AIMS Mathematics, 9(4): 7848-7865.
DOI: 10.3934/math.2024382
ATMS Mathematics Received: 03 November 2023
Revised: 18 February 2024

Accepted: 18 February 2024
http://www.aimspress.com/journal/Math Published: 23 February 2024

Research article

Interface vanishing of d — ¢ systems

Takashi Suzuki'* and Kazuo Watanabe?

! Center for Mathematical Modeling and Data Science, Osaka University, Machikaneyamacho 1-3,
Toyonakashi, 560-8531, Japan

2 College of Liberal Arts and Sciences, Kitasato University, 1-15-1, Minami-ku, Kitazato,
Sagamiharashi, 252-0373, Japan

* Correspondence: Email: suzuki @sigmath.es.osaka-u.ac.jp; Tel: +81668506475.

Abstract: We introduce d — ¢ systems on differential forms in Eucliean spaces and show the interface
vanishing of the solution. This result generalizes previous theorems on stationary and non-stationary
Maxwell’s equation. Other applications are also given.

Keywords: d — ¢ systems; differential forms; interface vanishing; Maxwell equation
Mathematics Subject Classification: 35B65, 35Q61, 361.40

1. Introduction

Interface vanishing has been observed in both the stationary and non-stationary Maxwell’s
equation [1-4], which says that some components of the solution do not detect the interface. More
precisely, if this equation holds piecewise in a region with interface M, then these components extend
across M.

This equation is concerned with the electric field E, the magnetic field B, the current density J, and
the electric charge density p, depending on the space-time variables (x, t) € R> x R. Using the gradient

operator
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and the outer and the inner products in R* denoted by x and -, respectively, it is given by
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with
D=¢E, B=uH, J=0L,
where &, u, and o denote the permittivity, the permeability, and the conductivity, respectively.
Assuming that the first two physical constants £ and u are independent of the medium, we set them to
be 1, giving
VXxB-%=J V-E=p
VXE+%2=0, V.-B=0 inQ,

with the normalized light speed ¢ = ue = 1, where Q C R* is a domain in space-time.

We take the case that this Q is composed of two media, with the interface M forming a part of a
smooth hyper-surface, and that the variables J and p are only piecewisely regular. In [4], it is shown
that, if J and p are provided with piecewise regularity, singularities of some components of B and E
propagate across the interface without suffering any effects from it.

(1.1)

Remark 1.1. The discontinuity of J arises in accordance with the secondary current of
magnetoencephalography. The standard theory [5, 6] assumes the quasi-static state

VXB=uyJ, V-B=0 inQ,

where Q is composed of two domains Q, and €_ indicating the outside and inside of the head,
respectively. Here, ug denotes the permeability assumed to be a common constant in both Q.. There
also arises

J=J,-0c(x)VV (1.2)
for the primary current J,, evoked by the neuron activity in Q_ and the secondary current —o(x)VV
due to the electric field —VV associated with the voltage V = V(x). The electric conductivity o(x) is
thus assumed to be piecewise constant. In one-layer model, for example, it takes the form

(x) = o, x€Q_
o) = 0, xeQ,,

where o; > 0 is a constant. By this discontinuity of o(x), the total current density J in (1.2) has a
discontinuty on the interface I' = 0Q, N 0Q_. In spite of this discontinuity, we noted in [1] that the
normal component of the magnetic field B is continuously distributed across T

For later use, we formulate the geometric profile of such Q in a general setting as follows:

Definition 1.1. The Lipschitz bounded domain Q0 C R" is said to have an interface, denoted by M, if
this M is non-compact hyper-surface in R" without boundary such thatT' = M N Q # 0 is connected.

