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1. Introduction

Let Rn be the n-dimensional Euclidean space with the standard inner product 〈·, ·〉 and the norm ‖ · ‖.
We write Sn−1 for the unit sphere in Rn. Denote by K n the class of all compact convex sets with
nonempty interior in Rn. In this paper, the volume (i.e., the n-dimensional Lebesgue measure) of
K ∈ K n is written by V(K).

For K, L ∈ K n and λ, µ > 0, the Minkowski combination λK + µL is defined by

λK + µL = {λx + µy | x ∈ K, y ∈ L}.

The famous Brunn-Minkowski inequality in the classical Brunn-Minkowski theory states that for
K, L ∈ K n and λ ∈ (0, 1), there is (see, e.g., [24])

V
(
(1 − λ)K + λL

) 1
n > (1 − λ)V(K)

1
n + λV(L)

1
n , (1.1)

with equality if, and only if, K and L are homothetic. It is worth noting that the Brunn-Minkowski
inequality (1.1) is equivalent to the following form:

V
(
(1 − λ)K + λL

)
> V(K)(1−λ)V(L)λ,
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with equality if, and only if, K and L are parallel. This shows that the volume functional on the
commutative semi-group K n is log-concave. More generally, the corresponding analytical version
of the Brunn-Minkowski inequality, the Prékopa-Leindler inequality, ensures that the inequality (1.1)
holds for two Borel measurable sets K and L if K + L is still a Borel measurable set. See [6, 24] for
more discussion on the Brunn-Minkowski inequality and its rich applications.

Lutwak [10] first presented the dual mixed volume for star bodies. Therefore, the dual Brunn-
Minkowski theory has achieved significant developments on many problems; see[3, 4, 7, 12, 13, 31, 32,
33]. Moreover, there are a number of new geometric measures (e.g., the q-th dual curvature measure)
induced by the dual mixed volume in the dual Brunn-Minkowski theory; see [8, 20]. This duality
between the Brunn-Minkowski theory and the dual Brunn-Minkowski theory plays an important role
in convex geometric analysis. For example, there is the following dual Brunn-Minkowski inequality
(see [10, 12])

V
(
(1 − λ)M+̃λN

) 1
n 6 (1 − λ)V(M)

1
n + λV(N)

1
n , (1.2)

for star bodies M,N and λ ∈ (0, 1), where the Lutwak combination (1 − λ)M+̃λN is defined by

(1 − λ)M+̃λN =
⋃

u∈Sn−1

{
M ∩ {tu | t > 0} + N ∩ {tu | t > 0}

}
.

Compared with the inequalities (1.1) and (1.2), we can obtain

V
(
(1 − λ)K + λL

) 1
n > (1 − λ)V(K)

1
n + λV(L)

1
n > V

(
(1 − λ)K+̃λL

) 1
n , (1.3)

for K, L ∈ K n with the origin o ∈ K, L.
Recently, Schneider [25, 26] established the Brunn-Minkowski theory for the unbounded closed

convex sets in a fixed pointed closed convex cone C. Let A be an unbounded closed convex set in
C and A = C \ A be called a C-coconvex set if A has finite volume. For 0 < λ < 1, the co-sum
(1 − λ)A1 ⊕ λA2 of two C-coconvex sets A1, A2 is defined by

C \
(
(1 − λ)A1 ⊕ λA2

)
= (1 − λ)(C \ A1) + λ(C \ A2).

There is the following Brunn-Minkowski inequality for C-coconvex sets (see [25]):

V((1 − λ)A1 ⊕ λA2)
1
n 6 (1 − λ)V(A1)

1
n + λV(A2)

1
n , (1.4)

with equality if, and only if, A1 = αA2 for some α > 0. Later, the Lp Brunn-Minkowski theory for C-
coconvex sets was established in [30] and the dual Minkowski problem for C-coconvex sets was solved
in [21], which further refined the Brunn-Minkowski theory for C-coconvex sets. Moreover, the authors
in [1] pointed out that there is a duality to the polarity in the classical Brunn-Minkowski theory and
they called it the copolarity. By the wonderful works in [21, 23, 27, 28, 29], there is a close connection
between the copolarity and the theory of C-coconvex sets.

