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1. Introduction

In references [1–6], the authors introduced novel fractional operators that incorporate kernels such
as the exponential function or the Mittag-Leffler function. However, despite the introduction of these
nonsingular kernels, they lack a semi-group property, complicating the resolution of certain intricate
fractional systems. Concurrently, significant strides have been taken to define various fractional
operators and integrals that involve Mittag-Leffler functions in their representations. Notably, the
cotangent fractional operators in [7] introduce the exponential of the cotangent as a kernel and verify
the semi-group property.

The cotangent fractional operators introduced a distinctive mathematical perspective by employing
the cotangent function as a kernel. The novelty lies in the specific choice of the cotangent function,
which is not a commonly used kernel in traditional fractional calculus. The main differences and
novelties of these cotangent derivatives can be summarized as follows:

• Kernel choice: The cotangent fractional operators use the cotangent function as a kernel, setting
them apart from more conventional fractional operators that often involve functions like the
exponential or Mittag-Leffler functions.
• Semi-group property: One notable feature mentioned is that these cotangent fractional

operators achieve a semi-group property. This property is significant in the context of solving
fractional differential equations, as it can simplify the mathematical treatment and make certain
computations more manageable.
• Distinctive representations: The use of the cotangent function in fractional operators leads to

unique representations for fractional derivatives or integrals. This can have implications for
solving specific types of problems or modeling certain phenomena in a novel way.
• Applicability: Depending on the context of the mathematical models being studied, the cotangent

fractional operators may offer advantages or insights that are not readily achievable with other
types of fractional operators.

Integral inequalities function as an extraordinary instrument for progressing both the qualitative and
quantitative facets of differential equations. This realm of investigation has continuously broadened
owing to its pertinence to a diverse range of applications that demand such forms of inequalities.
Numerous scholars have immersed themselves in the examination of these inequalities, utilizing an
assortment of methodologies to scrutinize and validate them [8, 9]. Among these inequalities, the
renowned Gronwall inequality holds significant prominence [10–13].

The Gronwall inequality is a fundamental mathematical tool frequently used in the analysis of
differential equations and integral inequalities. Named after the mathematician Thomas H. Gronwall,
the inequality provides bounds on functions by establishing relationships involving integrals. It has
wide applications in various branches of mathematics, physics, and engineering. The basic version is
as follows: if u satisfies the integral inequality

u(ℓ) ≤ v(ℓ) +
∫ ℓ

a
u(s) ds,

then

u(ℓ) ≤ v(ℓ) +
∫ ℓ

a
v(s) exp (ℓ − s)ds.
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Integral formulation: The Gronwall inequality is often extended to integral forms involving higher-
order derivatives. For example, integral inequalities involving the second derivative may provide
bounds for solutions to second-order differential equations. Systems of inequalities: Extensions to
systems of differential inequalities exist, where the Gronwall inequality is applied to each component
of a vector-valued function. Fractional Gronwall inequality: In fractional calculus, versions of
the Gronwall inequality have been developed to address fractional differential equations. These
inequalities involve fractional derivatives and integrals, and they play a crucial role in the analysis
of fractional order systems. Stochastic Gronwall inequality: Variations of the Gronwall inequality
have been developed to handle stochastic processes, introducing randomness into the framework.
These versions are particularly relevant in the study of stochastic differential equations. The Gronwall
inequality and its various versions play a vital role in stability analysis, control theory, and the study of
differential equations across diverse mathematical disciplines. The extensions allow for a broader
application to different types of problems and mathematical models. Amidst these developments,
fractional calculus, an extension of classical calculus concerned with integration and differentiation
of nonnegative integer orders, has conspicuously advanced as a swiftly evolving scholarly domain.
This fascination can be ascribed to the enchanting results that emerge when fractional derivatives are
utilized to simulate real-world issues [14–20]. The availability of many fractional operators in this field
is a noteworthy feature that enables researchers to choose the best operator for issue modeling. Due
to their easy application, recently discovered fractional operators without single kernels have lately
attracted a lot of attention [1, 3], leading to an increase in papers devoted to these operator types.

Concurrent with the escalating enthusiasm surrounding fractional differential equations, scholars
have broadened the scope of these mathematical inequalities to encompass fractional differential
equations featuring both singular and nonsingular kernels. Here, we highlight a few of these
results [21–28]. Aligning with this trend, we contribute a novel adaptation of the Gronwall
inequality utilizing the cotangent fractional derivatives (CFD). Specifically, we establish the subsequent
proposition: Given

u(ℓ) ≤ v(ℓ) + sin(
π

2
σ)rΓ(r) f (ℓ) (0Ir,σu) (ℓ),

we then deduce that

u(ℓ) ≤ v(ℓ) +
∫ ℓ

0

{ ∞∑
m=1

( f (ℓ)Γ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1v( ȷ)

}
d ȷ, ℓ ∈ [0, L).

