provides high trajectory tracking and small
error with fast convergence. Moreover, the performance of the control input is given in Figure 6, and
it clearly seems that the suggested scheme gives less chatter in the control input.

4.2. Example 2

The description encompasses detailed information regarding the nonlinear model and its
parameters, external disturbance, and desired trajectory. Therefore, the subsequent second-order
nonlinear dynamical system is expressed as [53]:

X1 = X2,

Xy = (3 + cos(x1))8 — x% — 1.5x, + 2sin(xy) + (3 + cos(xy)u(t) + 6(¢), 4.2)

where the parameters are given as 6 = 2. The unknown external disturbance is represented by the 6(f)
and gaussian noise is used as a disturbance. And the control parameters are selected as follows:

m = 100, 1, = 30, £ = 300,

42 = 100, /l] = 195, /12 = 09, Q1 = 15, @2 = 0.7.

Furthermore, the initial values of states are defined as x;(0) = 0.5 and x,(0) = 0. The primary aim
of control is to ensure that the trajectories of the system align with the designated reference signal

x;= 0.6e7% — 1.4e™" + 1.45.

Moreover, the parameter of the adaptive law is k = 1 and the initial value is ¥(0) = 2.

AIMS Mathematics Volume 9, Issue 4, 7895-7916.
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Now a thorough comparison between the proposed NAFXxSMC and FTSMC is conducted [35];
therefore, the parameters are appropriately modified. Thus, upon analyzing Figures 8—10, it becomes
evident that the proposed scheme exhibits better tracking, reduces state error, and achieves a faster
convergence time. Additionally, the control performance is illustrated in Figure 11, which clearly
demonstrates that the proposed method produces a mitigated chattering problem in the control input.

In order to illustrate the benefits of the proposed robust adaptive fixed-time SMC scheme under
unknown external disturbance, a comparison is made between its findings and those obtained from
the fast finite-time sliding mode controller [35]. Given that the focus of this study pertains to the
development of a robust controller for a second-order nonlinear system, it is appropriate to conduct
a comparative analysis to establish the superiority of the suggested methodology over the findings
presented in [35].

The graphs presented in Figures 12-14 illustrate x;, x,, and tracking error e. The attainment
of satisfactory tracking performance is clearly seen. Both controllers have the capability to rapidly
minimize the tracking error to zero. However, the controller described in [35] is unable to achieve
exact tracking, and it is seen that the suggested law results in rapid convergence. The control input is
depicted in Figure 15, and the suggested control law exhibits both smoothness and acceptable tracking
performance, effectively mitigating external disturbance.

Furthermore, the control law given in this study requires less effort in comparison to the control
law presented in the work of [35]. The compensation of the unknown external disturbance with the
nonlinear system may be noticed in Figure 16. It is noticed that the proposed adaptive parameter
shows that the drifting issue does not affect it, and the comparative scheme is influenced by the drifting
problem. Hence, the simulation provides a clear demonstration that supports the theoretical analysis.

v
s

0.7 // Reference | -
/ —NAFxSMC

0.6 Z\‘// FTSMC 7
L L L L L

0 0.5 1 15 2 25 3

Figure 8. State x; trajectory.
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sl — Reference | |
—NAFxSMC

---FTSMC

Figure 9. State x, trajectory.

o .
-0.05 \‘ —
S |
0.1 73 L
‘ —_NAFxSMC
~_FTSMC
-0.15 — —
T T T T T
0 0.5 1 1.5 2 25 3
t(s)
Figure 10. Error e.
100
80 —NAFxSMC|
-~ FTSMC
60 — —
40 — -
Py 20 =
5 ) i
T T T T T

Figure 11. Control input.
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t(s)

Figure 12. State x, trajectory with disturbance.

Reference
—NAFxSMC

---FTSMC

0
0.05 | =
T
o1 -
—NAFxSMC
---FTSMC
015 -
T T T T T T T T T
0.4 0.6 08 1 1.2 14 16 18 2
t(s)

AIMS Mathematics

Figure 14. Error e with disturbance.
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20

——NAFxSMC
50 -~ FTSMC

-60 T T T T T
0 05 1 15 2 25 3

Figure 15. Control input with disturbance.

