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Abstract: As a consequence of road accidents, around 1.3 million people die, and between 20 to 50 

million have nonfatal injuries. Therefore, hospitals are receiving a high volume of patients in their 

urgent care, and a quick decision must be made regarding their treatment plans. At the admission stage, 

there is no information or probability about the patient’s final result, regardless of if the patient will 

mostly die or be safely discharged from the hospital. To address this issue, this study proposed a 

machine learning-based framework that can predict the hospital disposition for trauma patients. The 

framework was developed to anticipate whether the patient would be safely discharged from the 

hospital or die based on a set of features collected at the admission time. In this study, the data used 

was collected from the King Abdulaziz Medical City (KAMC) in Riyadh, Saudi Arabia, and the 

performance of different machine learning algorithms was investigated, including eXtreme gradient 

boost (XGBoost), K-nearest neighbor, random forest, logistic regression, BRR, and support vector 

machine. Results show that the XGBoost algorithm demonstrated a high degree of detection and 

prediction accuracy for disposed-to-home patients; of the 6059 patients that were sent home, the 

XGBoost correctly predicted 5944 (98%) of the total. Finally, the developed framework could 

accurately predict hospital disposition for trauma patients with high accuracy and sensitivity levels. 

This system can benefit healthcare teams and insurance companies by providing them with a quick 

decision-making tool to determine the best treatment plan for patients. 
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Abbreviations 

The following abbreviations are used in this manuscript: ICU: intensive care unit; ML: machine 

learning; XGBoost: eXtreme gradient boost; KNN: K-Nearest neighbor; RF: random forest; LG: 

logistic regression; BRR: Bayesian ridge regression; SVM: support vector machine; AI: artificial 

intelligence; ISS: injury severity score; BP: blood pressure; HR: heart rate; EDNN: ensemble of deep 

neural networks; AUC: area under the curve; TBI: traumatic brain injury; GCS: Glasgow coma scale 

scores; SBP: systolic blood pressure; ED: emergency department; KAMC: King Abdulaziz Medical 

City; MAD: median absolute deviation; P: precision 

1. Introduction 

The disposition of trauma patients after initial stabilization in the emergency department is a 

crucial aspect of their management [1]. The proper hospital disposition is vital for these patients to 

have the most outstanding results possible. The disposition decision involves determining whether the 

patient can be admitted to a regular hospital floor, discharged to their home, transferred to a higher 

level of care, or admitted to an intensive care unit (ICU) [2,3]. This decision is based on several factors, 

including the severity and mechanism of injury, the patient’s physiological status, and the availability 

of appropriate resources at the receiving facility [4]. Trauma is a leading cause of morbidity and 

mortality worldwide, with an estimated 5 million deaths annually. In the United States, trauma is the 

leading cause of death in individuals aged 1–44 years [5]. The trauma system is designed to provide 

comprehensive care to injured patients, from prehospital care to definitive treatment and rehabilitation. 

The American College of Surgeons Committee on Trauma has established guidelines for the optimal 

management of trauma patients, including hospital disposition decisions [6]. The disposition decision 

for trauma patients has significant implications for healthcare utilization and costs. Inappropriate 

disposition decisions can lead to unnecessary hospitalizations, increased healthcare costs, and potential 

adverse outcomes for the patient [7]. Conversely, early identification of patients who require a higher 

level of care can facilitate appropriate triage and transfer, thus leading to improved outcomes. 