Here, 0Ir,σ denotes the cotangent fractional integral of degree r with σ > 0. In particular, u and
v represent non-negative locally integrable functions over the range [0, ℓ), while f (ℓ) stands for a
continuous, non-negative, monotonically increasing function defined for ℓ ∈ [0, L), adhering to the
condition f (ℓ) ≤ M, where M stands as a constant. When compared to typical fractional operators, a
distinctive characteristic of cotangent fractional operators is the inclusion of an exponential term in the
kernel.

The outline of this essay is as follows: The CFD and integrals are introduced in Section 2, which
also presents key concepts that will be discussed. The Gronwall inequality is presented inside the CFD
framework in Section 3. Applications in the context of uniqueness and bound derivation for solutions
in a delayed system are explored in Section 4. Section 5 provides an instructive case evaluating the
theoretical conclusions. Section 6 of this paper concludes by summarizing the findings.
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2. Preliminaries on cotangent fractional derivative and integral

This section is dedicated to introducing the terminology, definitions, and crucial lemmas that will
underpin the subsequent segments of this paper. For thorough justifications and proofs, readers are
referred to the paper by [7].

The concept of the conformable derivative was initially established in [29,30] through a limit-based
definition, as follows:

Drh(ℓ) = lim
ϵ→0

h
(
ℓ + ϵℓ1−r

)
− h(ℓ)

ϵ
. (2.1)

It is evident that for differentiable functions, the conformable derivative of h can be expressed as

Drh(ℓ) = ℓ1−rh′(ℓ). (2.2)

Nevertheless, a notable limitation of this derivative emerges when the derivative order is 0 or r → 0,
as it renders the function h inaccessible. Addressing this challenge, Anderson et al. devised an altered
conformable derivative using the subsequent approach. Their aim was to employ the proportional
derivative for controller output, which encompasses a duo of tuning parameters [31].

Definition 2.1. For σ ∈ [0, 1], let the functions κ0, κ1 : [0, 1]×R→ [0,∞) be continuous such that, for
all t ∈ R, we have

lim
σ→0+

κ1(σ, ℓ) = 1, lim
σ→0+

κ0(σ, ℓ) = 0, lim
σ→1−

κ1(σ, ℓ) = 0, lim
σ→1−

κ0(σ, ℓ) = 1,

and κ1(σ, ℓ) , 0, σ ∈ [0, 1), κ0(σ, ℓ) , 0, σ ∈ (0, 1]. Subsequently, the proportional derivative with an
order of σ can be expressed as follows:

Dσh(ℓ) = κ1(σ, ℓ)h(ℓ) + κ0(σ, ℓ)h′(ℓ). (2.3)

For a more thorough exploration of the control theory involving the proportional derivative and
its associated functions κ1 and κ0. We recommend that the reader consult references [31, 32]. In
our current discourse, we will confine our deliberations to situations where κ1(σ, ℓ) = cos(π2σ) and
κ0(σ, ℓ) = sin(π2σ). Consequently, Eq (2.3) transforms into

Dσh(ℓ) = cos(
π

2
σ)h(ℓ) + sin(

π

2
σ)h′(ℓ). (2.4)

It is simple to determine that lim
σ→0+

Dσh(ℓ) = h(ℓ) and lim
σ→1−

Dσh(ℓ) = h′(ℓ). Because the conformable
derivative clearly fails to approach the original functions as σ approaches 0, the derivative Eq (2.4) is
occasionally seen to have a wider range of applications.

The following definitions apply to the CFD integral and derivative.

Definition 2.2. [7] The cotangent fractional integral of a function h of order r for 0 < σ ≤ 1, r ∈ C,
and Re(r) > 0 may be expressed as follows

(aIr,σh) (ℓ) =
1

sin(π2σ)rΓ(r)

∫ ȷ

a
e− cot( π2σ)(ℓ−ψ)(ℓ − ψ)r−1h(ψ)dψ

= sin(
π

2
σ)−re− cot( π2σ) ȷ

(
aIr

(
e

1−σ
σ ℓh(ℓ)

))
,

(2.5)
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where

aIry(ℓ) =
1
Γ(r)

∫ ℓ

a
(ℓ − s)r−1y(s)ds,

and

Γ(r) =
∫ ∞

0
e−µµr−1dµ.

Example 2.1. [7] Let h(ℓ) = e− cot( π2σ)(ℓ−a)(ℓ − a)σ2−1. We have

aIr,σ
(
h(ℓ)

)
=

Γ(σ2)
sin(π2σ)rΓ(r + σ2)

e− cot( π2σ)(ℓ−a)(ℓ − a)r+σ2−1.

