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1. Introduction

Interface vanishing has been observed in both the stationary and non-stationary Maxwell’s
equation [1–4], which says that some components of the solution do not detect the interface. More
precisely, if this equation holds piecewise in a region with interfaceM, then these components extend
acrossM.

This equation is concerned with the electric field E, the magnetic field B, the current density J, and
the electric charge density ρ, depending on the space-time variables (x, t) ∈ R3 ×R. Using the gradient
operator

∇ = ∇x ≡


∂
∂x1
∂
∂x2
∂
∂x3

 , x = (x1, x2, x3),

and the outer and the inner products in R3 denoted by × and ·, respectively, it is given by

∇ × H −
∂D
∂t
= J, ∇ · D = ρ, ∇ × E +

∂B
∂t
= 0, ∇ · B = 0
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with
D = εE, B = µH, J = σE,

where ε, µ, and σ denote the permittivity, the permeability, and the conductivity, respectively.
Assuming that the first two physical constants ε and µ are independent of the medium, we set them to
be 1, giving

∇ × B − ∂E
∂t = J, ∇ · E = ρ

∇ × E + ∂B
∂t = 0, ∇ · B = 0 in Ω,

(1.1)

with the normalized light speed c = µε = 1, where Ω ⊂ R4 is a domain in space-time.
We take the case that this Ω is composed of two media, with the interfaceM forming a part of a

smooth hyper-surface, and that the variables J and ρ are only piecewisely regular. In [4], it is shown
that, if J and ρ are provided with piecewise regularity, singularities of some components of B and E
propagate across the interface without suffering any effects from it.

Remark 1.1. The discontinuity of J arises in accordance with the secondary current of
magnetoencephalography. The standard theory [5, 6] assumes the quasi-static state

∇ × B = µ0J, ∇ · B = 0 in Ω,

where Ω is composed of two domains Ω+ and Ω− indicating the outside and inside of the head,
respectively. Here, µ0 denotes the permeability assumed to be a common constant in both Ω±. There
also arises

J = Jp − σ(x)∇V (1.2)

for the primary current Jp evoked by the neuron activity in Ω− and the secondary current −σ(x)∇V
due to the electric field −∇V associated with the voltage V = V(x). The electric conductivity σ(x) is
thus assumed to be piecewise constant. In one-layer model, for example, it takes the form

σ(x) =
{
σI , x ∈ Ω−
0, x ∈ Ω+,

where σI > 0 is a constant. By this discontinuity of σ(x), the total current density J in (1.2) has a
discontinuty on the interface Γ = ∂Ω+ ∩ ∂Ω−. In spite of this discontinuity, we noted in [1] that the
normal component of the magnetic field B is continuously distributed across Γ.

For later use, we formulate the geometric profile of such Ω in a general setting as follows:

Definition 1.1. The Lipschitz bounded domain Ω ⊂ Rn is said to have an interface, denoted byM, if
thisM is non-compact hyper-surface in Rn without boundary such that Γ ≡ M∩Ω , ∅ is connected.

This domain Ω is divided into two domains byM, denoted by Ω±, and then Γ is distinguished as a
subset of ∂Ω± as Γ±:

Ω = Ω+ ∪ Γ ∪Ω−, Γ± = ∂Ω± \ ∂Ω(= Γ).

Henceforth, ν denotes the outer unit normal vector on Γ−. It is extended onΩ as a Lipschitz continuous
vector field ifM is C1,1.

Coming back to (1.1), we assume the piecewise regularity of J ∈ L2(Ω) and ρ ∈ L2(Ω) in (1.1),
precisely,

∇ × J ∈ L2(Ω±)3,
∂J
∂t
+ ∇ρ ∈ L2(Ω±)3, (1.3)

where the differentiations are taken in the sense of distributions in Ω±.
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Theorem 1.1. [4] Let Ω ⊂ R4 be a bounded Lipschitz domain with C2,1 interface M. Let ν be the
outer unit normal vector on Γ−, extended smoothly on Ω. Let B, E ∈ H1(Ω)3 be the solution to (1.1),
for J ∈ L2(Ω)3 and ρ ∈ L2(Ω) satisfying (1.3). Then, it holds that

□(ν0B + ν̃ × E) ∈ L2(Ω)3, □(ν̃ · B) ∈ L2(Ω), (1.4)

where

ν =


ν1

ν2

ν3

ν0

 , ν̃ =

ν1

ν2

ν3

 , □ = − ∂2

∂t2 + ∆x.