Inspired by the works of Schneider and Lutwak, we extend the concept of C-coconvex sets to C-star
bodies. Denote by S n

C the class of all C-star bodies. Importantly, we can prove that the C-radial sum
M+̃cN of C-star bodies M,N is also a C-star body. That is, S n

C is a commutative semi-group with
respect to the Lutwak addition. Moreover, if we consider the scalar multiplication, then S n

C is a closed
convex cone in the space of the continuous functions on the relative interior of C ∩ Sn−1. Similar to
the duality between convex bodies and star bodies in the classical setting, we establish the dual Brunn-
Minkowski inequality for C-star bodies, which can strengthen the Brunn-Minkowski inequality (1.4).
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Theorem 1.1 (Dual Brunn-Minkowski inequality for C-star bodies). Let M,N ∈ S n
C and 0 < λ < 1,

then
V
(
(1 − λ)M+̃cλN

) 1
n 6 (1 − λ)V(M)

1
n + λV(N)

1
n , (1.5)

with equality if, and only if, M = λN for some λ > 0. Moveover, for C-coconvex sets A1, A2, there is

V
(
(1 − λ)A1 ⊕ λA2

) 1
n 6 V

(
(1 − λ)A1+̃cλA2

) 1
n 6 (1 − λ)V(A1)

1
n + λV(A2)

1
n . (1.6)

Remark 1.1. Our inequality (1.5) has the same form as the inequality (1.2), but they have different
meanings. That is, the inequality (1.5) holds for the non-compact star-shaped sets.

Remark 1.2. In the classical setting, the inequality (1.2) can’t strengthen the inequality (1.1), so we
can only obtain the continued inequality (1.3). However, for C-coconvex sets, our inequality (1.5) can
strengthen the inequality (1.4). That is, we can obtain the inequality (1.6).

This paper is organized as follows. In Section 2, we provide some necessary backgrounds for
the C-coconvex sets. In Section 3, we introduce the C-star bodies, C-radial sum, and dual mixed
volume for C-star bodies. Section 4 contains the dual Brunn-Minkowski inequality, dual Minkowski
inequality, and dual Aleksandrov-Fenchel inequality for C-star bodies. In Section 5, we provide
a supplementary note on the equality case of the Brunn-Minkowski inequality for C-coconvex sets
in [25]. As applications, we show the Brunn-Minkowski type inequalities for volume difference and
volume sum in Section 6.

2. Preliminaries

We write Bn for the unit ball in Rn. The topological boundary and the topological interior of a subset
E ⊂ Rn are denoted by ∂E and int(E), respectively. Denote by H−u a negative half-space with the outer
normal vector u ∈ Sn−1. A compact convex set K in Rn with nonempty interior is called a convex body
and its support function is defined by hK(u) = max{〈x, u〉 | x ∈ K} for each u ∈ Sn−1. The Minkowski
sum K + L of convex bodies K and L is also given by

hK+L(u) = hK(u) + hL(u),

for any u ∈ Sn−1. A set M in Rn is called a star-shaped set with respect to the origin if the intersection
of M with any line passing the origin is a line segment. The radial function of a star-shaped set M is
defined by ρM(u) = sup{t > 0 | tu ∈ M} for any u ∈ Sn−1. A star-shaped set M is called a star body if
the radial function ρM is a positive continuous function on Sn−1. The Lutwak sum M+̃N of star bodies
M and N is also given by

ρM+̃N(u) = ρM(u) + ρN(u),

for any u ∈ Sn−1. For two sets A and B in Rn, A and B are homothetic if there exist λ > 0 and x ∈ Rn

such that A = λB + x. Similarly, A and B are dilated if there exists λ > 0 such that A = λB.
For a closed convex set E ⊂ Rn, we call E a closed convex cone if λx ∈ E for any λ > 0 and x ∈ E.

A closed convex cone C ⊂ Rn is called pointed if C ∩ (−C) = {o}, which is equivalent to saying that
C is line-free. From now on, we denote by C a pointed closed convex cone. The polar cone of C is
defined by

C◦ = {y ∈ Rn | 〈y, x〉 6 0 for any x ∈ C}.
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Denote by ΩC = int(C)∩Sn−1 and ΩC◦ = int(C◦)∩Sn−1. An unbounded closed convex set o < A ⊂ C is
called a C-close set if C \ A has finite volume, and A = C \ A is called a C-coconvex set. Specifically,
a C-close set A is called a C-full set if C \ A is bounded. An unbounded closed convex set o < A ⊂ C
is called a C-asymptotic set if A is asymptotic to the boundary of C at infinity, i.e.,

lim
x∈A,‖x‖→+∞

d(x, ∂C) = 0,

where d(x, ∂C) is the distance from x to ∂C.
A closed convex set o < E ⊂ Rn is called a pseudo-cone if λx ∈ E for any λ > 1 and x ∈ E. The

recession cone of a nonempty closed convex set E is defined by

rec(E) = {x ∈ Rn|E + x ⊂ E}.