Definition 2.3. [7] The cotangent fractional derivative of h of order r is thus for 0 < σ ≤ 1, r ∈
C,Re(r) ≥ 0, and n = [Re(r)] + 1.

(aDr,σh) (ℓ) =
(
Dn,σ

aIn−r,σh
)

(ℓ)

=
Dn,σ
ℓ

sin(π2σ)n−rΓ(n − r)

∫ ℓ

a
e− cot( π2σ)(ℓ−ψ)(ℓ − ψ)n−r−1h(ψ)dψ.

(2.6)

Putting σ = 1 into Definition 2.3 yields the left Riemann-Liouville fractional derivative [16, 18].
Furthermore the following is evident:

lim
r→0

(Dr,σh) (ℓ) = h(ℓ) and lim
r→1

(Dr,σh) (ℓ) = (Dσh) (ℓ).

Example 2.2. [7] Let h(ℓ) = e− cot( π2σ)(ℓ−a)(ℓ − a)σ2−1. We have

aDr,σ
(
h(ℓ)

)
=

Γ(σ2)
sin(π2σ)rΓ(σ2 − r)

e− cot( π2σ)(ℓ−a)(ℓ − a)σ2−1−r.

Proposition 2.1. [7] Let r, ρ ∈ C be such that Re(r) ≥ 0 and Re(ρ) > 0. In this context, for any σ > 0,
the following relationship holds:

•
(

aIr,σe− cot( π2σ)ℓ(ℓ − a)ρ−1
)

(x) = Γ(ρ)
Γ(ρ+r) sin( π2σ)r e− cot( π2σ)x(x − a)r+ρ−1,Re(r) > 0.

•
(

aDr,σe− cot( π2σ)ℓ(ℓ − a)ρ−1
)

(x) = sin( π2σ)rΓ(ρ)
Γ(ρ−r) e− cot( π2σ)x(x − a)ρ−1−r,Re(r) ≥ 0.

We describe a few aspects of the cotangent fractional operator in the following lemmas.

Lemma 2.1. [7] Assuming σ > 0,Re(r) > 0, and Re(ρ) > 0, and considering h to be a continuous
function defined for ℓ ≥ a, we obtain:

(aIr,σ
aIρ,σh) (ℓ) = (aIρ,σaIr,σh) (ℓ) =

(
aIr+ρ,σh

)
(ℓ). (2.7)

Lemma 2.2. [7] Given 0 ≤ m < [Re(r)] + 1 and assuming that h is integrable within each interval
[a, L] for ℓ > a, we have:

(aDm,σ
aIr,σh) (ℓ) =

(
aIr−m,σh

)
(ℓ). (2.8)

Corollary 2.1. [7] Assuming 0 < Re(ρ) < Re(r) and m − 1 < Re(ρ) ≤ m, we can conclude:

(aDρ,σ
aIr,σh) (ℓ) =

(
aIr−ρ,σh

)
(ℓ).
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Lemma 2.3. [7] Suppose h is integrable for ℓ ≥ a and Re(r) > 0, σ > 0, n = [Re(r)] + 1. We can then
state

(aDa,σIr,σh) (ℓ) = h(ℓ).

Lemma 2.4. [7] Assuming Re(r) > 0, n = [Re(r)], h ∈ L1(a, b), and (aIr,σh) (ℓ) ∈ ACn[a, b]. Then,
considering the given conditions and context, we can deduce:

(
aIr,σ

a Dr,σh
)

(ℓ) = h(ℓ) − e− cot( π2σ)(ℓ−a)
n∑

b=1

(
aIb−r,σh

) (
a+

) (ℓ − a)r−b

sin(π2σ)r−bΓ(r + 1 − b)
. (2.9)

Definition 2.4. [7] Let 0 < σ ≤ 1 and r ∈ C with Re(r) ≥ 0. Using a as an initial point, we define the
cotangent fractional derivative of the Caputo type as(

C
a Dr,σh

)
(ℓ) =

(
aIn−r,σDn,σh

)
(ℓ)

=
1

sin(π2σ)n−rΓ(n − r)

∫ ȷ

a
e− cot( π2σ)(ℓ−ψ)(ℓ − ψ)n−r−1 (Dn,σh) (ψ)dψ,

(2.10)

where n = [Re(r)] + 1.

Proposition 2.2. [7] Given r, ρ ∈ C with Re(r) > 0 and Re(ρ) > 0, and considering σ ∈ (0, 1] and
n = [Re(r)] + 1, it can be concluded that:

(
C
a Dr,σe− cot( π2σ)ℓ(ℓ − a)ρ−1

)
(x) =

sin(π2σ)rΓ(ρ)
Γ(ρ − r)

e− cot( π2σ)x(x − a)ρ−1−r, Re(r) ≥ n, (2.11)

k = 0, 1, · · · , n − 1, we get
(

C
a Dr,σe− cot( π2σ)ℓ(ℓ − a)k

)
(x) = 0.