Remark 1.2. Since B, E ∈ H1(Ω)3 is assumed, the system of Eq (1.1) is valid across the interface. The
conclusion (1.4), however, is derived without assuming B, E ∈ H2(Ω)3, or, J, ρ ∈ H1(Ω)3. In fact, since
system (1.1) implies

−∆B −
∂

∂t
∇ × E = ∇ × J, ∇ρ − ∆E +

∂

∂t
∇ × B = 0,

it arises that
□B = −∇ × J, □E = ∇ρ +

∂J
∂t

in the sense of distributions in Ω. The assumption (1.3) thus implies

□B, □E ∈ L2(Ω±)3,

which, however, does not mean □B, □E ∈ L2(Ω)3. The conclusion (1.4), therefore, assures that H2-
singularities of ν0B+ν̃×E and ν̃·B propagate through the interface under light speed, without suffering
any effects from it.

Remark 1.3. Theorem 1.1 includes results on the stationary state, Et = Bt = 0 [1–3]. These results are
reduced to a problem on a 1-form, where its decomposition to tangential and normal components works
effectively. Although this argument is valid for arbitrary space dimension n, difficulty arises in (1.1)
which is reduced to an equation of 2-forms, not 1-forms, on Minkowski spaces in (3, 1)-dimension.

Our purpose is to generalize Theorem 1.1 on (1.1) of 2-forms to arbitrary p-forms, formulating (1.1)
as a d − δ system. Our results are stated in the context of Euclidean spaces, but are valid to Minkowski
spaces in any dimension. Hence, they include all the above results on stationary and non-stationary
Maxwell equations associated with 1- and 2-forms, respectively.

Remark 1.4. Several models in mathematical physics, besides the Maxwell system (1.1), are
formulated as the d − δ system, as described in [7]. Among them are the Stokes system and hyperbolic
equations. See §3.

Before stating our results, we recall the following facts.

Remark 1.5. If D ⊂ Rn is a Lipschitz bounded domain, then C∞(D) is dense in H1(D), where φ ∈
C∞(D) if and only if there is φ̃, smooth in a neighbourhood of D, such that

φ̃|D = φ on D.
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Then the trace operator γ : H1(D)→ H1/2(∂D) is well-defined, and it holds that

H1(D)/H1
0(D) � H1/2(∂D) (1.5)

under this operator, where H1
0(D) denotes the closure of C∞0 (D) in H1(D) [8–10].

Remark 1.6. The p-form on the bounded domain D ⊂ Rn takes the form

ω =
∑

i1<···<ip

ωi1···ipdxi1 ∧ · · · ∧ dxip

for 1 ≤ p ≤ n. We say that ω ∈ H1(D) if and only if ωi1···ip ∈ H1(D) for any i1 < · · · < ip, and, similarly,
ω ∈ L2(D) if and only if ωi1···ip ∈ L2(D) for any i1 < · · · < ip.

Remark 1.7. The set of p-forms on the bounded domain D ⊂ Rn is denoted by Λp(D). There, the outer
derivative

d : Λp(D)→ Λp+1(D), 0 ≤ p ≤ n − 1

and the wedge product

∧ : Λp(D) × Λq(D)→ Λp+q(D), p, q ≥ 0, p + q ≤ n

are defined. The Hodge operator

∗ : Λp(D)→ Λn−p(D), 0 ≤ p ≤ n

is also defined by
∗(dxi1 ∧ · · · ∧ dxip) = sgn σ · dxip+1 ∧ dx jn ,

where σ : (1, · · · , n) 7→ (i1, · · · , in). The co-derivative is then defined by

δ = (−1)p ∗−1 d∗ : Λp(D)→ Λp−1(D),

and it holds that [7, 11]

dδ + δd = −∆ : Λp(D)→ Λp(D), 0 ≤ p ≤ n.

In the following theorems, the derivatives d, δ, and ∆ are taken in the sense of distributions. Hence,
the H2-interface onM vanishes for special components of ω if it solves the d − δ system formulated
below. Here, the outer unit normal vector ν = (νi) on Γ−, extended on Ω, is identified with the 1-form

ν = ν1dx1 + · · · + ν
ndxn.

Theorem 1.2. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω ∈ H1(Ω) and
θ ∈ L2(Ω) be p- and (p + 1)-forms on Ω, respectively. Assume

dω = θ, δω = 0 in Ω, δθ ∈ L2(Ω±). (1.6)

Then it holds that
∆(ν ∧ ∗ω) ∈ L2(Ω). (1.7)
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Theorem 1.3. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω ∈ H1(Ω) and
θ ∈ L2(Ω) be p- and (p − 1)-forms on Ω, respectively. Assume

dω = 0, δω = θ in Ω, dθ ∈ L2(Ω±). (1.8)

Then it holds that
∆(ν ∧ ω) ∈ L2(Ω). (1.9)

Remark 1.8. From the assumption, ν is extended as a C1,1 vector field on Ω.