2.000004
(]
©
Q0
£
E 2.000003 — =
3
[«5]
>
=
B
S 2.000002 — —
=
<
2.000001 — = 7
—NAFxSMC, ¢
2 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Adaptive variable

— FTSMC, $3
2| -~ FTSMC, |

Figure 16. Adaptive parameter.
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5. Discussion and analysis

The simulated outcomes of the suggested NAFxSMC approach have been demonstrated. This
part now provides a brief analysis of the constraints imposed by the suggested controller. The
present study engages in a comprehensive examination of the constraints associated with the suggested
controller gain amounts and stability proofs. In addition, this theoretical discussion will explore
potential applications of the proposed methodology to a nonlinear system. Therefore, two nonlinear
systems have been employed to assess the efficacy of the proposed scheme. Both provided examples
demonstrate the validation of the proposed NAFxSMC, and the analysis also indicates superior
performance to the compared scheme.

The suitable parameters of the suggested method are those that have been selected in accordance
with the givenrange as 71 > 0,17, > 0,41 > 0,5 >0,0< A, <1, 4, > 1,0 <y, < 1,and ¢; > 1. In
this case, the suggested strategy is going to stay unaltered, but the closed-loop stability of the system
could be gone if these conditions are ignored. Based on 7T and 75, it becomes evident that there is
inverse relation between n; and 71, ¢; and T, and the direct relationship between 7;, {; and u(¢). In order
to accomplish both convergence of error within a fixed time and closed-loop stability, it is required to
appropriately modify the values of i; and ;. Therefore, these values will serve as the deciding factor
in establishing the stability of the system. Given the availability of information regarding the specific
ranges within which each individual parameter falls, it becomes feasible to select a suitable value to a
certain degree. This facilitates the process of selecting an appropriate value.

6. Conclusions

An NAFxSMC has been designed to obtain the enhanced tracking performance of a nonlinear
system in the existence of an external disturbance. The utilization of the designed adaptive scheme
is necessary for the capability to compensate for the unknown bound of system dynamics. And
the FxSMC approach exhibits convergence within a fixed time and achieves satisfactory tracking
performance. To show the efficacy of the devised method, we employed two applications of a nonlinear
system and showed how it may be controlled using NAFxSMC, which has unknown dynamics. The
findings suggest that the NAFxSMC strategy, when compared to the FTSMC method, demonstrates
superior performance in terms of faster response, lesser tracking error, and enhanced ability to control
unknown dynamics. For further studies, the non-smooth nonlinearities can be incorporated into the
field of research on nonlinear systems. This suggested development would represent a substantial
increase in the scope of the original effort.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

The authors would like to thank Prince Sultan University, Riyadh, Saudi Arabia for supporting APC
of this work. Special acknowledgment to Automated Systems & Soft Computing Lab (ASSCL), Prince

AIMS Mathematics Volume 9, Issue 4, 7895-7916.



7912

Sultan University, Riyadh, Saudi Arabia.
Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. 'W. Chen, Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mech., 9
(2004), 706-710. https://doi.org/10.1109/TMECH.2004.839034

2. H. Tajadodi, A. Khan, J. Francisco G6mez-Aguilar, H. Khan, Optimal control problems
with atangana-baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96-109.
https://doi.org/10.1002/oca.2664

3. S. Mobayen, K. A. Alattas, A. Fekih, F. F. M. El-Sousy, M. Bakouri, Barrier function-
based adaptive nonsingular sliding mode control of disturbed nonlinear systems:

a linear matrix inequality approach, Chaos Soliton. Fract.,, 157 (2022), 111918.
https://doi.org/10.1016/j.chaos.2022.111918

4. D.Tong, C. Xu, Q. Chen, W. Zhou, Sliding mode control of a class of nonlinear systems, J. Franklin
Inst., 357 (2020), 1560-1581. https://doi.org/10.1016/j.jfranklin.2019.11.004

5. B. B. Musmade, B. M. Patre, Robust sliding mode control of uncertain nonlinear
systems with chattering alleviating scheme, Int. J. Mod. Phys. B, 35 (2021), 2140042.
https://doi.org/10.1142/S0217979221400427

6. S. Singh, A. T. Azar, A. Ouannas, Q. Zhu, W. Zhang, J. Na, Sliding mode
control technique for multi-switching synchronization of chaotic systems, 2017 9th
International Conference on Modelling, Identification and Control (ICMIC), 2017, 880-885.
https://doi.org/10.1109/ICMIC.2017.8321579