Lemma 2.5. [7] For σ ∈ (0, 1] and n = [Re(r)] + 1, we get

(
aIr,σC

aDr,σh
)

(ℓ) = h(ℓ) −
n−1∑
k=0

(
Dk,σh

)
(a)

sin(π2σ)kΓ(k + 1)
(ℓ − a)ke− cot( π2σ)(ℓ−a). (2.12)

The relationship between the Caputo and Riemann-Liouville cotangent fractional derivatives is
demonstrated by the example below:

Proposition 2.3. [7] For every r ∈ C with Re(r) > 0 and σ ∈ (0, 1], n = [Re(r)] + 1 and the following
holds: (

C
a Dr,σh

)
(ℓ) = (aDr,σh) (ℓ) −

n−1∑
k=0

sin(π2σ)r−k

Γ(k + 1 − r)
(ℓ − a)k−re− cot( π2σ)(ℓ−a)

(
Dk,σh

)
(a). (2.13)

3. Cotangent fractional Gronwall inequality

For the cotangent fractional derivative, we establish a Gronwall inequality in this section. Using
Mittag-Leffler functions, we provide a thorough explanation of this inequality as well.
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Lemma 3.1. (Cotangent fractional Gronwall inequality) Taking into consideration r and σ as positive
parameters, let u(ℓ) and v(ℓ) be nonnegative functions possessing local integrability over the interval
[0, L), and let f (ℓ) be a non-negative, monotonically increasing, and continuous function defined for
ℓ ∈ [0, L), subject to the condition that f (ℓ) ≤ M where M remains constant. In the case the inequality

u(ℓ) ≤ v(ℓ) + sin(
π

2
σ)rΓ(r) f (ℓ) (0Ir,σu) (ℓ), (3.1)

is satisfied, then it follows that

u(ℓ) ≤ v(ℓ) +
∫ ℓ

0

{ ∞∑
m=1

( f (ℓ)Γ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1v( ȷ)

}
d ȷ, ℓ ∈ [0, L). (3.2)

Proof. Define

Gϕ(ℓ) = f (ℓ)
∫ ℓ

0
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)r−1ϕ( ȷ), ℓ ∈ [0, L).

This leads to the conclusion that u(ℓ) ≤ v(ℓ)+Bu(ℓ), which, in turn, implies u(ℓ) ≤
m−1∑
k=0

Gkv(ℓ)+Gmu(ℓ).

We claim that

Gmu(ℓ) ≤
∫ ℓ

0

( f (ℓ)Γ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1u( ȷ)d ȷ, (3.3)

and Gmu(ℓ) → 0 as m → ∞ for ℓ ∈ [0, L). For m = 1 Eq (3.3) is correct. Now suppose that applies to
m = k, which means

Gku(ℓ) ≤
∫ ℓ

0

( f (ℓ)Γ(r))k

Γ(kr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)kr−1u( ȷ)d ȷ.

and we have for m = k + 1, then

Gk+1u(ℓ) = G
(
Gku(ℓ)

)
≤ f (ℓ)

∫ ℓ

0
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)r−1

[∫ s

0

(w( ȷ)Γ(r))k

Γ(kr)
e− cot( π2σ)( ȷ−v)( ȷ − v)kr−1u(v)dv

]
d ȷ

=
wk+1(ℓ)Γk(r)
Γ(kr)

∫ ℓ

0

[∫ ℓ

v
e− cot( π2σ)(ℓ− ȷ)e− cot( π2σ)( ȷ−v)(ℓ − ȷ)r−1( ȷ − v)kr−1d ȷ

]
u(v)dv.

(3.4)

When change of variables ȷ = v + z(ℓ − v) is made, however, we achieve∫ ℓ

v
e− cot( π2σ)(ℓ−v)(ℓ − ȷ)r−1( ȷ − v)kr−1dt = (ℓ − v)kr+r−1e− cot( π2σ)(ℓ−v)

∫ 1

0
(1 − z)r−1zkr−1dz

=
Γ(r)Γ(kr)
Γ((k + 1)r)

e− cot( π2σ)(ℓ−v)(ℓ − v)(k+1)r−1.

Therefore, Eq (3.4) becomes

Gk+1u(ℓ) ≤
f k+1(ℓ)Γk+1(r)
Γ((k + 1)r)

∫ ℓ

0
e− cot( π2σ)(ℓ−v)(ℓ − v)(k+1)r−1u(v)dv. (3.5)
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Furthermore, one can figure out that

Gmu(ℓ) ≤
∫ ℓ

0

(MΓ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1u( ȷ)d ȷ→ 0 as m→ ∞, ℓ ∈ [0, L).