Remark 1.9. In both cases of the above theorems, it holds always that ∆ω ∈ L2(Ω±), which, however,
does not mean ∆ω ∈ L2(Ω).

Remark 1.10. Theorems 1.2 and 1.3 are equivalent. If (1.8) holds in the setting of Theorem 1.3, for
example, then,

α = ∗ω

is an (n − p)-form, and there arises that

δα = (−1)n−p ∗−1 d ∗ α = (−1)n−p ∗−1 d ∗ ∗ω
= (−1)n−p ∗−1 d[(−1)p(n−p)ω] = (−1)(p+1)(n−p) ∗−1 dω = 0.

We obtain, also,
θ = δω = (−1)p ∗−1 d ∗ ω = (−1)p ∗−1 dα

and hence
dα = (−1)p ∗ θ,

which implies
δdα = (−1)n−p+1 ∗−1 d ∗ dα = (−1)n+1 ∗−1 d ∗ ∗θ
= (−1)n+1 ∗−1 d[(−1)(n+p−1)(p−1)θ]
= (−1)n+1 · (−1)(n−p+1)(p−1) ∗−1 dθ ∈ L2(Ω±).

If we apply Theorem 1.2 to ω = α, we get

∆(ν ∧ ∗α) ∈ L2(Ω),

and hence (1.9), the conclusion of Theorem 1.3.

This paper is composed of four sections. Taking preliminaries in Section 2, Theorem 1.2 is proven
in §3. Section 3 is devoted to applications. There, we confirm that Theorems 1.2 and 1.3 imply all
the results on interface vanishing obtained so far [1–4]. We will extend these results to differential
forms on manifolds as in [12], to deal with systems of variable coefficients, arising often in the theory
of electromagnetism [13] in the future. We will also develop the Lp theory and its applications to
nonlinear problems, such as the Navier–Stokes equation, to refine [2] derived from the L2 theory. The
authors thank the referees for pointing out these challenges.

AIMS Mathematics Volume 9, Issue 4, 7848–7865.



7853

2. Preliminaries

Here, we show the Gauss and the Stokes formulae in the context of H1-theories. Let D ⊂ Rn be a
bounded Lipschitz domain. Recall that, if θ ∈ H1(D) is a p-form, its trace θ|∂D belongs to H1/2(∂D).

The Euclidean inner product of 1-forms

α =
∑
ℓ

αℓdxℓ, β =
∑
ℓ

βℓdxℓ

is given by
(α, β) =

∑
ℓ

αℓβℓ.

If λ = α1 ∧ · · · ∧ αp and µ = β1 ∧ · · · ∧ βp are p-forms made by 1-forms αi and βi for 1 ≤ i ≤ p, we put

(λ, µ) = det
(
(αi, β j)

)
i, j
. (2.1)

Then, it holds that [7, 11]

ω ∧ τ = (∗ω, τ)dx1 ∧ · · · dxn, ω ∈ Λ
p(D), τ ∈ Λn−p(D).

Given ω ∈ Λp(D) and θ ∈ Λp−1(D), we have

(dθ, ω) dx1 ∧ · · · ∧ dxn = dθ ∧ ∗ω
= d(θ ∧ ∗ω) + (−1)pθ ∧ d ∗ ω

and hence ∫
D

(dθ, ω) dx1 ∧ · · · ∧ dxn =
∫
∂D
θ ∧ ∗ω

+
∫

D
(θ, δω) dx1 ∧ · · · ∧ dxn,

(2.2)

if θ, ω ∈ H1(D).
The volume and area elements on D and ∂D are given by

dx = dx1 ∧ · · · ∧ dxn

and
ds =

∑
i

νi ∗ dxi,

respectively, where ν = (νi) denotes the outer unit normal vector on ∂D. We thus obtain the vector area
element

νds = (∗dx1, · · · , ∗dxn)T .

Henceforth, we write ∫
D
· · · dx1 ∧ · · · ∧ dxn =

∫
D
· · ·

and ∫
∂D
· · · ds =

∫
∂D
· · · ,

in short.
The following lemmas are nothing but Propositions 1 and 2 of [4]. Here, we provide the proof for

completeness.
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Lemma 2.1. If φ, B, and J are 0-form, 1-form, and 2-form belonging to H1(D), respectively, it holds
that ∫

D
(δB, φ) =

∫
D

(B, dφ) −
∫
∂D

(B, ν)φ (2.3)

and ∫
D

(dB, J) =
∫

D
(B, δJ) +

∫
∂D

(ν ∧ B, J). (2.4)

Proof. Having
φ|∂D , B|∂D , J|∂D ∈ H1/2(∂D),

we apply (2.2) to ω = B and θ = φ. Since

θ ∧ ∗ω = φ · ∗B = φ · (B, ν) ds on ∂D,

equality (2.3) holds. For (2.4), we put ω = J and θ = B in (2.2). It arises that

θ ∧ ∗ω = B ∧ ∗J = (ν ∧ B, J) ds on ∂D,

and hence the conclusion. □

Henceforth, X′ denotes the dual space of the Banach space X over R, and ⟨ , ⟩ denotes the paring
between X and X′. We put, in particular,

H−1/2(∂D) = H1/2(∂D)′.