7. N. Cheng, L. Guan, L. Wang, J. Han, Chattering reduction of sliding mode control
by adopting nonlinear saturation function, Adv. Mater. Res., 143-144 (2011), 53-61.
https://doi.org/10.4028/www.scientific.net/ AMR.143-144.53

8. P. V. Suryawanshi, P. D. Shendge, S. B. Phadke, A boundary layer sliding mode control design
for chatter reduction using uncertainty and disturbance estimator, Int. J. Dynam. Control, 4 (2016),
456-465. https://doi.org/10.1007/s40435-015-0150-9

9. S. Ahmed, A. T. Azar, Adaptive fractional tracking control of robotic manipulator using fixed-time
method, Complex Intell. Syst., 10 (2023), 369-382. https://doi.org/10.1007/s40747-023-01164-7

10. Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators,
Automatica, 38 (2002), 2159-2167. https://doi.org/10.1016/S0005-1098(02)00147-4

11. L. Yang, J. Yang, Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems,
Int. J. Robust Nonlinear Control, 21 (2011), 1865-1879. https://doi.org/10.1002/rnc.1666

AIMS Mathematics Volume 9, Issue 4, 7895-7916.


http://dx.doi.org/https://doi.org/10.1109/TMECH.2004.839034
http://dx.doi.org/https://doi.org/10.1002/oca.2664
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111918
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.11.004
http://dx.doi.org/https://doi.org/10.1142/S0217979221400427
http://dx.doi.org/https://doi.org/10.1109/ICMIC.2017.8321579
http://dx.doi.org/https://doi.org/10.4028/www.scientific.net/AMR.143-144.53
http://dx.doi.org/https://doi.org/10.1007/s40435-015-0150-9
http://dx.doi.org/https://doi.org/10.1007/s40747-023-01164-7
http://dx.doi.org/https://doi.org/10.1016/S0005-1098(02)00147-4
http://dx.doi.org/https://doi.org/10.1002/rnc.1666

7913

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. C. Ton, C. Petersen, Continuous fixed-time sliding mode control for spacecraft with flexible
appendages, IFAC-PapersOnLine, 51 (2018), 1-5. https://doi.org/10.1016/j.ifacol.2018.07.079

Z. Hou, P. Lu, Z. Tu, Nonsingular terminal sliding mode control for a quadrotor UAV with a total
rotor failure, Aerosp. Sci. Technol., 98 (2020), 105716. https://doi.org/10.1016/j.ast.2020.105716

X. Zhao, Y. Gong, H. Jin, C. Xu, Adaptive super-twisting-based nonsingular fast terminal sliding
mode control of permanent magnet linear synchronous motor, Trans. Inst. Meas. Control, 45
(2023), 3057-3066. https://doi.org/10.1177/01423312231162782

H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, A generalized coupled system of fractional differential
equations with application to finite time sliding mode control for Leukemia therapy, Chaos Soliton.
Fract., 174 (2023), 113901. https://doi.org/10.1016/j.chaos.2023.113901

J. Mishra, Finite-time sliding mode control strategies and their applications, Ph.D. Thesis, RMIT
University, 2019.

G. Tao, Multivariable adaptive control: a survey, Automatica, 50 (2014), 2737-2764.
https://doi.org/10.1016/j.automatica.2014.10.015

E. Lavretsky, K. A. Wise, Robust adaptive control, In: Robust and adaptive control: with aerospace
applications, London: Springer, 2012, 317-353. https://doi.org/10.1007/978-1-4471-4396-3_11

M. A. Attia, A. Y. Abdelaziz, K. Sarita, A. S. S. Vardhan, A. S. S. Vardhan, S. Singh,
et al., AVR performance enhancement by using adaptive PI controller, In: A. P. Pandian,
R. Palanisamy, M. Narayanan, T. Senjyu, Proceedings of Third International Conference on
Intelligent Computing, Information and Control Systems, Singapore: Springer, 1415 (2022), 249—
260. https://doi.org/10.1007/978-981-16-7330-6_19