Therefore, it is essential to identify factors that predict the need for a higher level of care and to develop 

protocols and guidelines for appropriate disposition decisions [8,9]. The new rise in machine learning 

(ML) techniques has produced encouraging outcomes in improving the prediction accuracy in various 

contexts and patient circumstances [10,11]. In comparison to classical statistics, modern ML 

techniques can reveal new patterns for non-linear, high-order interactions between independent 

variables and produce more reliable predictions [8]. Hence, the primary objective of this research work 

is to develop precise ML models, with a focus on predicting high-patient disposition strategies for 

trauma patients. The task at hand is to build predictive algorithms that can use a variety of patient data 

sources to forecast outcomes such as discharge. There are various methods available in the literature 

that assist in predicting a trauma patients’ hospital death or discharge. However, the primary 

contributions of this study compared to other studies are as follows: 

• To develop reliable ML models for high-patient disposition planning for trauma patients. The 

prediction models can provide healthcare professionals, patients, and their families with better 
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care and knowledge for deciding on and planning discharge recommendations. 

• To examine the performance of six ML prediction algorithms to exploit hidden patterns in large 

data and anticipate the future number of hospital dispositions. The MLs are eXtreme gradient 

boost (XGBoost), K-nearest neighbor (KNN), random forest (RF), logistic regression (LG), 

Bayesian ridge regression (BRR), and support vector machine (SVM). 

• Although the developed framework aims to predict the number of hospital dispositions, the 

proposed framework can help predict other healthcare outcomes. 

The rest of the study is structured as follows: Section 2 discusses and elaborates on various types 

of ML methods; a thorough overview of the literature on the use of ML in trauma incidents can be 

found in Section 3; the problem statement and the framework used to perform this study are described 

in Section 4; a comprehensive discussion of the data preparation techniques used is given in Sections 5 

and 6; and Section 7 presents and discusses the primary results. Section 8 summarizes the study’s 

conclusions. 

2. Background review 

In this paper, various ML methods are introduced to develop a predictive model of hospital 

discharge. ML is a branch of artificial intelligence (AI) that uses statistical algorithms to allow 

computers to learn from data, identify patterns, and make predictions or decisions. ML techniques can 

be broadly classified into two categories: supervised and unsupervised learning. Supervised learning 

trains models on labeled data to predict or classify new data using popular algorithms such as RF and 

SVM. In contrast, unsupervised learning uses unlabeled data to discover hidden patterns or structures, 

thereby employing techniques such as clustering, principal component analysis, and autoencoders. The 

research paper utilized supervised learning methods to develop their predictive model, and this section 

provides a comprehensive overview of the supervised ML techniques used in the study. 

2.1. XGBoost 

XGBoost is a commonly used framework for improving the prediction accuracy in regression and 

classification tasks. It achieves this through a combination of gradient-boosting methods and an 

ensemble of decision trees. It employs a recursive strategy to incorporate models until the desired 

performance metrics are achieved, thus making it an advanced version of tree gradient boosting 

algorithms [12]. XGBoost is highly efficient and scalable, thus allowing for the optimization of 

memory and hardware resources to handle large-scale models. Additionally, it can effectively handle 

sparse data and uses a weighted quantile sketch for approximate learning [13]. 

2.2. KNN 

The KNN algorithm is a simple yet effective non-parametric classification and regression 

technique in ML [14]. It works based on similarity, thereby evaluating a data point’s neighbors in the 

feature space to determine its classification. In its simplest form, KNN determines the class of an 

unclassified sample by comparing it to the nearest neighboring classes. The number of neighbors 

considered is indicated by the “K” in KNN, and the method finds the K nearest points by calculating 

lengths (often using Euclidean or other distance metrics) [15]. A majority vote among these neighbors 

is required for classification, and the unclassified data point is given to the class label that is most 
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common among them. To forecast a continuous value in the regression, the values of the KNN are 

averaged. Because of its ease of interpretation, KNN is a simple technique; nevertheless, because it 

relies on selecting a distance measure and a suitable value for K, thus its implementation requires 

careful consideration to strike a balance between accuracy and complexity. 

2.3. RF 

RF is a popular ensemble learning method that is based on decision trees [16]. It combines 

multiple decision trees to improve the accuracy of predictions for new data and prevent overfitting [17]. 