Lemma 2.2. Let p be 0-form in H1(D).

(1) If ∆p ∈ H1(D)′, then
(dp, ν)|∂D ∈ H−1/2(∂D) (2.5)

is well-defined, and it holds that

⟨φ, (dp, ν)⟩ =
∫

D
(dφ, dp) + ⟨φ,∆p⟩, ∀φ ∈ H1(D). (2.6)

(2) The 2-form
ν ∧ dp|∂D ∈ H−1/2(∂D)

is well-defined, and is continuous in p ∈ H1(D). It holds that

⟨J, ν ∧ dp⟩ = −
∫

D
(δJ, dp) (2.7)

for any 2-form J ∈ H1(D).

Proof. In the first case we have p ∈ H1(D) and ∆p ∈ H1(D)′, and hence the mapping

φ ∈ H1(D) 7→
∫

D
(dφ, dp) + ⟨φ,∆p⟩
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is bounded linear. We show that this mapping is reduced to

φ ∈ H1/2(∂D) 7→
∫

D
(φ, dp) + ⟨φ,∆p⟩, (2.8)

to define (dp, ν)|∂D in (2.5) by (2.8).
In fact, since (1.5) holds, the well-posedness of (2.8) follows from∫

D
(dφ, dp) + ⟨φ,∆p⟩ = 0, ∀φ ∈ H1

0(D).

This equality is reduced to ∫
D

(dφ, dp) + ⟨φ,∆p⟩ = 0, ∀φ ∈ C∞0 (D),

or ∫
D

(dφ, dp) + (∆φ, p) = 0, ∀φ ∈ C∞0 (D), (2.9)

which is valid to p ∈ H1(D) by (2.3).
If p ∈ H2(D), the above (dp, ν)|∂D coincides with

(dp|∂D , ν) ∈ H1/2(D), (2.10)

by (2.3) for B = dp and
δd = −∆ on Λ0(D),

and therefore, this
(dp, ν)|∂D

in (2.5) for p ∈ H1(D) with ∆p ∈ H1(D)′ is consistent with (2.10) for p ∈ H2(D).
The proof of the second case is similar. First, given p ∈ H1(D), we regard the right-hand side

of (2.6) as a bounded linear mapping of 2-forms belonging to H1(D):

J ∈ H1(D) 7→ −
∫

D
(dp, δJ).

We note that this mapping is continuous in p ∈ H1(D) in the operator norm. Second, this mapping is
regarded as an element in H−1/2(∂D) by (1.5), because the right-hand side is 0 for J ∈ H1

0(D):

J ∈ H1/2(D) 7→ −
∫

D
(dp, δJ),

which ensures the well-posedness of ν ∧ dp ∈ H−1/2(∂D) by

⟨J, ν ∧ dp⟩ = −
∫

D
(dp, δJ).

Finally, we observe that equality (2.7) for p ∈ H2(D) holds with

(ν ∧ dp|∂D , ν) ∈ H1/2(∂D)

AIMS Mathematics Volume 9, Issue 4, 7848–7865.
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by equality (2.4) applied to B = dp by d2 = 0, and hence the above

ν ∧ dp ∈ H−1/2(∂D)

is identified with
ν ∧ dp|∂D ∈ H1/2(∂D)

if p ∈ H2(Ω). □

Remark 2.1. Writing

⟨dp, ν⟩|∂D =
∂p
∂ν
∈ H−1/2(∂D)

in (2.5), we obtain Green’s formula

⟨g,∆h⟩H1(D),H1(D)′ − ⟨h,∆g⟩H1(D),H1(D)′

=
〈
g, ∂h
∂ν

〉
H1/2(∂D),H−1/2(∂D)

−
〈
h, ∂g
∂ν

〉
H1/2(∂D),H−1/2(∂D)

(2.11)

valid to g, h ∈ H1(D) with ∆g,∆h ∈ H1(D)′.