This domain Q is divided into two domains by M, denoted by €., and then I is distinguished as a
subset of 0Q, asT.:
Q=Q. Ul'uQ_, TI,=0Q,\0Q=T).
Henceforth, v denotes the outer unit normal vector on I'_. It is extended on Q as a Lipschitz continuous
vector field if M is C!1.
Coming back to (1.1), we assume the piecewise regularity of J € L*(Q) and p € L*(Q) in (1.1),
precisely,

aJ
VxJeLX(Q.), = Vp € L*(Q.)’, (1.3)

where the differentiations are taken in the sense of distributions in Q2,.
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Theorem 1.1. [4] Let Q c R* be a bounded Lipschitz domain with C*" interface M. Let v be the
outer unit normal vector on I'_, extended smoothly on Q. Let B,E € H'(Q)? be the solution to (1.1),
for J € L*(Q)* and p € L*(Q) satisfying (1.3). Then, it holds that

o(’B+vx E) e L*(Q)}, 0@ B) € L*(Q), (1.4)
where
% )
2 2
|V < _ | .2 _ 0
Vv = V3 , Vv = V3 , O _ﬁ + Ax
0 V
4

Remark 1.2. Since B, E € H'(Q)? is assumed, the system of Eq (1.1) is valid across the interface. The
conclusion (1.4), however, is derived without assuming B, E € H*(Q)?, or, J,p € H'(Q)*. In fact, since
system (1.1) implies

0 0
—-AB—-—=—VXE=VXJ, Vp—-AE+—VxB=0,
o1 P o1

it arises that

aJ
OB =-VXxJ, DE:Vp+E

in the sense of distributions in Q. The assumption (1.3) thus implies
OB, OF € L*(Q.)°,

which, however, does not mean 0B, OF € L*(Q)*. The conclusion (1.4), therefore, assures that H?-
singularities of V' B+vx E and v- B propagate through the interface under light speed, without suffering
any effects from it.

Remark 1.3. Theorem 1.1 includes results on the stationary state, E, = B, = 0 [1-3]. These results are
reduced to a problem on a 1-form, where its decomposition to tangential and normal components works
effectively. Although this argument is valid for arbitrary space dimension n, difficulty arises in (1.1)
which is reduced to an equation of 2-forms, not 1-forms, on Minkowski spaces in (3, 1)-dimension.

Our purpose is to generalize Theorem 1.1 on (1.1) of 2-forms to arbitrary p-forms, formulating (1.1)
as a d — ¢ system. Our results are stated in the context of Euclidean spaces, but are valid to Minkowski
spaces in any dimension. Hence, they include all the above results on stationary and non-stationary
Maxwell equations associated with 1- and 2-forms, respectively.

Remark 1.4. Several models in mathematical physics, besides the Maxwell system (1.1), are
formulated as the d — 6 system, as described in [7]. Among them are the Stokes system and hyperbolic
equations. See §3.

Before stating our results, we recall the following facts.

Rem_ark 1.5. If D c R" is a Lipschitz bounded domain, then_ C>(D) is dense in H'(D), where p €
C*(D) if and only if there is ¢, smooth in a neighbourhood of D, such that

¢l = onD.
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Then the trace operatory : H (D) — H'*(0D) is well-defined, and it holds that

H'(D)/H)(D) = H'*(6D) (1.5)
under this operator, where Hé (D) denotes the closure of C3'(D) in H (D) [8-10].
Remark 1.6. The p-form on the bounded domain D C R" takes the form

w= Z a)"l"".l’dx,-1 A ANdx;,

i1 <<ip

for 1 < p < n. We say that w € H'(D) if and only if o"» € H(D) for any iy < --- < i,,, and, similarly,
w € L*(D) if and only if o"'» € L*(D) for any i} < --- < Ip.

Remark 1.7. The set of p-forms on the bounded domain D C R" is denoted by AP (D). There, the outer
derivative
d:AP(D) - AP"'(D), O0<p<n-1

and the wedge product
A AP(D) x AY(D) — AP*(D), p,gq>0, p+g<n
are defined. The Hodge operator
x«: AP(D) - A"P(D), 0<p<n

is also defined by
#(dxy, Ao ANdx;) = sgno-dx;,,, Adx;,

where o : (1,--- ,n) — (i1, -+ ,i,). The co-derivative is then defined by
6 = (1)« dx: AP(D) - A""Y(D),
and it holds that [7,11]
do+o6d =-A:AN(D)—> AN(D), 0<p<n.

In the following theorems, the derivatives d, ¢, and A are taken in the sense of distributions. Hence,
the H?-interface on M vanishes for special components of w if it solves the d — ¢ system formulated
below. Here, the outer unit normal vector v = (v') on I'_, extended on Q, is identified with the 1-form

v=vldx, + - +V'dx,.