If E is unbounded, then rec(E) is a closed convex cone. Moreover, a closed convex set o < E ⊂
Rn is a pseudo-cone if, and only if, E ⊂ rec(E). An unbounded closed convex set o < E ⊂ C is
called a C-compatible set if E is a pseudo-cone and rec(E) = C. For C-compatible sets, there is the
following proposition:

Proposition 2.1. (see [21]) Let o < E ⊂ C be a nonempty set, then E is a C-compatible set if, and
only if,

E =
⋂
{Ẽ|Ẽ is an unbounded closed convex set in C containing x+C for all x ∈ E}

=
⋂
{Ẽ|Ẽ is a C-close set such that E ⊂ Ẽ}

=
⋂
{Ẽ|Ẽ is a C-full set such that E ⊂ Ẽ}

= C ∩
⋂

u∈ΩC◦

{H−u |E ⊂ H−u }.

For 0 , q ∈ R, a C-compatible set E is called a (C, q)-close set if

Ṽq(E) =
1
n

∫
ΩC

ρ
q
E(u)du < +∞,

where ρE(u) = inf{λ > 0|λu ∈ E} is the radial function of E. See [21] for more details of (C, q)-
close sets.

3. C-star bodies, Lutwak sum, and dual mixed volume

Similar to the classical case, we can also consider the corresponding star-shaped sets in a fixed
pointed closed convex cone C as follows.

Definition 3.1. A nonempty set M ⊂ C is called a C-star-shaped set if for any u ∈ ΩC, the intersection
{tu | t > 0} ∩ M is a line segment passing through the origin.

For a C-star-shaped set M, the radial function of M is defined by

ρM(u) = sup{t > 0 | tu ∈ M}, for any u ∈ ΩC.
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If ρM is a continuous function on ΩC, then the volume of the C-star-shaped set M is

V(M) =
1
n

∫
ΩC

ρn
M(u)du,

by using the polar coordinate transformation.

Definition 3.2. A C-star-shaped set M is called a C-star body if ρM is a positive continuous function
on ΩC and V(M) < +∞.

We denote by S n
C the class of all C-star bodies.

Remark 3.1. Compared with the classical star bodies in Rn, C-star bodies may be unbounded sets.

Remark 3.2. Since a C-coconvex set A is generally unbounded, we can only prove that the radial
function of A is Lipschitz continuous on any compact set ω ⊂ ΩC. Hence, C-coconvex sets are all
C-star bodies.

Similar to Lutwak’s radial sum, we define the C-radial sum M1+̃cM2 of two C-star bodies M1

and M2 as follows:
ρM1+̃c M2(u) = ρM1(u) + ρM2(u), for any u ∈ ΩC.

Next, we prove that the C-radial sum M1+̃cM2 is still a C-star body. That is, the set of all C-star bodies
are closed under the C-radial addition.

Lemma 3.1. If M,N ∈ S n
C , then M+̃cN ∈ S n

C .

Proof. Clearly, M+̃cN is C-star-shaped set and ρM1+̃c M2(u) = ρM1(u) + ρM2(u) is also a positive
continuous function on ΩC. Thus, we need only to show V(M+̃cN) < +∞. Since M,N ∈ S n

C , we have

1
n

∫
ΩC

ρn
M(u)du < +∞ and

1
n

∫
ΩC

ρn
N(u)du < +∞.

Let {ωk}
+∞
k=1 be a sequence of compact sets on ΩC and ωk ↑ ΩC, then

1
n

∫
ωk

ρn
M+̃cN(u)du =

1
n

∫
ωk

n∑
i=0

(
n
i

)
ρn−i

M (u)ρi
N(u)du

=

n∑
i=0

(
n
i

)
1
n

∫
ωk

ρn−i
M (u)ρi

N(u)du.

By the Hölder inequality, for each 0 6 i 6 n,

1
n

∫
ωk

ρn−i
M (u)ρi

N(u)du 6
(
1
n

∫
ωk

ρn
M(u)du

) n−i
n
(
1
n

∫
ωk

ρn
N(u)du

) i
n

.