Remark 2.2. If Ω = Ω+ ∪ Γ ∪ Ω− is a bounded Lipschitz domain with C0,1 interfaceM and Γ = Γ± =
∂Ω±, any 0-form p ∈ H1(Ω±) admits 2-forms on Γ± as in

ν ∧ dp|Γ± ∈ H−1/2(Γ±) = H1/2
0 (Γ±)′.

3. Proof of Theorem 1.2

To begin with, let Ω ⊂ Rn be a bounded Lipschitz domain with C0,1 interface. If p ∈ H1(Ω) is
0-form, the 2-forms

ν ∧ dp|Γ± ∈ H−1/2(Γ±)

are well-defined by Remark 2.2. Identifying H−1/2(Γ±) with H−1/2(Γ), we define 2-form on Γ by[
ν ∧ dp

]+
− = ν ∧ dp|Γ+ − ν ∧ dp|Γ− ∈ H−1/2(Γ).

Recall that ν is the outer unit normal vector on Γ− extended smoothly on Ω. Then we use the following
lemma proven by [1].

Lemma 3.1. If p ∈ H1(Ω), it holds that[
ν ∧ dp

]+
− = 0 in H−1/2(Γ). (3.1)

Proof. Given 2-form J on Ω of which coefficients are in C∞0 (Ω), we obtain

± ⟨J, ν ∧ dp⟩H1/2
0 (Γ±),H−1/2(Γ±) =

∫
Ω±

(δJ, dp)

by Lemma 2.2, which implies [
⟨J, ν ∧ dp⟩H1/2

0 (Γ),H−1/2(Γ)

]+
−

=

∫
Ω

(δJ, dp). (3.2)
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The right-hand side of (3.2) is equal to 0 if p ∈ H2(Ω) by (2.4) for B = dp and D = Ω, because the
coefficients of J are in C∞0 (Ω): [

⟨J, ν ∧ dp⟩H1/2
0 (Γ),H−1/2(Γ)

]+
−

= 0. (3.3)

Then, equality (3.1) follows, because J ∈ C∞0 (Ω) is arbitrary. This equality (3.1) is extended to p ∈
H1(Ω) from the continuity of

p ∈ H1(Ω) 7→ ν ∧ dp ∈ H−1/2(Γ±)

because C∞(Ω) is dense in H1(Ω). □

Henceforth, we write

ai =
∂a
∂xi

for a = a(x1, · · · , xn) in short.

Lemma 3.2. If p ∈ H1(Ω) is 0-form, it holds that[
νi p j − ν

j pi

]+
−
= 0, 1 ≤ i, j ≤ n, in H−1/2(Γ),

where pi =
∂p
∂xi

.

Proof. The result is a direct consequence of Lemma 3.1 because

dp =
∑

i

pidxi

and
ν ∧ dp =

∑
i< j

(νi p j − ν
j pi)dxi ∧ dx j

hold. □

Now, we show the key lemma. Let 1 ≤ p ≤ n − 1 and

ω =
∑

i1<···<ip

ωi1···ipdxi1 ∧ · · · ∧ dxip (3.4)

be a p-form in H1(Ω). Given 1 ≤ i1, · · · , ip ≤ n, we put

ω̃i1···ip = sgn σ · ωi′1···i
′
p (3.5)

for i′1 < · · · < i′p, where σ : (i1, · · · , ip) 7→ (i′1, · · · , i
′
p). Then, it follows that

δω = −
∑

i2<···<ip

∑
ℓ

ω̃ℓi2···ipdxi2 ∧ · · · ∧ dxip . (3.6)

Here, we define the 1-form in H1(Ω) by

ω̂i2···ip =
∑
ℓ

ω̃ℓi2···ipdxℓ. (3.7)

Henceforth, we say A ∼ B if
[A − B]+− = 0

for A, B ∈ H−1/2(Γ).
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Lemma 3.3. If Ω ⊂ Rn is a bounded Lipshitz domain with C1,1 interface, any p-form ω ∈ H1(Ω)
admits δω + ∑

i2<···<ip

(ν, d)(ω̂i2···ip , ν)dxi2 ∧ · · · dxip


+

−

= 0 in H−1/2(Γ), (3.8)

where
(ν, d) =

∑
ℓ

νℓ
∂

∂xℓ
.