Theorem 1.2. Let Q C R" be a bounded Lipschitz domain with C*! interface, and w € H'(Q) and
0 € L*(Q) be p- and (p + 1)-forms on Q, respectively. Assume

dw=0,80=0inQ, 60¢cL*Q.). (1.6)

Then it holds that
AW A xw) € L*(Q). (1.7)

AIMS Mathematics Volume 9, Issue 4, 7848-7865.



7852

Theorem 1.3. Let Q C R" be a bounded Lipschit; domain with C*! interface, and w € H'(Q) and
0 € LX(Q) be p- and (p — 1)-forms on Q, respectively. Assume

dw=0,6w=0inQ, dbeL*Q,). (1.8)

Then it holds that
Ay A w) € LA(Q). (1.9)

Remark 1.8. From the assumption, v is extended as a C"' vector field on Q.

Remark 1.9. In both cases of the above theorems, it holds always that Aw € L*(Q.), which, however,
does not mean Aw € L*(Q).

Remark 1.10. Theorems 1.2 and 1.3 are equivalent. If (1.8) holds in the setting of Theorem 1.3, for
example, then,

a = *W

is an (n — p)-form, and there arises that

da=(=1y"sdsa=(=1)"P+dx*w
=(=1)? w1 d[(—l)f’(”‘p)a)] = (_1)(p+1)(n—p) + 1 dw=0.

We obtain, also,
0=6w=(1)VYs1dxw=(-1"«"da

and hence
da = (-1)? %0,

which implies
dda = (1) P sV dxda = (=1)" 71 d x %0
— (_1)n+1 *—1 d[(_1)(n+p—1)(p—1)9]
— (_1)n+1 . (_1)(n—p+1)(p—l) w1 do e Lz(Qi)

If we apply Theorem 1.2 to w = «, we get
A A *a) € LH(Q),

and hence (1.9), the conclusion of Theorem 1.3.

This paper is composed of four sections. Taking preliminaries in Section 2, Theorem 1.2 is proven
in §3. Section 3 is devoted to applications. There, we confirm that Theorems 1.2 and 1.3 imply all
the results on interface vanishing obtained so far [1-4]. We will extend these results to differential
forms on manifolds as in [12], to deal with systems of variable coefficients, arising often in the theory
of electromagnetism [13] in the future. We will also develop the L? theory and its applications to
nonlinear problems, such as the Navier-Stokes equation, to refine [2] derived from the L? theory. The
authors thank the referees for pointing out these challenges.
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2. Preliminaries

Here, we show the Gauss and the Stokes formulae in the context of H!-theories. Let D ¢ R" be a
bounded Lipschitz domain. Recall that, if § € H'(D) is a p-form, its trace 6|, belongs to H'/?(D).
The Euclidean inner product of 1-forms

a = Z odx,, B= Z,dex(
¢ ¢

is given by

@p) =) B
t

IfA=aA---Aapand u = A--- AB, are p-forms made by 1-forms @; and §; for 1 <i < p, we put

(A p0) = det ((ar.))), .- 2.1
Then, it holds that [7,11]
wAT=(w,T)dx; A---dx,, weAN(D), e ANP(D).
Given w € A?(D) and 6 € AP"1(D), we have
dl,w)ydxy N+ Ndx, =dO N xw
—dO A )+ (~1)POANd * w
and hence
fD(dQ,w)dxl/\---/\dx,,zfaDQ/\*w 2.2)

+ fD(G, ow) dx; A --- Adx,,

if 6,w € H'(D).
The volume and area elements on D and dD are given by

dx =dx; N--- Ndx,

ds = Zvi * dx;,

i

and

respectively, where v = (V') denotes the outer unit normal vector on dD. We thus obtain the vector area
element
vds = (xdxy, -, %dx,)".

f... dxl/\.../\dxn:f...
D D
[as= [ o
oD aD
in short.

The following lemmas are nothing but Propositions 1 and 2 of [4]. Here, we provide the proof for
completeness.