J. M. R. Chintu, R. K. Sahu, S. Panda, Adaptive differential evolution tuned hybrid fuzzy PD-PI
controller for automatic generation control of power systems, Int. J. Ambient Energy, 43 (2022),
515-530. https://doi.org/10.1080/01430750.2019.1653986

M. Y. Silaa, O. Barambones, A. Bencherif, A novel adaptive PID controller design for a PEM fuel
cell using stochastic gradient descent with momentum enhanced by whale optimizer, Electronics,
11 (2022), 2610. https://doi.org/10.3390/electronics11162610

T. S. Gorripotu, H. Samalla, C. J. M. Rao, A. T. Azar, D. Pelusi, TLBO algorithm optimized
fractional-order PID controller for AGC of interconnected power system, In: J. Nayak, A.
Abraham, B. Krishna, G. Chandra Sekhar, A. Das, Soft computing in data analytics, Proceedings
of International Conference on SCDA 2018, Singapore: Springer, 758 (2019), 847-855.
https://doi.org/10.1007/978-981-13-0514-6_80

H. Yin, B. Meng, Z. Wang, Disturbance observer-based adaptive sliding mode
synchronization control for uncertain chaotic systems, AIMS Math., 8 (2023), 23655-23673.
https://doi.org/10.3934/math.20231203

Z. Liu, O. Zhang, Y. Gao, Y. Zhao, Y. Sun, J. Liu, Adaptive neural network-based fixed-time
control for trajectory tracking of robotic systems, IEEE Trans. Circuits Syst. II, 70 (2022), 241—
245. https://doi.org/10.1109/TCSI1.2022.3194917

AIMS Mathematics Volume 9, Issue 4, 7895-7916.


http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.07.079
http://dx.doi.org/https://doi.org/10.1016/j.ast.2020.105716
http://dx.doi.org/https://doi.org/10.1177/01423312231162782
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113901
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2014.10.015
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-4396-3_11
http://dx.doi.org/https://doi.org/10.1007/978-981-16-7330-6_19
http://dx.doi.org/https://doi.org/10.1080/01430750.2019.1653986
http://dx.doi.org/https://doi.org/10.3390/electronics11162610
http://dx.doi.org/https://doi.org/10.1007/978-981-13-0514-6_80
http://dx.doi.org/https://doi.org/10.3934/math.20231203
http://dx.doi.org/https://doi.org/10.1109/TCSII.2022.3194917

7914

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

. S. Ahmed, Robust model reference adaptive control for five-link robotic exoskeleton, Int. J. Model.
Identif. Control, 39 (2021), 324-331. https://doi.org/10.1504/1JIMIC.2021.123799

B. Meghni, D. Dib, A. T. Azar, A. Saadoun, Effective supervisory controller to extend optimal
energy management in hybrid wind turbine under energy and reliability constraints, Int. J. Dynam.
Control, 6 (2018), 369-383. https://doi.org/10.1007/s40435-016-0296-0

B. Meghni, D. Dib, A. T. Azar, S. Ghoudelbourk, A. Saadoun, Robust adaptive supervisory
fractional order controller for optimal energy management in wind turbine with battery storage,
In: A. Azar, S. Vaidyanathan, A. Ouannas, Fractional order control and synchronization of chaotic
systems, Cham: Springer, 688 (2017), 165-202. https://doi.org/10.1007/978-3-319-50249-6_6

Y. Wang, B. Li, F. Yan, B, Chen, Practical adaptive fractional-order nonsingular terminal sliding
mode control for a cable-driven manipulator, Int. J. Robust Nonlinear Control, 29 (2019), 1396—
1417. https://doi.org/10.1002/rnc.4441

X. Zhang, J. Wu, X. Zhan, T. Han, H. Yan, Observer-based adaptive time-varying formation-
containment tracking for multiagent system with bounded unknown input, /[EEE Trans. Syst. Man
Cybern., 53 (2022), 1479-1491. https://doi.org/10.1109/TSMC.2022.3199410

Y. Zhao, F. Tang, G. Zong, X. Zhao, N. Xu, Event-based adaptive containment control for nonlinear
multiagent systems with periodic disturbances, IEEE Trans. Circuits Syst. 11, 69 (2022), 5049—
5053. https://doi.org/10.1109/TCSI1.2022.3200053