Proof. Take ω as in (3.4), and fix i2 < · · · < ip. We put

B =
∑
ℓ

Bℓdxℓ, Bℓ = ω̃ℓi2···ip ,

recalling (3.5). Then, it holds that∑
ℓ ω̃
ℓi2···ip − (ν, d)(ω̂i2···ip , ν) =

∑
ℓ

{
Bℓℓ − ν

ℓ(B, ν)ℓ
}

∼
∑
ℓ Bℓℓ −

∑
ℓ,k ν

kνℓBk
ℓ =

∑
ℓ Bℓℓ −

∑
ℓ,k ν

kνℓBℓk
=

∑
ℓ

{
Bℓℓ − ν

ℓ(ν, d)Bℓ
}

because ν is extended as a C0,1 vector field on Ω from the assumption.
Here we fix ℓ, set p = Bℓ, and notice

Bℓℓ − ν
ℓ(ν, d)Bℓ = pℓ − νℓ(ν, d)p =

∑
k

{
(νk)2 pℓ − νℓνk pk

}
=

∑
k ν

k(νk pℓ − νℓpk).

Then, it follows that
[Bℓℓ − ν

ℓ(ν, d)Bℓ]+− = 0 in H−1/2(Γ)

from Lemma 3.2. Thus, we obtain∑
ℓ

ω̃
ℓi2···ip

ℓ − (ν, d)(ω̂i2···ip , ν)

+
−

= 0 in H−1/2(Γ),

and then (3.6) implies (3.8). □

We are ready to give the following proof:

Proof of Theorem 1.2. Using δω = 0 in (1.6), we obtain[
(ν, d)(ω̂i2···ip , ν)

]+
−
= 0 in H−1/2(Γ) (3.9)

for any i2 < · · · < ip by (3.8). It holds also that

−∆ω = (dδ + δd)ω = δθ ∈ L2(Ω±).

Then, we get
∆ωi1···ip ∈ L2(Ω±)
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for any i1 < · · · < ip by (3.4), and hence

hi2···ip ≡ −∆(ω̂i2···ip , ν) ∈ L2(Ω±)

for any 1 ≤ i2, · · · , ip ≤ n by (3.7), because ν is extended as a C1,1 vector field on Ω from the
assumption.

Then equality (3.9) implies

−
∫
Ω

(ω̂i2···ip , ν)∆φ =
(∫
Ω+
+

∫
Ω−

)
hi2···ipφ

=
∫
Ω

hi2···ipφ

for any φ ∈ C∞0 (Ω) by Green’s formula, (2.11). Thus, we obtain

∆(ω̂i2···ip , ν) ∈ L2(Ω)

and hence
∆β ∈ L2(Ω)

for the (p − 1)-form β defined by

β =
∑

i2<···<ip

(ω̂i2···ip , ν)dxi2 ∧ · · · ∧ dxip .

The conclusion (1.7) is thus reduced to the following lemma: □

Lemma 3.4. It holds that
ν ∧ ∗ω = ∗β (3.10)

as (n − p + 1)-forms.

Proof. It suffices to show (3.10) for

ω = dx1 ∧ · · · ∧ dxp. (3.11)

In this case it holds that

ω̃i1···ip =

{
sgn σ, {i1, · · · , ip} = {1, · · · , p}
0, otherwise,

where σ : (i1, · · · , ip) 7→ (1, · · · , p). Then, (3.7) implies

ω̂i2···ip =
∑
ℓ ω̃
ℓi2···ip dxℓ

=

{ ∑
ℓ sgn σℓ dxℓ, 1 ≤ i2, · · · , ip ≤ p

0, otherwise,

where σℓ : (ℓ, i2, · · · , ip) 7→ (1, · · · , p). We have, for example,

(ω̂2,··· ,p, ν) = ν1,

and hence
β =

∑
i2<···<ip

(ω̂i2···ip , ν)dxi2 ∧ · · · ∧ dxip

= ν1dx2 ∧ · · · ∧ dxp + ν
2dx3 ∧ · · · ∧ dxp ∧ dx1

+ · · · + νpdx1 ∧ · · · ∧ dxp−1.
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It thus holds that

∗β = ν1dx1 ∧ dxp+1 ∧ · · · dxn + ν
2dx2 ∧ dxp+1 ∧ · · · ∧ dxn

+νpdxp ∧ dxp+1 ∧ · · · ∧ dxn.

By (3.11), on the other hand, we obtain

∗ω = dxp+1 ∧ · · · ∧ dxn

and hence
ν ∧ ∗ω = (ν1dx1 + · · · + ν

ndxn) ∧ dxp+1 ∧ · · · ∧ dxn

= ν1dx1 ∧ dxp+1 ∧ · · · ∧ dxn + ν
2dx2 ∧ dxp+1 ∧ · · · ∧ dxn

+ · · · + νpdxp ∧ dxp+1 ∧ · · · ∧ dxn = ∗β,

which completes the proof. □

4. Applications

4.1. Theorem 1.2 for 1-forms

Theorem 1.2 for 1-forms recovers a result obtained by [3].