Henceforth, we write

and
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Lemma 2.1. If ¢, B, and J are O-form, 1-form, and 2-form belonging to H' (D), respectively, it holds
that

f(53,¢)=f(3,d90)— (B,v)¢ (2.3)
D D oD

and

f(dB, J)= f(B, oJ) + (v A B, J). (2.4)
D D oD

Proof. Having
¢lap » Blap » Jlap € H'(BD),

we apply (2.2) to w = B and 6 = ¢. Since
ONxw=¢-*B=¢-(B,v)ds onadD,
equality (2.3) holds. For (2.4), we put w = J and 6 = B in (2.2). It arises that
OANxw=BAxJ=(VAB,J)ds ondD,

and hence the conclusion. O

Henceforth, X’ denotes the dual space of the Banach space X over R, and (, ) denotes the paring
between X and X’. We put, in particular,

H'?D) = H'*(0DY'.

Lemma 2.2. Let p be O-form in H'(D).

(1) If Ap € H(DY, then
(dp,V)\,p € H'*(0D) (2.5)

is well-defined, and it holds that

(0. (dp.v)) = f (de,dp) + (. Ap), Vi € H'(D). 2.6)
D

(2) The 2-form
v Adply, € H'*(0D)

is well-defined, and is continuous in p € H'(D). It holds that
v ndpy == [ (@dp) @)
D

for any 2-form J € H' (D).

Proof. In the first case we have p € H'(D) and Ap € H'(D)’, and hence the mapping
pE HY (D) — f(dgo, dp) + {p,Ap)
D

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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is bounded linear. We show that this mapping is reduced to

¢ € H'(OD) > fD (6.dp) + (¢, Ap), 2.8)

to define (dp,v)|;p in (2.5) by (2.8).
In fact, since (1.5) holds, the well-posedness of (2.8) follows from

f (dg.dp) + (0. Ap) = 0, Vg € H\(D).
D

This equality is reduced to

f(dso, dp) +{p,Ap) =0, Ve e Cy (D),
D

or
fD (de.dp) + (A, p) = 0, Vg e C(D), 2.9)

which is valid to p € H'(D) by (2.3).
If p € H*(D), the above (dp, v)| sp coincides with

(dplyp ,v) € H'*(D), (2.10)

by (2.3) for B = dp and
6d = -A on A%(D),

and therefore, this
(dp,)sp

in (2.5) for p € H'(D) with Ap € H' (D)’ is consistent with (2.10) for p € H*(D).
The proof of the second case is similar. First, given p € H'(D), we regard the right-hand side
of (2.6) as a bounded linear mapping of 2-forms belonging to H'(D):

JeH (D) — - f (dp,8J).
D

We note that this mapping is continuous in p € H'(D) in the operator norm. Second, this mapping is
regarded as an element in H~'/2(dD) by (1.5), because the right-hand side is 0 for J € Hy(D):

JeH*(D) » - f (dp,d)),
D
which ensures the well-posedness of v A dp € H™'2(6D) by
(v ndpy == [ @pon,
D

Finally, we observe that equality (2.7) for p € H*(D) holds with

(v Adplyp,Vv) € HI/Z(BD)

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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by equality (2.4) applied to B = dp by d* = 0, and hence the above
vAdp e H'*(D)

is identified with
v Adply, € H'*(0OD)

if p e HX(Q). ]

Remark 2.1. Writing

ap

(dp,Map = 5~ € H'*(0D)
in (2.5), we obtain Green’s formula

(g, Ah>H1(D)’Hl(D)’ —<(h, Ag>H1(g),H1(D)’
oh e

_ _> _< _> (2.11)
=\& & H\/2(3D),H-172(dD) > dv [ H12(0D),H-1/2(9D)

valid to g, h € H'(D) with Ag, Ah € H'(D)'.

Remark 2.2. If Q = Q, UT U Q_ is a bounded Lipschitz domain with C*! interface M andT =T, =
0Q., any O-form p € H'(Q.,) admits 2-forms on ;. as in

v Adply, € HVATL) = Hy* (T
3. Proof of Theorem 1.2

To begin with, let Q@ c R” be a bounded Lipschitz domain with C%! interface. If p € H'(Q) is
O-form, the 2-forms
v Adply, € HVA(T.)

are well-defined by Remark 2.2. Identifying H~'/?(I",) with H~'/*(T), we define 2-form on I by
[v Adp]® = v Adply, — v Adpl. € H (D).

Recall that v is the outer unit normal vector on I'_ extended smoothly on Q. Then we use the following
lemma proven by [1].