To conclude the proof, we consider the limit as m→ ∞ in

u(ℓ) ≤
m−1∑
k=0

Gkv(ℓ) +Gmu(ℓ) ≤ v(ℓ) +
m−1∑
k=1

Gkv(ℓ) +Gmu(ℓ),

to achieve u(ℓ) ≤ v(ℓ) +
∞∑

k=1

Gkv(ℓ). Exploiting the property of the semigroup and the definition of G,

we come to the expression Eq (3.2). This completes the proof. □

The following is a corollary that may be derived when f (ℓ) ≡ α is in Lemma 3.1:

Corollary 3.1. Let r, σ, and α be a positive constant. Suppose that u(ℓ) and v(ℓ) are non-negative
functions that are locally integrable over the interval [0, L), while f (ℓ) remains constant at α ≥ 0.
Given these conditions, if the criterion

u(ℓ) ≤ v(ℓ) + sin(
π

2
σ)rΓ(r)α (0Ir,σu) (ℓ), (3.6)

is satisfied, then

u(ℓ) ≤ v(ℓ) +
∫ ℓ

0

 ∞∑
m=1

(αΓ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1v( ȷ)

 d ȷ, ℓ ∈ [0, L). (3.7)

Let

Er(λ, z) =
∞∑

k=0

λkzkr

Γ(rk + 1)
,

represent the single-parameter Mittag-Leffler function that was first described in [16]. In our
subsequent examination, the straight-forward result of Lemma 3.1 that follows is significant.

Corollary 3.2. Extending the premises of Lemma 3.1, and introducing an added assumption that v(ℓ)
is nondecreasing for ℓ ∈ [0, L), it follows that

u(ℓ) ≤ v(ℓ)Er( f (ℓ)Γ(r), ℓ), ℓ ∈ [0, L). (3.8)

Proof. Referring to Eq (3.2) and based on the provided assumption that v(ℓ) exhibits non-decreasing
behavior for ℓ ∈ [0, L), we can formulate the following expression:

u(ℓ) ≤ v(ℓ)

1 + ∫ ℓ

0

 ∞∑
m=1

( f (ℓ)Γ(r))m

Γ(mr)
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1

 d ȷ

 ,
or

u(ℓ) ≤ v(ℓ)

1 + ∞∑
m=1

(
sin(

π

2
σ)r f (ℓ)Γ(r)

)m 1
sin(π2σ)mrΓ(mr)

∫ ℓ

0
e− cot( π2σ)(ℓ− ȷ)(ℓ − ȷ)mr−1d ȷ

 .
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Using Proposition 2.1 and e− cot( π2σ)(ℓ− ȷ) ≤ 1, it follows that

u(ℓ) ≤ v(ℓ)

1 + ∞∑
m=1

(
sin(

π

2
σ)r f (ℓ)Γ(r)

)m ℓmr

sin(π2σ)mrΓ(mr + 1)


= v(ℓ)

1 + ∞∑
m=1

( f (ℓ)Γ(r))mℓmr

Γ(mr + 1)


= v(ℓ)

∞∑
m=0

( f (ℓ)Γ(r))mℓmr

Γ(mr + 1)

= v(ℓ)Er( f (ℓ)Γ(r), ℓ).

□

4. Applications of the cotangent fractional Gronwall inequality

Consider the m-dimensional Euclidean space denoted by Rm. Our primary emphasis is placed on
the ensuing system:


(

C
0 Dr,σx

)
(ℓ) = e− cot( π2σ)ℓ [A0x(ℓ) + A1x(ℓ − ψ) + h(ℓ, x(ℓ), x(ℓ − ψ))

]
, ℓ ∈ [0, L],

x(ℓ) = φ(ℓ), ℓ ∈ [−ψ, 0].
(4.1)

Here, the notation C
0 Dr,σ stands for the cotangent Caputo fractional derivative, where the order is

denoted by r ∈ (0, 1). The function describing the state vector is represented by x : [−ψ, L] → Rm.
Additionally, the constant matrices A0 and A1 have dimensions that are appropriate for the given
context. The nonlinearity h is represented by h : [0, L] × Rm × Rm → Rm, and the function
φ : [−ψ, 0] → Rm represents the initial condition. Our primary focus is on establishing the uniqueness
of solutions to Eq (4.1), and deriving estimates for these solutions by drawing on insights obtained from
the previous sections. Furthermore, we offer a numerical example to illustrate the practical application
of the fundamental results in practical scenarios.