Theorem 4.1. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω ∈ H1(Ω) be 1-
form. Assume (1.6). Then, it holds that

∆(ν · ω) ∈ L2(Ω), (4.1)

where · denotes the Rn-inner product.

Proof. Writing
ω =

∑
i

ωidxi, (4.2)

we obtain
∗ω =

∑
i

(−1)i+1ωidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

and hence
ν ∧ ∗ω =

∑
i, j ν

j(−1)i+1ωidx j ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · dxn

=
∑

j ν
jw jdx1 ∧ · · · ∧ dxn = (ν, ω)dx1 ∧ · · · ∧ dxn.

Then, the result follows immedately from Theorem 1.2. □

For ω in (4.2), we obtain

d ∗ ω =
∑

i(−1)i+1ωi
idxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

=
∑

i ω
i
idx1 ∧ · · · ∧ dxn

(4.3)

and hence δω = 0 if and only if div ω =
∑

i ω
i
i = 0. Then the 2-form θ is defined by

dω =
∑
i< j

(−ωi
j + ω

j
i )dxi ∧ dx j = θ. (4.4)
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An elementary calculation now ensures

d ∗ θ =
∑

i, j

(−1) j+1χi j(−ωi
i j + ω

j
ii)dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · dxn

for

χi j =


1, i < j
0, i = j
−1. i > j

Hence, δθ = ∗−1d ∗ θ ∈ L2(Ω±) if and only if∑
i

χi j(−ωi
i j + ω

j
ii) ∈ L2(Ω±), 1 ≤ j ≤ n. (4.5)

By these observations, Theorem 4.1 on a 1-form induces the following theorem on a vector field:

Theorem 4.2. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω = (ωi) ∈ H1(Ω)
be a vector field satisfying

div ω = 0 in Ω, ∆ω ∈ L2(Ω±).

Then it holds that (4.1).

Proof. By Theorem 4.1, if ω = (ωi) ∈ H1(Ω) satisfies div ω = 0 in Ω and (4.5), then (4.1) holds. Here,
Eq (4.5) with j = 1 means

n∑
i=2

(−ωi
i1 + ω

1
ii) = ω

2
11 +

n∑
i=2

ω1
ii = ∆ω

1 ∈ L2(Ω±)

by divω = 0. The other case of j is similar, and we obtain the result. □

Theorem 4.3. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface. Assume that v ∈
H1(Ω; Rn) and p ∈ H1(Ω±) satisfy the stationary Stokes system

∆v = ∇p in Ω±, div v = 0 in Ω.

Then, it holds that
∆(ν, v) ∈ L2(Ω).

Proof. This theorem is an immediate consequence of Theorem 4.2 applied to ω = v. □

Theorem 4.4. Let Ω ⊂ Rn × R be a bounded Lipschitz domain with C2,1 interface, and assume that
u ∈ H2(Ω) satisfy

□u = 0 in Ω, u ∈ H3(Ω±),

where □ = ∆x − ∂
2
t . Then, it holds that

∆(⃗v, ν) ∈ L2(Ω)

for

v⃗ =
(
∇xu
−ut.

)
.
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Proof. This theorem follows from Theorem 4.1 for

ω =

n∑
i=1

∂u
∂xi

dxi − utdt.

□

Remark 4.1. If Ω = D × (−T,T ) with bounded Lipschitz domain D ⊂ Rn andM = {t = 0}, it holds
that Ω− = D × (−T, 0) and Ω+ = D × (0,T ). In this case, we obtain

∆ut ∈ L2(Ω),

provided that
u ∈ H2(Ω), □u = 0 in Ω, u ∈ H3(Ω±).

4.2. Theorem 1.3 for 1-forms

Theorem 1.3 for 1-forms also recovers a result obtained by [3].

Theorem 4.5. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω ∈ H1(Ω) be
a 1-form. Assume (1.8). Then, it holds that

∆ωτ ∈ L2(Ω), (4.6)

where ωτ = ω − (ω, ν)ν.

Proof. Since Theorem 1.3 implies
∆(ν ∧ ω) ∈ L2(Ω),

this theorem is reduced to the following lemma applied to θ = ωτ: □

Lemma 4.1. Let Ω ⊂ Rn be a bounded domain and ν be a C1,1 vector field on Ω. Assume that
θ ∈ H1(Ω) is 1-form satisfying

(ν, θ) = 0 (4.7)

and
∆(ν ∧ θ) ∈ L2(Ω). (4.8)

Then, it holds that ∆θ ∈ L2(Ω).

Proof. Writing
θ =

∑
i

θidxi,

we obtain
ν ∧ θ =

∑
i< j

(νiθ j − ν jθi) dxi ∧ dx j.