C.Li Y. Wang, X. Yang, Adaptive fuzzy control of a quadrotor using disturbance observer, Aerosp.
Sci. Technol., 128 (2022), 107784. https://doi.org/10.1016/j.ast.2022.107784

M. Naeem, A. Khan, S. Ashraf, S. Abdullah, M. Ayaz, N. Ghanmi, A novel decision making
technique based on spherical hesitant fuzzy Yager aggregation information: application to treat
Parkinson’s disease, AIMS Math., 7 (2022), 1678—1706. https://doi.org/10.3934/math.2022097

Z. Zhao, X. Jin, X. Wu, H. Wang, J. Chi, Neural network-based fixed-time sliding mode control
for a class of nonlinear Euler-Lagrange systems, Appl. Math. Comput., 415 (2022), 126718.
https://doi.org/10.1016/j.amc.2021.126718

A. Khan, T. Abdeljawad, M. Alqudah, Neural networking study of worms in a wireless
sensor model in the sense of fractal fractional, AIMS Math., 8 (2023), 26406-26424.
https://doi.org/10.3934/math.20231348

S. Ahmed, H. Wang, Y. Tian, Fault tolerant control using fractional-order terminal
sliding mode control for robotic manipulators, Stud. Inform. Control, 27 (2018), 55-64.
https://doi.org/10.24846/V2711Y201806

J. Zhai, Z. Li, Fast-exponential sliding mode control of robotic manipulator
with super-twisting method, [EEE Trans. Circuits Syst. II, 69 (2021), 489-493.
https://doi.org/10.1109/TCSI1.2021.3081147

S. Ahmed, A. T. Azar, M. Tounsi, I. K. Ibraheem, Adaptive control design for Euler-Lagrange
systems using fixed-time fractional integral sliding mode scheme, Fractal Fract., 7 (2023), 712.
https://doi.org/10.3390/fractalfract7100712

AIMS Mathematics Volume 9, Issue 4, 7895-7916.


http://dx.doi.org/https://doi.org/10.1504/IJMIC.2021.123799
http://dx.doi.org/https://doi.org/10.1007/s40435-016-0296-0
http://dx.doi.org/https://doi.org/10.1007/978-3-319-50249-6_6
http://dx.doi.org/https://doi.org/10.1002/rnc.4441
http://dx.doi.org/https://doi.org/10.1109/TSMC.2022.3199410
http://dx.doi.org/https://doi.org/10.1109/TCSII.2022.3200053
http://dx.doi.org/https://doi.org/10.1016/j.ast.2022.107784
http://dx.doi.org/https://doi.org/10.3934/math.2022097
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126718
http://dx.doi.org/https://doi.org/10.3934/math.20231348
http://dx.doi.org/https://doi.org/10.24846/V27I1Y201806
http://dx.doi.org/https://doi.org/10.1109/TCSII.2021.3081147
http://dx.doi.org/https://doi.org/10.3390/fractalfract7100712

7915

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

.J. Ni, L. Liu, C. Liu, X. Hu, Fractional order fixed-time nonsingular terminal sliding mode
synchronization and control of fractional order chaotic systems, Nonlinear Dyn., 89 (2017), 2065—
2083. https://doi.org/10.1007/s11071-017-3570-6

M. Gao, L. Ding, X. Jin, ELM-based adaptive faster fixed-time control of robotic
manipulator systems, [EEE Trans. Neur. Net. Lear. Syst., 34 (2021), 4646—4658.
https://doi.org/10.1109/TNNLS.2021.3116958

X. Lin, C. Wu, W. Yao, Z. Liu, X. Shen, R. Xu, et al., Observer-based fixed-time control
for permanent-magnet synchronous motors with parameter uncertainties, /[EEE Trans. Power
Electron., 38 (2022), 4335-4344. https://doi.org/10.1109/TPEL.2022.3226033

Z. Liu, Y. Zhao, O. Zhang, W. Chen, J. Wang, Y. Gao, et al., A novel faster fixed-time adaptive
control for robotic systems with input saturation, /EEE Trans. Ind. Electron., 71 (2023), 5215-
5223. https://doi.org/10.1109/TIE.2023.3281701

M. Labbadi, H. El Moussaoui, An improved adaptive fractional-order fast integral terminal
sliding mode control for distributed quadrotor, Math. Comput. Simul., 188 (2021), 120-134.
https://doi.org/10.1016/j.matcom.2021.03.039