It can handle high-dimensional data and is commonly used for classification, regression, and feature 

selection tasks. It is a more advanced version of decision trees and can be seen as an improvement to 

bagged decision trees [18]. The algorithm builds each decision tree by randomly selecting a subset of 

features and samples from the training data. The final prediction is made by aggregating the predictions 

of all the trees. RF has been found to perform well in various classification and regression problems. 

2.4. LG 

LG is one of the fundamental and often utilized statistical methods for binary classification 

applications in machine learning [19]. Though it appears like a regression algorithm, LG is actually a 

classification algorithm. It uses a logistic function suited to the data to describe the likelihood that an 

instance will belong to a specific category. Concerning the input features and the log odds of the result, 

LG assumes a linear connection. It maps the input properties through a sigmoidal function, which 

converts the output into a range between 0 and 1 to estimate the likelihood of an event occurring [20]. 

When this probability surpasses a predetermined threshold, the model designates the event as 

belonging to the positive class; in all other cases, it places it in the negative class. 

2.5. BRR 

The BRR regression technique blends a linear regression and the ideas of Bayesian inference [21]. 

Due to its probabilistic nature and assumption of a prior distribution over the regression coefficients, 

this model may deal with scenarios involving multiple predictors with insufficient data more skillfully. 

By assigning a prior probability distribution to the regression coefficients, BRR allows the model to 

include prior knowledge about the values of the coefficients. Typically, this distribution is Gaussian. 

In light of the observed data, BRR creates a posterior distribution over the coefficients using Bayesian 

inference to update these prior beliefs. The model makes predictions and assesses uncertainty using 

this posterior distribution, thus delivering not just point estimates, but also confidence intervals for the 

forecasts. Additionally, the BRR algorithm is utilized for classification problems [22]. 

2.6. SVM 

SVM is a frequently used supervised learning algorithm for tasks such as classification, regression, 

and outlier detection [23]. Its primary objective is to locate the optimal hyperplane that can separate 

the data into different classes. The method operates by separating the training data set into distinct 

categories, thus maximizing the gap between them. When the novel data is evaluated, it is assigned to 

the nearest category according to some estimates [24]. For data that is linearly separable, the algorithm 

uses a hyperplane; for nonlinear data, it employs various types of kernel functions based on the type 
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of data [25]. 

3. Related work 

Trauma accidents are responsible for the highest number of fatalities and disabilities globally. 

These injuries occur due to external forces, such as falls, car accidents, and assaults. Although there 

have been advancements in trauma care, trauma-related injuries remain the leading cause of deaths 

worldwide [26]. Therefore, preventing trauma accidents is a critical public health priority, and multiple 

interventions have been implemented to minimize the frequency and severity of these incidents [27]. 

However, there is an urgent requirement for an automated system that quickly predicts the severity of 

trauma and provides initial diagnoses to enable prompt medical decisions and an appropriate action 

with the patients upon their traumatic exposure. Therefore, ML adoption to predict disease outcomes 

has become increasingly popular, with studies showing that ML models outperform traditional 

methods [28]. Hence, the autonomous improvement of modeling algorithms by ML has caused the 

wide use of ML in medicine. Specifically, ML has demonstrated promising findings in medical and 

emergency services, thus leading to positive outcomes in pre-hospital care, disease screening, clinical 

decision-making, and mobile health. Therefore, this section discusses the previous studies on using 

ML to predict the hospital discharge status of trauma patients. 

Li et al. [29] proposed a model based on ML to estimate the probability of acute traumatic 

coagulopathy in trauma patients upon immediate hospital admission. The study used information 

from 1087 trauma patients admitted to a trauma facility in China from January 2013 to December 2018. 

To train and evaluate their ML model, the researchers gathered 21 clinical and laboratory parameters, 

such as age, sex, injury severity score (ISS), blood pressure (BP), and lab data such as platelet count 

and prothrombin time. Two distinct algorithms, RF and LG, were employed to create the predictive 

models. The models were evaluated based on various metrics such as accuracy, sensitivity, specificity, 

and the area under the receiver operating characteristic (ROC) curve. The RF model demonstrated 

superior results compared to the alternative model. 