Then, assumption (4.8) with ν ∈ C1,1 ensures

νi∆θ j − ν j∆θi ∈ L2(Ω), 1 ≤ i, j ≤ n,
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which means
f⃗ ≡ ν(∆θ)T − (∆θ)Tν ∈ L2(Ω).

Equality (4.7), on the other hand, implies

g ≡ (ν,∆θ) ∈ L2(Ω)

by ν ∈ C1,1 and θ ∈ H1(Ω). Thus, we obtain

Fν(∆θ) = ( f⃗ , g), (4.9)

where
Fν : b ∈ Rn 7→ (νbT − bνT , bTν) ∈ An × R

and An denotes the set of (n, n) skew-symmetric real matrices.
To examine the invertibility of this Fν, we assume the case

ν0 = (1, 0, · · · , 0)T .

Then, it holds that

Fν(b) = (B, b1), B =


0 −b2 · · · −bn

b2 0 · · · −bn−1
...

...
...

...

bn bn−1 · · · ·


and hence Fν0 is an isomorphism. Since ν is realized by the rotation of ν0 with ∈ C1,1 regularity, we
obtain

∆θ = c⃗ · f⃗ + dg

by (4.9), where c⃗ = c⃗(x) ∈ Rn and d = d(x) ∈ R are C1,1 in x ∈ Ω. Then, we obtain ∆θ ∈ L2(Ω). □

Theorem 4.5 takes the following form concerning the vector field:

Theorem 4.6. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and ω = (ωi) ∈ H1(Ω)
be a vector field satisfying

ωi
j = ω

j
i in Ω, 1 ≤ i, j ≤ n

and
(div ω) j ∈ L2(Ω±), 1 ≤ j ≤ n.

Then, it follows that (4.6).

Proof. We identify ω as the 1-form defined by (4.2), to get (4.3) and (4.4). Then, the result follows
from Theorem 4.5. □

Theorem 4.7. Let Ω ⊂ Rn be a bounded Lipschitz domain with C2,1 interface, and p ∈ H2(Ω) be
a 0-form. Assume

∂

∂xi
(∆p) ∈ L2(Ω±), 1 ≤ i ≤ n.
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Then it holds that
∆
∂p
∂τ
∈ L2(Ω),

where
∂p
∂τ
= ∇p − (ν · ∇p)ν.

Proof. This theorem is a direct consequence of Theorem 4.6, applied to ω = ∇p. □

Remark 4.2. If we modify Theorem 1.3 to a (n, 1)-Minkowski space, the above ∆ in Theorem 4.7 is
replaced by

□ = ∆x − ∂
2
t .

The gradient and inner product are changed accordingly as

∇ =

(
∇x

−∂t

)
and

(a, b) =
n∑

i=1

aibi − a0b0

for a = (a1, · · · , an, a0)T and b = (b1, · · · , bn, b0), respectively.

4.3. 2-forms on (3, 1)-Minkowski spaces

Theorems 1.2 and 1.3 are modified as theorems in Minkowski spaces. The non-stationary Maxwell
equation (1.1) is then reduced to (1.6) or (1.8) for a 2-form ω on a (3, 1)-Minkowski space, which
ensures Theorem 1.1. See [4] for details.

5. Conclusions

We introduced d − δ systems of differential forms in Euclidean spaces, to describe several models
in mathematical physics. We obtained interface vanishing of the solution, which means that if outer
forces are piecewise regular, then several combinations of the components of the solution accordingly
gain the regularity across the interface. This result was applied to non-stationary Maxwell, Stokes, and
hyperbolic systems.
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10. J. Nečas, Le methodes directres en théorie des equations elliptiques, Paris: Masson, 1967.

11. S. Morita, Geometry of differential forms, Providence: American Mathematical Society, 2001.

12. M. Kanou, T. Sato, K. Watanabe, Interface regularity of the solutions to the systems on Riemannian
manifold, Tokyo J. Math., 39 (2016), 83–100. https://doi.org/10.3836/tjm/1459367259

13. J. D. Jackson, Classical electrodynamics, 3 eds., New York: Wiley, 1999.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 7848–7865.

http://dx.doi.org/https://doi.org/10.1007/S00021-004-0148-0
http://dx.doi.org/https://doi.org/10.3836/tjm/1391177982
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(67)86571-8
http://dx.doi.org/https://doi.org/10.1109/TMAG.1970.1066765
http://dx.doi.org/https://doi.org/10.3836/tjm/1459367259
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.2
	Applications
	Theorem 1.2 for 1-forms
	Theorem 1.3 for 1-forms
	2-forms on (3,1)-Minkowski spaces

	Conclusions