Let k → +∞, We have

1
n

∫
ΩC

ρn−i
M (u)ρi

N(u)du 6
(
1
n

∫
ΩC

ρn
M(u)du

) n−i
n
(
1
n

∫
ΩC

ρn
N(u)du

) i
n

< +∞.
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Therefore,

V(M+̃cN) =
1
n

∫
ΩC

ρn
M+̃cN(u)du

= lim
k→+∞

1
n

∫
ωk

ρn
M+̃cN(u)du

=

n∑
i=0

(
n
i

)
lim

k→+∞

1
n

∫
ωk

ρn−i
M (u)ρi

N(u)du

=

n∑
i=0

(
n
i

)
1
n

∫
ΩC

ρn−i
M (u)ρi

N(u)du

< +∞.

�

Remark 3.3. This result shows that S n
C is a commutative semi-group with respect to the Lutwak

addition. For the scalar multiplication, we have ρλM(u) = λρM(u) for M ∈ S n
C , λ > 0, and u ∈ ΩC.

Clearly, λM ∈ S n
C for M ∈ S n

C and λ > 0. Therefore, S n
C is a convex cone in the linear space

consisting of the continuous functions on ΩC.

Similar to the proof of Lemma 3.1, we have the following expansion formulas:

Theorem 3.1. Let M1, · · · ,Mm ∈ S n
C and λ1, · · · , λm > 0, then

V(λ1M1+̃c · · · +̃cλmMm) =

m∑
i1,··· ,in=1

λi1 · · · λin
1
n

∫
ΩC

ρMi1
(u) · · · ρMin

(u)du

=
∑(

n
q1, · · · , qm

)
λ

q1
1 · · · λ

qm
m

1
n

∫
ΩC

ρ
q1
M1

(u) · · · ρqm
Mm

(u)du,

where q1, · · · , qm ∈ N, 0 6 q1, · · · , qm 6 n, and q1 + · · · + qm = n.

Remark 3.4. The above result can be calculated directly. Compared with the classical star bodies and
the Lutwak addition, we can deal with the unbounded case in the pointed closed convex cone C.

Corollary 3.1. (Dual Steiner formula) Let M ∈ S n
C and λ > 0, then

V
(
M+̃cλ(Bn ∩C)

)
=

n∑
i=0

(
n
i

)(
1
n

∫
ΩC

ρn−i
M (u)du

)
λi. (3.1)

Inspired by the above formulas, we can define some geometric functionals as follows.

Definition 3.3. Let M1, · · · ,Mm ∈ S n
C , 0 6 q1, · · · , qm 6 n, and q1 + · · · + qm = n, We define the

(q1, · · · , qm)-dual mixed volume of M1, · · · ,Mm by

ṼC
q1,··· ,qm

(M1, · · · ,Mm) =
1
n

∫
ΩC

ρ
q1
M1

(u) · · · ρqm
Mm

(u)du.

Specifically, for 0 6 q 6 n, the q-th dual mixed volume of M,N ∈ S n
C is defined by

ṼC
q (M,N) =

1
n

∫
ΩC

ρ
n−q
M (u)ρq

N(u)du.
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Definition 3.4. Let M ∈ S n
C and 0 6 q 6 n, We define the q-th dual quermassintegral of M by

W̃C
q (M) =

1
n

∫
ΩC

ρ
n−q
M (u)du.

The q-th dual volume of M is defined by

ṼC
q (M) =

1
n

∫
ΩC

ρ
q
M(u)du.

Therefore, the q-norm of M for q > 1 in the space Lq(ΩC) is ‖ · ‖q,ΩC = ṼC
q (·)

1
q .

Remark 3.5. The dual Steiner formula (3.1) can be written by

V
(
M+̃cλ(Bn ∩C)

)
=

n∑
i=0

(
n
i

)
W̃C

i (M)λi.

4. Dual Brunn-Minkowski inequality for C-star bodies

Similar to the classical case, the following dual Aleksandrov-Fenchel inequality can be obtained by
the Hölder inequality.

Theorem 4.1. (Dual Aleksandrov-Fenchel inequality for C-star bodies) Let M1, · · · ,Mn ∈ S n
C , 0 6

q1, · · · , qm 6 n, 1 6 k 6 m, q1 + · · · + qk > 0, and q1 + · · · + qm = n, then

ṼC
q1,··· ,qn

(M1, · · · ,Mn)q1+···+qk 6
k∏

i=1

ṼC
q1,··· ,qn

(
k︷       ︸︸       ︷

Mi, · · · ,Mi,Mk+1, · · · ,Mn)qi ,

with equality if, and only if, M1, · · · ,Mk are dilates of each other.