Lemma 3.1. If p € H'(Q), it holds that
[vAdp]ll =0 in H V(). 3.1
Proof. Given 2-form J on Q of which coefficients are in C;'(€2), we obtain

+(J,Vv A dp>Hé/2(l"¢),H*1/2(l"i) = f (0J,dp)
Q.

by Lemma 2.2, which implies
+
IV N D)y v | = fg (87, dp). (3.2)

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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The right-hand side of (3.2) is equal to 0 if p € H*(Q) by (2.4) for B = dp and D = Q, because the

coeflicients of J are in C(€2):
+

(J,v A dp>Hé/2(l“),H-1/2(r) . =0.

(3.3)

Then, equality (3.1) follows, because J € Ci’(Q2) is arbitrary. This equality (3.1) is extended to p €

H'(Q) from the continuity of
peH(Q) »vAadpe HYT,)
because C¥(Q) is dense in H'(Q).

Henceforth, we write

fora = a(xy,--- , x,) in short.
Lemma 3.2. If p € H'(Q) is O-form, it holds that
Vo —vip] =0 1<ijsn in HOAD),

_ op
where p; = 7

Proof. The result is a direct consequence of Lemma 3.1 because

dp = Z pidx;

vAdp = Z(vipj — v/ p)dx; A dx;

i<j

and

hold.

Now, we show the key lemma. Let 1 < p <n -1 and

w= Z a)"‘""‘”dx,-l A ANdxg,

i <<ip
be a p-form in H'(Q). Given 1 < iy, -- ,ip < n, we put
@ = sgn o - W'
forij <---< i;,, where o : (i1, -+ ,i,) &= (@}, , ). Then, it follows that
ow = — Z Z (,Z)giz"""’cl)c,-2 Ao ANdxg,.
p<<ip €

Here, we define the 1-form in H'(Q) by
O = Z @' dx,.
R

Henceforth, we say A ~ B if
[A-B]Z=0

for A, B € H™'*(I).

AIMS Mathematics

(3.4)

(3.5)

(3.6)

(3.7

Volume 9, Issue 4, 7848-7865.



7858

Lemma 3.3. If Q C R" is a bounded Lipshitz domain with C"! interface, any p-form w € H'(Q)

admits
+

Sw+ Y (hd) @ V)dxi, A---dxi,| =0 in HVAD),

ip<-<ip

where

0
_ ¢
v, d) = E v ox

t

Proof. Take w as in (3.4), and fix i, < --- <i,. We put

4

recalling (3.5). Then, it holds that

Z[ oliip — (V, d)((jt\)iz"'il’, V) — Z[ {B? — V[(B, V)f}
~ X B) = S VBl = 5Bl — LMV B
= % {BL - (v, d)B)

because v is extended as a C%! vector field on Q from the assumption.
Here we fix £, set p = B, and notice

B —v'(,d)B' = p; =V (v,d)p = L, {0 pe — V¥ pif
= YV OFpe = v po.
Then, it follows that
[BS —v'(v,d)B']T =0 in H™VX(T)

from Lemma 3.2. Thus, we obtain

+

Do — @ v)| =0 in HAD),

¢ -
and then (3.6) implies (3.8).

We are ready to give the following proof:
Proof of Theorem 1.2. Using éw = 0 in (1.6), we obtain

+

|m )@, »| =0 in HAT)
for any i, < --- < i, by (3.8). It holds also that
—Aw = (d6 + 5d)w = 66 € L*(Q.).

Then, we get
AW e LAH(Q)

(3.8)

(3.9)

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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for any i; < --- <i, by (3.4), and hence
R = =A@, v) € L(Q.)

for any 1 < i,---,i, < n by (3.7), because v is extended as a C"!' vector field on Q from the
assumption.
Then equality (3.9) implies

= Jo@ g = ([ + [ )hE g
= Joh" e

for any ¢ € C7(€2) by Green’s formula, (2.11). Thus, we obtain
A7, v) € LA(Q)

and hence
AB € L*(Q)
for the (p — 1)-form S defined by

B = Z ((Diz‘..ip’v)dxiz Ao A dxip~

i<y
The conclusion (1.7) is thus reduced to the following lemma: O
Lemma 3.4. It holds that
VA% = %03 (3.10)
as (n — p + 1)-forms.
Proof. It suffices to show (3.10) for
w=dx; A Ndxp. (3.11)