The norm induced by this vector in terms of matrices is denoted as | · |, while | · | signifies
any Euclidean norm. The ensemble encompassing all continuous functions is designated as C :=
C ([−ψ, 0],Rm). The fact that C forms a Banach space is clear when employing the norm |z|C :=

sup
ℓ∈[−ψ,0]

|z(ℓ)|. We use the following presumptions for the remainder of the paper:

(H1) According to the Lipschitz condition, the nonlinearity h ∈ C ([0, L] × Rm × Rm,Rm) is satisfied.
In particular, there is a positive constant L1 > 0 for which

∥h(ℓ, x(ℓ), x(ℓ − ψ)) − h(ℓ, y(ℓ), y(ℓ − ψ))∥ ≤ L1(∥x(ℓ) − y(ℓ)∥ + ∥x(ℓ − ψ) − y(ℓ − ψ)∥),

for ℓ ∈ [0, L].
(H2) There is a positive constant L2 where |h(ℓ, x(ℓ), x(ℓ − ψ))| ≤ L2.
In the forthcoming sections, we unveil an expression for the solutions of the system (4.1). This

representation is expected to possess considerable significance in the forthcoming analysis.
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Lemma 4.1. The function x : [−ψ, 0]→ Rm constitutes a solution to Eq (4.1) if and only if
x(ℓ) =φ(0)e− cot( π2σ)ℓ

+
(

0Ir,σe− cot( π2σ) ȷ [A0x( ȷ) + A1x( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ))
])

(ℓ), ℓ ∈ [0, L],

x(ℓ) =φ(ℓ), ℓ ∈ [−ψ, 0].

(4.2)

Proof. For ℓ ∈ [−ψ, 0], it is clear that x(ℓ) = φ(ℓ) serves as the solution to Eq (4.1). Next, we employ
the operator 0Dr,σ to both sides of Eq (4.2), utilizing Lemma 2.3 and Proposition 2.1. This leads to the
following equation for ℓ ∈ [0, L]:

(0Dr,σx) (ℓ) = φ(0)
sin(π2σ)re− cot( π2σ)ℓℓ−r

Γ(1 − r)
+ e− cot( π2σ)ℓ [A0x(ℓ) + A1x(ℓ − ψ) + h(ℓ, x(ℓ), x(ℓ − ψ))

]
.

This is deduced from Proposition 2.3, which employs the connection between the cotangent fractional
derivatives of Caputo and Riemann-Liouville.(

C
0 Dr,σx

)
(ℓ) = e− cot( π2σ)ℓ [A0x(ℓ) + A1x(ℓ − ψ) + h(ℓ, x(ℓ), x(ℓ − ψ))

]
.

Regarding Eq (4.1), it is evident that x(ℓ) = φ(ℓ) for ℓ ∈ [−ψ, 0]. Then, for ℓ ∈ [0, L], we utilize the
operator 0Ir,σ on both sides of Eq (4.1) to obtain:(

0Ir,σCDr,σx
)

(ℓ) =
(

0Ir,σe− cot( π2σ) ȷ [A0x( ȷ) + A1x( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ))
])

(ℓ).

Considering Lemma 2.5, it becomes apparent that:

x(ℓ) = φ(0)e− cot( π2σ)ℓ +
(

0Ir,σe− cot( π2σ) ȷ [A0x( ȷ) + A1x( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ))
])

(ℓ).

□

4.1. Uniqueness of solutions

The subsequent theorem constitutes the primary application within this study.

Theorem 4.1. Given the adherence to condition (H1), if Eq (4.1) possesses two distinct solutions,
denoted as x and y, then it holds that x = y.

Proof. Consider two solutions x and y of Eq (4.1). Let z = x − y, it is straightforward to observe that
z(ℓ) = 0 for ℓ ∈ [−ψ, 0]. Consequently, Eq (4.1) exhibits a distinctive solution for ℓ ∈ [−ψ, 0].

Nonetheless, when ℓ ∈ [0, L], we encounter the situation

z(ℓ) =
(

0Ir,σe− cot( π2σ) ȷ [A0z( ȷ) + A1z( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ)) − h( ȷ, y( ȷ), y( ȷ − ψ))
])

(ℓ).