Proof. Define the measure µ by

µ(ω) =

∫
ω

ρ
qk+1
Mk+1

(u) · · · ρqn
Mn

(u)du, ω ⊂ ΩC.
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Let pi =
q1+···+qk

qi
, 1 6 i 6 k, then the Hölder inequality for µ shows that

ṼC
q1,··· ,qn

(M1, · · · ,Mn) =
1
n

∫
ΩC

ρ
q1
M1

(u) · · · ρqn
Mn

(u)du

=
1
n

∫
ΩC

ρ
q1
M1

(u) · · · ρqk
Mk

(u)dµ(u)

6
k∏

i=1

(
1
n

∫
ΩC

(ρqi
Mi

(u))pidµ(u)
) 1

pi

=

k∏
i=1

(
1
n

∫
ΩC

ρ
q1+···+qk
Mi

(u)dµ(u)
) qi

q1+···+qk

=

k∏
i=1

(
1
n

∫
ΩC

ρ
q1+···+qk
Mi

(u)ρqk+1
Mk+1

(u) · · · ρqn
Mn

(u)du
) qi

q1+···+qk

=

k∏
i=1

(
1
n

∫
ΩC

ρ
q1
Mi

(u) · · · ρqk
Mi

(u)ρqk+1
Mk+1

(u) · · · ρqn
Mn

(u)du
) qi

q1+···+qk

=

k∏
i=1

ṼC
q1,··· ,qn

(Mi, · · · ,Mi,Mk+1, · · · ,Mn)
qi

q1+···+qk ,

that is,

ṼC
q1,··· ,qn

(M1, · · · ,Mn)q1+···+qk 6
k∏

i=1

ṼC
q1,··· ,qn

(Mi, · · · ,Mi,Mk+1, · · · ,Mn)qi .

By the Hölder inequality for µ, equality holds if, and only if, the radial functions ρq1+···+qk
M1

, · · · , ρ
q1+···+qk
Mk

are dilates of each other with respect to µ on ΩC. Since µ is absolutely continuous with respect to the
standard spherical Lebesgue measure and has a positive continuous density, equality holds if, and only
if, the radial functions ρM1 , · · · , ρMk are dilates of each other. �

Corollary 4.1. (Dual Minkowski inequality for C-star bodies) Let M,N ∈ S n
C , 0 6 q 6 n, then

ṼC
q (M,N)n 6 V(M)n−qV(N)q

with equality if, and only if, M,N are dilated.

Now, we provide the proof of our main result as follows.

Proof of Theorem 1.1. Let M,N ∈ S n
C and 0 < λ < 1. By Corollary 4.1, for any L ∈ S n

C , we have

ṼC
1 (L,M+̃cN) =

1
n

∫
ΩC

ρn−1
L (u)ρM+̃cN(u)du

=
1
n

∫
ΩC

ρn−1
L (u)(ρM(u) + ρN(u))du

= ṼC
1 (L,M) + ṼC

1 (L,N)

6 V(L)
n−1

n V(M)
1
n + V(L)

n−1
n V(N)

1
n

= V(L)
n−1

n (V(M)
1
n + V(N)

1
n ).
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Let L = M+̃cN, then
V(M+̃cN)

1
n 6 V(M)

1
n + V(N)

1
n .

According to the homogeneity of the volume functional, we have

V((1 − λ)M+̃cλN)
1
n 6 (1 − λ)V(M)

1
n + λV(N)

1
n ,

with equality if, and only if, M,N are dilates of each other.
Next, we will discuss the relationship between the co-sum and the Lutwak sum. Let A1 and A2 be

C-coconvex sets. Also note that A1+̃cA2 is a C-star body and C \ (A1+̃cA2) is a closed set in C. That is,
any point in C \ (A1+̃cA2) can be represented as λu, where λ > ρA1+̃cA2(u) and u ∈ ΩC. Since

ρA1(u)u ∈ C \ A1 and ρA2(u)u ∈ C \ A2,

we have
ρA1+̃cA2(u)u = ρA1(u)u + ρA2(u)u ∈ C \ A1 + C \ A2.

Note that C \ A1 + C \ A2 is also a pseudo-cone; hence, for any λ > ρA1+̃cA2(u), there is

λu ∈ C \ A1 + C \ A2.