In this case it holds that . .
i = sgno, {ij, - ,i,} ={l,---,p}
0, otherwise,

where o : (iy,--- ,i,) = (1,---, p). Then, (3.7) implies

Qi = 3, @i dx,

_ | Xesgnovdxe, 1<ip---,ip<p
10, otherwise,

where o : ({, i, ,iy) = (1,---, p). We have, for example,
(&P, v) = v,

and hence o
B = 2iyeei, (@7, V)X, A - Ad,
=vldxy A Ndx, +Vidxs A - Adx, Adx
+---+vf’dx1 /\---/\dxp_l.

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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It thus holds that

B = vidx; A dx, A ---dx, + vidx, A dx, A+ ANdx,
+VPdx, Ndxp A A dx,.

By (3.11), on the other hand, we obtain
*W = dxp N Ndx,
and hence
VAsw='dx; + o +V'dx,) Adxpa A Adx,

=vldx, A dxpi /\---/\dxn+v2dx2/\dxp+1 A ANdx,
+-o+VPdx, Ndxp A Adx, = %,

which completes the proof.
4. Applications

4.1. Theorem 1.2 for 1-forms

Theorem 1.2 for 1-forms recovers a result obtained by [3].

Theorem 4.1. Let Q C R" be a bounded Lipschitz domain with C*! interface, and w € H'(Q) be 1-

form. Assume (1.6). Then, it holds that
A(v - w) € LH(Q),

where - denotes the R"-inner product.

Proof. Writing

w= E w'dx;,
i

*W = Z(—l)i+lwidx1 A ANdxiy ANdxi Ao ANdx,
i

we obtain

and hence ' o
VAW =Y, V(=D wldx; Adxy A Adxioy Adxig A - dx,
=2 ;vwldxy A - Adx, = (v, w)dxy A -+ A dx,.

Then, the result follows immedately from Theorem 1.2.

For w in (4.2), we obtain

dxw=Y,(-D)"oldx; Ndxy A+ Adxig Adxip A=+ Adx,
= Y widxy A -+ Adx,

and hence 6w = 0 if and only if div w = ;! = 0. Then the 2-form 6 is defined by

dw = Z(—w; + wlj)dxi Ndxj=6.

i<j

AIMS Mathematics Volume 9, Issue 4,
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An elementary calculation now ensures

Lj

for
I, i<j
Xxij=10, i=j
-1. i>j
Hence, 66 = +~'d x § € L*(Q,) if and only if
ZXU(_CU;; +w)eX(Q.), 1<j<n (4.5)

By these observations, Theorem 4.1 on a 1-form induces the following theorem on a vector field:

Theorem 4.2. Let Q C R" be a bounded Lipschitz domain with C*' interface, and w = (o) € H'(Q)
be a vector field satisfying
divw=0inQ, Awell*Q.,).

Then it holds that (4.1).

Proof. By Theorem 4.1, if w = (') € H'(Q) satisfies div w = 0 in Q and (4.5), then (4.1) holds. Here,
Eq (4.5) with j = 1 means

n

Dol +wh) = 0l + ) W= Aw' € LAQ.)

=2 i=2
by divw = 0. The other case of j is similar, and we obtain the result. O

Theorem 4.3. Let Q c R" be a bounded Lipschitz domain with C*' interface. Assume that v €
H'(Q;R") and p € H'(Q.) satisfy the stationary Stokes system

Av=VpinQ., divv=0inQ.

Then, it holds that
Av,v) € LAH(Q).

Proof. This theorem is an immediate consequence of Theorem 4.2 applied to w = v. O

Theorem 4.4. Let Q C R" X R be a bounded Lipschitz domain with C*' interface, and assume that
u € H*(Q) satisfy
Ou=0inQ, ucH L),

where O = A, — 0?. Then, it holds that
AW, v) e LH(Q)

V= .
_ut.
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Proof. This theorem follows from Theorem 4.1 for

= Ou
w = Zl a—Xidxi - l/ttdl.
O

Remark 4.1. If Q = D x (-T, T) with bounded Lipschitz domain D C R" and M = {t = 0}, it holds
that Q_ = D X (=T,0) and Q, = D x (0, T). In this case, we obtain

Au, € LX(Q),

provided that
ue H*(Q), tu=0inQ, wueH(Q.)
4.2. Theorem 1.3 for 1-forms

Theorem 1.3 for 1-forms also recovers a result obtained by [3].