If ℓ ∈ [0, ψ], then z(ℓ − ψ) = 0. Hence, it follows that:

z(ℓ) =
(

0Ir,σe− cot( π2σ) ȷ [A0z( ȷ) + h( ȷ, x( ȷ), x( ȷ − ψ)) − h( ȷ, y( ȷ), y( ȷ − ψ))
])

(ℓ). (4.3)
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This suggests that

∥z(ℓ)∥ ≤
(

0Ir,σe− cot( π2σ) ȷ [∥A0∥ ∥z( ȷ)∥ + ∥h( ȷ, x( ȷ), x( ȷ − ψ)) − h( ȷ, y( ȷ), y( ȷ − ψ))∥
])

(ℓ)

≤ 0Ir,σe− cot( π2σ) ȷ [∥A0∥ ∥z( ȷ)∥ + L1(∥x( ȷ) − y( ȷ)∥ + ∥x( ȷ − ψ) − y( ȷ − ψ)∥]) (ℓ)

=
(

0Ir,σe− cot( π2σ) ȷ [(∥A0∥ + L1) ∥z( ȷ)∥ + L1∥z( ȷ − ψ)∥
])

(ℓ)

= (∥A0∥ + L1)
(

0Ir,σe− cot( π2σ) ȷ∥z( ȷ)∥
)

(ℓ).

(4.4)

By using the Corollary 3.2 result, we have

∥z(ℓ)∥ ≤ (0) × Er (∥A0∥ + L1, ℓ) , (4.5)

and thus concludes that x(ℓ) = y(ℓ) for ℓ ∈ Iψ. For ℓ ∈ [ψ, L], we obtain

z(ℓ) =
(

0Ir,σe− cot( π2σ) ȷ [A0z( ȷ) + h( ȷ, x( ȷ), x( ȷ − ψ)) − h( ȷ, y( ȷ), y( ȷ − ψ))
])

(ℓ)

+
(

0Ir,σe− cot( π2σ) ȷ [A1z( ȷ − ψ)
])

(ℓ).
(4.6)

It follows that

∥z(ℓ)∥ ≤
(

0Ir,σe− cot( π2σ) ȷ [∥A0∥ ∥z( ȷ)∥ + ∥h( ȷ, x( ȷ), x( ȷ − ψ)) − h( ȷ, y( ȷ), y( ȷ − ψ))∥
])

(ℓ)

+
(

0Ir,σe− cot( π2σ) ȷ [∥A1∥ ∥z( ȷ − ψ)∥
])

(ℓ)

≤ (∥A0∥ + L1)
(

0Ir,σe− cot( π2σ) ȷ∥z( ȷ)∥
)

(ℓ) + (∥A1∥ + L1)
(

0Ir,σe− cot( π2σ) ȷ∥z( ȷ − ψ)∥
)

(ℓ).

Let z̄(ℓ) = sup
β∈[−ψ,0]

∥z(ℓ + β)∥, then we get

z̄(ℓ) ≤ (∥A0∥ + L1)
(

0Ir,σe− cot( π2σ) ȷz̄( ȷ)
)

(ℓ) + (∥A1∥ + L1)
(

0Ir,σe− cot( π2σ) ȷz̄( ȷ)
)

(ℓ)

≤ (∥A0∥ + ∥A1∥ + 2L1)
(

0Ir,σe− cot( π2σ) ȷz̄( ȷ)
)

(ℓ).
(4.7)

By using the Corollary 3.2 result, we obtain

∥z(ℓ)∥ ≤ z̄(ℓ) ≤ (0) × Er (∥A0∥ + ∥A1∥ + 2L1, ℓ) . (4.8)

Consequently, we obtain x(ℓ) = y(ℓ) for ℓ ∈ [−ψ, L]. □

4.2. Bound for solutions

In this part, we give a bound on the solution to Eq (4.1).

Theorem 4.2. Given the adherence to condition (H2), the following estimation for the solution x(ℓ) of
Eq (4.1) is valid:

∥x(ℓ)∥ ≤
[
∥φ∥ + (L2 + (∥A0∥ + ∥A1∥) ∥φ∥)

ℓr

sin(π2σ)rΓ(r + 1)

]
Er ((∥A0∥ + ∥A1∥)Γ(r), ℓ) . (4.9)
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Proof. For ℓ ∈ [0, L], the solution of Eq (4.1) is expressed as follows:

x(ℓ) = φ(0)e− cot( π2σ)ℓ +
(

0Ir,σe− cot( π2σ) ȷ [A0x( ȷ) + A1x( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ))
])

(ℓ). (4.10)

Using the fact e− cot( π2σ)ℓ ≤ 1 for all ℓ ∈ [0, L], this leads to

∥x(ℓ)∥ ≤∥φ(0)∥ +
(

0Ir,σe− cot( π2σ) ȷ ∥A0x( ȷ) + A1x( ȷ − ψ) + h( ȷ, x( ȷ), x( ȷ − ψ))∥
)

(ℓ)

≤∥φ∥ + ∥A0∥
(

0Ir,σe− cot( π2σ) ȷ∥x( ȷ)∥
)

(ℓ) + ∥A1∥
(

0Ir,σe− cot( π2σ) ȷ∥x( ȷ − ψ)∥
)

(ℓ)

+
(

0Ir,σe− cot( π2σ) ȷ∥h( ȷ, x( ȷ), x( ȷ − ψ))∥
)

(ℓ).