Therefore,
C \ (A1+̃cA2) ⊂ C \ A1 + C \ A2,

which leads to
A1 ⊕ A2 = C \ (C \ A1 + C \ A2) ⊂ A1+̃cA2.

This, together with the monotonicity of the volume functional, gives

V(A1 ⊕ A2) 6 V(A1+̃cA2).

Therefore,

V((1 − λ)A1 ⊕ λA2)
1
n 6 V((1 − λ)A1+̃cλA2)

1
n 6 (1 − λ)V(A1)

1
n + λV(A2)

1
n .

�

Remark 4.1. Let A1 and A2 be C-coconvex sets, then A1 ⊕ A2 ⊂ A1+̃cA2. However, there is a
counterexample that shows A1+̃cA2 * A1 ⊕ A2. For example, let C be the closure of the first quadrant
in plane R2, We consider two C-coconvex sets

A = C ∩ {(x, y) ∈ R2 | 2x + y − 2 < 0},
B = C ∩ {(x, y) ∈ R2 | x + 2y − 2 < 0}.

For the direction u = (
√

2
2 ,

√
2

2 ), we have ρA(u)u = ( 2
3 ,

2
3 ) and ρB(u)u = (2

3 ,
2
3 ). Thus, ρA+̃cB(u)u = ( 4

3 ,
4
3 ),

which also shows (1, 1) ∈ A+̃cB. On the other hand, since (1, 0) ∈ C \ A and (0, 1) ∈ C \ B, we have

(1, 1) = (1, 0) + (0, 1) ∈ (C \ A + C \ B).

Hence, (1, 1) < C \ (C \ A + C \ B) = A ⊕ B.
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Theorem 4.2. (Dual Brunn-Minkowski inequality of (C, q)-close sets) Let M1,M2 ∈ S n
C and 0 6 q 6 n,

then M1,M2 are (C, q)-close sets andṼq(M1+̃cM2)
1
q 6 Ṽq(M1)

1
q + Ṽq(M2)

1
q , if q > 1,

Ṽq(M1+̃cM2)
1
q > Ṽq(M1)

1
q + Ṽq(M2)

1
q , if q < 1.

with equality if, and only if, M1 and M2 are dilates of each other.

Proof. Applying the Minkowski inequality for the q-norm, the relevant results can be obtained directly.
�

5. Equality case in the Brunn-Minkowski inequality for C-coconvex sets

In this section, we provide a detail on the equality case in the Brunn-Minkowski inequality for C-
coconvex sets ([25, p. 209]). The symbols of the below proof are the same as the symbols in [25].
For example, for C-close set A•i , H−zi(σ) represents the negative half-space with a fixed normal such that
V(A•i ∩ H−zi(σ)) = σ, i = 0, 1.

Proposition 5.1 (The equality case in the Brunn-Minkowski inequality for C-coconvex sets). The
translating vector is independent of the volume parameter.

Proof. Assume that 0 < σ < τ, We have

A•0 ∩ H−z0(σ) + x(σ) = A•1 ∩ H−z1(σ), (5.1)

and
A•0 ∩ H−z0(τ) + x(τ) = A•1 ∩ H−z1(τ). (5.2)

Denote M = A•1 ∩ H−z1(τ) + x(σ), E = A•1 ∩ H−z1(σ) + x(σ), and F = A•1 ∩ H+
z1(σ) ∩ H−z1(τ) + x(σ), then there

exists the following decomposition

M = A•1 ∩ H−z1(τ) + x(σ)

= (A•1 ∩ H−z1(σ)) ∪ (A•1 ∩ H+
z1(σ) ∩ H−z1(τ)) + x(σ)

= (A•1 ∩ H−z1(σ) + x(σ)) ∪ (A•1 ∩ H+
z1(σ) ∩ H−z1(τ) + x(σ))

= E ∪ F.