Z. Anjum, H. Zhou, S. Ahmed, Y. Guo, Fixed time sliding mode control for disturbed robotic
manipulator, J. Vib. Control, 2023. https://doi.org/10.1177/10775463231165094

J. Zhang, T. Chai, Proportional-integral funnel control of unknown lower-triangular nonlinear
systems, IEEE Trans. Autom. Control, 2023, 1-7. https://doi.org/10.1109/TAC.2023.3330900

J. Zhang, T. Yang, T. Chai, Neural network control of underactuated surface vehicles with
prescribed trajectory tracking performance, IEEE Trans. Neural Neural Learn. Syst., 2022, 1-14.
https://doi.org/10.1109/TNNLS.2022.3223666

G. E. M. Abro, S. A. B. M. Zulkifli, V. S. Asirvadam, Z. A. Ali, Model-free-based single-
dimension fuzzy SMC design for underactuated quadrotor UAV, Actuators, 10 (2021), 191.
https://doi.org/10.3390/act10080191

X. Jin, W. Che, Z. Wu, H. Wang, Analog control circuit designs for a class of continuous-
time adaptive fault-tolerant control systems, IEEE Trans. Cybern., 52 (2020), 4209-4220.
https://doi.org/10.1109/TCYB.2020.3024913

S. Ahmed, A. T. Azar, M. Tounsi, Adaptive fault tolerant non-singular sliding mode
control for robotic manipulators based on fixed-time control law, Actuators, 11 (2022), 353.
https://doi.org/10.3390/act11120353

Z. Han, K. Zhang, T. Yang, M. Zhang, Spacecraft fault-tolerant control using adaptive
non-singular fast terminal sliding mode, IET Control Theory Appl., 10 (2016), 1991-1999.
https://doi.org/10.1049/iet-cta.2016.0044

F. Leyla, Z. Khaled, S. Abdelkrim, B. I. Khalil, D. Mohamed, Adaptive sliding mode control
vibrations of structures, In: C. Fischer, J. Naprstek, Vibration control of structures, IntechOpen,
2021. https://doi.org/10.5772/intechopen.98193

AIMS Mathematics Volume 9, Issue 4, 7895-7916.


http://dx.doi.org/https://doi.org/10.1007/s11071-017-3570-6
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3116958
http://dx.doi.org/https://doi.org/10.1109/TPEL.2022.3226033
http://dx.doi.org/https://doi.org/10.1109/TIE.2023.3281701
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.03.039
http://dx.doi.org/https://doi.org/10.1177/10775463231165094
http://dx.doi.org/https://doi.org/10.1109/TAC.2023.3330900
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3223666
http://dx.doi.org/https://doi.org/10.3390/act10080191
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.3024913
http://dx.doi.org/https://doi.org/10.3390/act11120353
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2016.0044
http://dx.doi.org/https://doi.org/10.5772/intechopen.98193

7916

51.J. Huang, G. Xie, S. Gao, F. Qian, Adaptive H,, observer-based sliding mode control for uncertain
fractional-order nonlinear systems, IEEJ Trans. Electr. Electron. Eng., 18 (2023), 1127-1135.
https://doi.org/10.1002/tee.23811

52.R. M. Arasi, S. Padma, Adaptive nonlinear sliding mode control for DC power
distribution in commercial buildings, Intell. Autom. Soft Comput., 36 (2023), 997-1012.
https://doi.org/10.32604/iasc.2023.032645

53. M. Golestani, S. Mobayen, H. Richter, Fast robust adaptive tracker for uncertain nonlinear second-
order systems with time-varying uncertainties and unknown parameters, Int. J. Adapt. Control
Signal Process., 32 (2018), 1764—1781. https://doi.org/10.1002/acs.2943

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 9, Issue 4, 7895-7916.


http://dx.doi.org/https://doi.org/10.1002/tee.23811
http://dx.doi.org/https://doi.org/10.32604/iasc.2023.032645
http://dx.doi.org/https://doi.org/10.1002/acs.2943
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Proposed scheme
	Fixed-time sliding surface
	FxSMC scheme
	Stability analyses
	NAFxSMC scheme

	Numerical simulations results
	Example 1
	Example 2

	Discussion and analysis
	Conclusions