The above-mentioned inequality can be expressed as follows using assumption (H2)
Proposition 2.1:

∥x(ℓ)∥ ≤∥φ∥ + (∥A0∥ + ∥A1∥)
(

0Ir,σe− cot( π2σ) ȷ
[

sup
β∈[−ψ,0]

∥x( ȷ + β)∥ + ∥φ∥
])

(ℓ)

+ L2

(
0Ir,σe− cot( π2σ) ȷ(1)

)
(ℓ)

=∥φ∥ + (L2 + (∥A0∥ + ∥A1∥) ∥φ∥)
ℓr

sin(π2σ)rΓ(r + 1)

+ (∥A0∥ + ∥A1∥)
(

0Ir,σe− cot( π2σ) ȷ
[

sup
β∈[−ψ,0]

∥x( ȷ + β)∥
])

(ℓ).

Consider v(ℓ) = |φ| + (L2 + (|A0| + |A1|) |φ|) Lr

sin( π2σ)rΓ(r+1) . As a consequence, v demonstrates a non-
decreasing behavior. Therefore, through the utilization of Corollary 3.2 with f (ℓ) = |A0| + |A1|, we
deduce that:

∥x(ℓ)∥ ≤ sup
β∈[−ψ,0]

∥x(ℓ + β)∥ ≤ v(ℓ)Er ((∥A0∥ + ∥A1∥)Γ(r), ℓ) . (4.11)

Hence, the solution x to Eq (4.1) adheres to the determinant

∥x(ℓ)∥ ≤
[
∥φ∥ + (L2 + (∥A0∥ + ∥A1∥) ∥φ∥)

ℓr

sin(π2σ)rΓ(r + 1)

]
Er ((∥A0∥ + ∥A1∥)Γ(r), ℓ) . (4.12)

□

5. Example

Think about the cotangent fractional nonlinear delay equation of the following form:
(

C
0 D

1
2 ,

1
3 x

)
(ℓ) = e− cot( π6 )ℓ[3x(ℓ) + x(ℓ − 2) + 2 cos x(ℓ) − cos x(ℓ − 2)], ℓ ∈ [0, 1],

x(ℓ) = sin(2ℓ), ℓ ∈ [−2, 0].
(5.1)

This corresponds to Eq (4.1) with r = 1/2, σ = 1/3, A0 = 3, A1 = 1, L = 1, and ψ = 2. The nonlinearity
is expressed in the following manner:

h(ℓ, x(ℓ), x(ℓ − ψ)) = 2 cos x(ℓ) − cos x(ℓ − 2).
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Hence, we can deduce that

∥h(ℓ, x(ℓ), x(ℓ − ψ)) − h(ℓ, y(ℓ), y(ℓ − ψ))∥ = ∥2 cos x(ℓ) − cos x(ℓ − 2) − 2 cos y(ℓ) + cos y(ℓ − 2)∥
≤ 2(∥ cos x(ℓ) − cos y(ℓ)∥ + ∥ cos x(ℓ − 2) − cos y(ℓ − 2)∥).

As a result, assumption (H1) is satisfied with L1 = 2. According to the implication of the Lemma 4.1,
Eq (5.1) possesses a distinct solution. Furthermore,

∥h(ℓ, x(ℓ), x(ℓ − ψ))∥ = ∥2 cos x(ℓ) − cos x(ℓ − 2)∥ ≤ 3.

This suggests that the claim (H2) about L2 = 3 is accurate. According to Theorem 4.2, the solution x
of Eq (5.1) is subject to the subsequent estimation:

∥x(ℓ)∥ ≤
1 + 24

√
2

√
π
ℓ

1
2

 ∞∑
k=0

(4
√
π)kℓ

k
2

Γ
(

k
2 + 1

) .
6. Conclusions

Examining the qualitative characteristics of differential equations holds paramount importance
in the realm of differential equation theory. Integral equations serve as indispensable tools for
delving into these traits, providing valuable insights into various properties. This paper makes a
significant contribution to this field by introducing the Gronwall inequality within the context of
cotangent fractional operators. This innovative inequality assumes a critical role in establishing
solution uniqueness for delay differential equations that incorporate cotangent fractional derivatives,
as well as in deriving upper bounds for these solutions. Expanding beyond the scope of this paper, the
derived Gronwall inequality can be employed to delve into further qualitative aspects of these solutions,
including their stability. In future work, we will use the fractional Gronwall inequality to conduct a
theoretical study on the existence and uniqueness of the cotangent fractional Cauchy problem.
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