Since V(E) = V(A•1 ∩ H−z1(σ) + x(σ)) = σ, we have

E = M ∩ H−zM(σ). (5.3)

On the other hand, combined with (5.1) and (5.2), there exists

M = A•0 ∩ H−z0(τ) + x(τ) + x(σ)

= (A•0 ∩ H−z0(σ)) ∪ (A•0 ∩ H+
z0(σ) ∩ H−z0(τ)) + x(τ) + x(σ)

= (A•0 ∩ H−z0(σ) + x(τ) + x(σ)) ∪ (A•0 ∩ H+
z0(σ) ∩ H−z0(τ) + x(τ) + x(σ))

= (A•1 ∩ H−z1(σ) + x(τ)) ∪ (A•0 ∩ H+
z0(σ) ∩ H−z0(τ) + x(τ) + x(σ))

, G ∪ H,
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where V(G) = V(A•1 ∩ H−z1(σ) + x(τ)) = σ, so we have

G = M ∩ H−zM(σ). (5.4)

Combining (5.3) and (5.4), there exists E = G, namely,

A•1 ∩ H−z1(σ) + x(σ) = A•1 ∩ H−z1(σ) + x(τ),

which shows
x(σ) = x(τ).

Therefore, the translating vector x is independent of the volume parameter τ. �

6. Application: Some inequalities for volume difference and volume sum

As applications of the dual Brunn-Minkowski inequality for C-star bodies, we will get the following
inequalities of volume difference and volume sum for C-star bodies. At first, we need the following
general Bellman inequality as a critical tool.

Lemma 6.1. (see [18]) Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two series of nonnegative
real numbers such that aq

1 −
∑n

i=2 aq
i ≥ 0 and bq

1 −
∑n

i=2 bq
i ≥ 0 for 0 , q ∈ R, respectively, then the

following inequalities hold:
(i) If q ≥ 1, then

(aq
1 −

n∑
i=2

aq
i )1/q + (bq

1 −

n∑
i=2

bq
i )1/q ≤

(
(a1 + b1)q −

n∑
i=2

(ai + bi)q)1/q
.

(ii) If 0 < q < 1 or q < 0, then

(aq
1 −

n∑
i=2

aq
i )1/q + (bq

1 −

n∑
i=2

bq
i )1/q ≥

(
(a1 + b1)q −

n∑
i=2

(ai + bi)q)1/q
.

Equality holds if, and only if, a = cb for c > 0.

By the above inequalities and the method in [17], we obtain the following corollary.

Corollary 6.1. (Dual Brunn-Minkowski inequality for volume difference) Let C-star bodies K1 ⊆ L1,
K2 ⊆ L2. If L1 is a dilate of L2, then(

V(L1+̃cL2) − V(K1+̃cK2)
) 1

n ≥
(
V(L1) − V(K1)

) 1
n +

(
V(L2) − V(K2)

) 1
n ,

with equality if, and only if, K1,K2 are dilates of each other and
(
V(L1),V(K1)

)
= c

(
V(L2), V(K2)

)
for c > 0.

Proof. Since K1, L1, K2, L2 are C-star bodies, by the dual Brunn-Minkowski inequality for C-star
bodies, we have

V(K1+̃cK2)
1
n ≤ V(K1)

1
n + V(K2)

1
n ,V(L1+̃cL2)

1
n = V(L1)

1
n + V(L2)

1
n .
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Taking n-power and subtracting from both sides of the above formulas, there is

(
V(L1+̃cL2) − V(K1+̃cK2)

) 1
n ≥

((
V(L1)

1
n + V(L2)

1
n
)n
−

(
V(K1)

1
n + V(K2)

1
n
)n
) 1

n
.

Due to the general Bellman inequality for q ≥ 1, this further yields(
V(L1+̃cL2) − V(K1+̃cK2)

) 1
n ≥

(
V(L1) − V(K1)

) 1
n +

(
V(L2) − V(K2)

) 1
n .

�

Corollary 6.2. (Dual Brunn-Minkowski inequality for volume sum) Let C-star bodies K1 ⊆ L1, K2 ⊆

L2. If L1 is a dilate of L2, then(
V(L1+̃cL2) + V(K1+̃cK2)

) 1
n ≤

(
V(L1) + V(K1)

) 1
n +

(
V(L2) + V(K2)

) 1
n ,

with equality if, and only if, K1,K2 are dilates of each other and
(
V(L1),V(K1)

)
= c

(
V(L2), V(K2)

)
for c > 0.

Proof. By the Minkowski inequality, it is obvious that

(
V(L1+̃cL2) + V(K1+̃cK2)

) 1
n ≤

((
V(L1)

1
n + V(L2)

1
n
)n

+
(
V(K1)

1
n + V(K2)

1
n
)n
) 1

n

≤
(
V(L1) + V(K1)

) 1
n +

(
V(L2) + V(K2)

) 1
n .