Theorem 4.5. Let Q c R" be a bounded Lipschitz domain with C*' interface, and w € H'(Q) be
a 1-form. Assume (1.8). Then, it holds that

Aw, € L} (Q), (4.6)

where w; = w — (W, V).

Proof. Since Theorem 1.3 implies
Alv A w) € LA(Q),

this theorem is reduced to the following lemma applied to 6 = w,: O

Lemma 4.1. Let Q c R" be a bounded domain and v be a C"' vector field on Q. Assume that
0 € H'(Q) is 1-form satisfying
(,60) =0 4.7)

and
A(v A 0) € LA(Q). (4.8)

Then, it holds that A8 € L*(Q).
Proof. Writing

G:Zﬁﬂ@

we obtain
VAO= Z(v’Oj — VI8 dx; A dx;.

i<j

Then, assumption (4.8) with v € C"! ensures
VING —vING € LX(Q), 1<i,j<n,

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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which means
F=wA0)" — Ay € LX(Q).

Equality (4.7), on the other hand, implies
g= (v, A0) € L2(Q)
by v € C!"! and 6 € H'(Q). Thus, we obtain
F/(80) = (f. 8), (4.9)

where
F,:beR"'— (Wb —=bvI,bTv) e A, xR

and A, denotes the set of (n, n) skew-symmetric real matrices.
To examine the invertibility of this F,, we assume the case

vo = (1,0,---,0)".

Then, it holds that

0 —by -+ —b,
b2 0 _bn—l

F,(b)=(B,b)), B=| . : :
bn bn—l

and hence F,, is an isomorphism. Since v is realized by the rotation of vy with € C"! regularity, we
obtain
A =2 f+dg

by (4.9), where & = &(x) € R" and d = d(x) € R are C"! in x € Q. Then, we obtain A8 € L*(Q). o

Theorem 4.5 takes the following form concerning the vector field:

Theorem 4.6. Let Q C R" be a bounded Lipschitz domain with C*' interface, and w = (o) € H'(Q)
be a vector field satisfying
w;:w{inQ, 1<i,j<n
and
(divw); € LX(Qy), 1<j<n
Then, it follows that (4.6).

Proof. We identify w as the 1-form defined by (4.2), to get (4.3) and (4.4). Then, the result follows
from Theorem 4.5. |

Theorem 4.7. Let Q C R" be a bounded Lipschitz domain with C* interface, and p € H*(Q) be

a O-form. Assume
0

(Ap) e *(Qy), 1<i<n
Bx,-

AIMS Mathematics Volume 9, Issue 4, 7848-7865.
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Then it holds that 5
A2 e 1),
or
where 3
9P _ Vp—-(-Vpw
or
Proof. This theorem is a direct consequence of Theorem 4.6, applied to w = Vp. m|

Remark 4.2. If we modify Theorem 1.3 to a (n, 1)-Minkowski space, the above A in Theorem 4.7 is

replaced by
O=A,-0d.

The gradient and inner product are changed accordingly as
\%
V= N
(%)

(a,b) = > a;b; —apby

i=1

and

fora=(ay, - ,anay) andb = (by,--- ,by,, by), respectively.

4.3. 2-forms on (3, 1)-Minkowski spaces

Theorems 1.2 and 1.3 are modified as theorems in Minkowski spaces. The non-stationary Maxwell
equation (1.1) is then reduced to (1.6) or (1.8) for a 2-form w on a (3, 1)-Minkowski space, which
ensures Theorem 1.1. See [4] for details.
5. Conclusions

We introduced d — ¢ systems of differential forms in Euclidean spaces, to describe several models
in mathematical physics. We obtained interface vanishing of the solution, which means that if outer
forces are piecewise regular, then several combinations of the components of the solution accordingly
gain the regularity across the interface. This result was applied to non-stationary Maxwell, Stokes, and
hyperbolic systems.
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