�

7. Conclusions

In this work, we establish the dual Brunn-Minkowski inequality for C-star bodies. Importantly,
this dual Brunn-Minkowski inequality for C-star bodies can strengthen the previous Brunn-Minkowski
inequality for C-coconvex sets.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported in part by the NSFC (No. 12371060), Shaanxi Fundamental Science
Research Project for Mathematics and Physics (No. 22JSZ012), and the Excellent Graduate Training
Program of SNNU (No. LHRCCX23142).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

AIMS Mathematics Volume 9, Issue 4, 7834–7847.



7846

References

1. S. Artstein-Avidan, S. Sadovsky, K. Wyczesany, A zoo of dualities, J. Geom. Anal., 33 (2023).
https://doi.org/10.1007/s12220-023-01302-0

2. H. Federer, Geometric Measure Theory, Berlin: Springer Press, 1969.
http://dx.doi.org/10.1007/978-3-642-62010-2

3. R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342
(1994), 435–445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7

4. R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math.,
140 (1994), 435–447. https://doi.org/10.2307/2118606

5. R. J. Gardner, S. Vassallo, Stability of inequality in the dual Brunn-Minkowski theory, J. Math.
Anal. Appl., 231 (1999), 568–587. http://dx.doi.org/10.1006/jmaa.1998.6254

6. R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405.
http://dx.doi.org/10.1090/S0273-0979-02-00941-2

7. R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem
on sections of convex bodies, Ann. of Math., 149 (1999), 691–703. https://doi.org/10.2307/120978

8. Y. Huang, E. Lutwak, D. Yang, G. Y. Zhang, Geomtric measures in the dual Brunn-
Minkowski theory and their assciated Minkowski problems, Acta Math., 216 (2016), 325–388.
https://doi.org/10.1007/s11511-016-0140-6

9. A. Khovanskiı̆, V. Timorin, On the theory of coconvex bodies, Discrete Comput. Geom., 52 (2014),
806–823. http://dx.doi.org/10.1007/s00454-014-9637-y

10. E. Lutwak, Dual mixed volumes, Pac. J. Math., 58 (1975), 531–538.
http://dx.doi.org/10.2140/pjm.1975.58.531

11. E. Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl., 119 (1979),
139–148. http://dx.doi.org/10.1007/BF02413172

12. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232–261.
http://dx.doi.org/10.1016/0001-8708(88)90077-1

13. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–
391. http://dx.doi.org/10.1112/plms/s3-60.2.365

14. E. Lutwak, Chapter 1.5-selected affine isoperimetric inequalities, Handbook convex geo., 1993,
153–176. http://dx.doi.org/10.1016/B978-0-444-89596-7.50010-9

15. E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed Volumes and the Minkowski Problem,
J. Differ. Geom., 38 (1993), 131–150. http://dx.doi.org/10.4310/jdg/1214454097

16. E. Lutwak, The Brunn-Minkowski-Firey Theory II: Affine and geominimal surface areas, Adv.
Math., 118 (1996), 244–294. http://dx.doi.org/10.1006/aima.1996.0022

17. G. S. Leng, The Brunn-Minkowski inequality for volume differrences, Adv. in Appl. Math., 32
(2004), 615–624. https://doi.org/10.1016/S0196-8858(03)00095-2

AIMS Mathematics Volume 9, Issue 4, 7834–7847.

http://dx.doi.org/https://doi.org/10.1007/s12220-023-01302-0
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-62010-2
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7
http://dx.doi.org/https://doi.org/10.2307/2118606
http://dx.doi.org/http://dx.doi.org/10.1006/jmaa.1998.6254
http://dx.doi.org/http://dx.doi.org/10.1090/S0273-0979-02-00941-2
http://dx.doi.org/https://doi.org/10.2307/120978
http://dx.doi.org/https://doi.org/10.1007/s11511-016-0140-6
http://dx.doi.org/http://dx.doi.org/10.1007/s00454-014-9637-y
http://dx.doi.org/http://dx.doi.org/10.2140/pjm.1975.58.531
http://dx.doi.org/http://dx.doi.org/10.1007/BF02413172
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(88)90077-1
http://dx.doi.org/http://dx.doi.org/10.1112/plms/s3-60.2.365
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-444-89596-7.50010-9
http://dx.doi.org/http://dx.doi.org/10.4310/jdg/1214454097
http://dx.doi.org/http://dx.doi.org/10.1006/aima.1996.0022
http://dx.doi.org/https://doi.org/10.1016/S0196-8858(03)00095-2


7847
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