Lee et al. [30] introduced a new model, called an ensemble of deep neural networks (EDNN) 

model, to utilize AI techniques to forecast the in-hospital mortality of patients who suffered physical 

trauma. The authors proposed a novel approach to predict in-hospital mortality using a deep neural 

network. They utilized a nationwide population-based dataset of physical trauma patients in Korea to 

develop and validate their model. They used ML algorithms, including adaptive boosting, XGBoost, 

and neural network models to identify the crucial predictors of in-hospital mortality. The authors 

reported that their EDNN model achieved a high accuracy in predicting in-hospital mortality, with an 

area under the curve (AUC) of 0.894. Additionally, the authors observed that their model surpassed 

traditional methods in terms of accuracy. 

Hsu et al. [31] developed an ML model to anticipate in-hospital mortality among Taiwan’s 

traumatic brain injury (TBI) patients, thereby utilizing clinical measures and demographics. The study 

revealed that Glasgow coma scale scores (GCS), ISS, and systolic blood pressure (SBP) at emergency 

department (ED) admissions were the most significant predictors of in-hospital mortality. Additionally, 

the study identified efficient cutoff values for clinical measures to forecast mortality. The findings from 

this study can assist in clinical decision-making and the establishment of care-delivery protocols for 

high-risk TBI patients. The decision tree algorithms are precise in predicting the prognosis of TBI 

patients and supporting health professionals in evaluating and providing intensive care. 

Wang et al. [32] aimed to evaluate the effectiveness of using XGBoost to predict mortality among 

TBI patients with a GCS score below 13. The study involved 368 patients, split into training and test 
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sets. Results revealed that non-survivors had lower GCS, higher ISS, lower platelets, albumin, and 

hemoglobin levels, and higher glucose and prothrombin time levels. The XGBoost algorithm was 

found to be more accurate in mortality prediction compared to the LG model, with GCS, prothrombin 

time, and glucose being the most significant features. The study implies that XGBoost could be a 

beneficial tool for physicians in assessing high-risk TBI patients’ poor outcomes. Further research is 

required to validate these findings and explore other ML algorithms. 

In another study [33], the authors aimed to develop an ML model capable of forecasting injury 

severity in car accident patients treated at Level 1 trauma centers in Korea. To achieve this, they utilized 

data from the Korea accident study database and employed LG, extreme XGBoost, and a multilayer 

perceptron model during the development process. Moreover, they implemented four different data-

sampling methods to address the issue of imbalanced clinical datasets. The study discovered that the 

balanced XGBoost model was effective in classifying injury severity, with an AUC of 0.896 and an 

under-triage rate of 6.1%. The researchers noted that the Delta-V, age, and principal were significant 

factors in determining injury severity. Furthermore, they highlighted the importance of choosing an 

optimal injury severity prediction model that took varying motor vehicle crash conditions into account. 

The use of data-sampling techniques for class-imbalanced datasets was found to enhance the predictive 

capabilities of the model. 

The study proposed by [34] aimed to predict the survival of trauma patients using LG, SVM, 

neural network, and trauma and ISS models, which were assessed based on accuracy, sensitivity, 

specificity, and AUC measures. The findings showed that all four models demonstrated high accuracy 

and sensitivity levels of over 97.5% and 98.6%, respectively. However, the neural network model 

exhibited the highest specificity of 51.5%, followed by the trauma and ISS, SVM, and LG models. The 

study concluded that the neural network model showed the highest balanced accuracy and predictive 

specificity in the test dataset, thus indicating its potential to predict the survival of trauma patients and 

improve clinical decision-making. 

4. Proposed techniques 

In this section, the problem statement and the detailed description of the framework used in this 

research work are discussed. 

4.1. Problem statement 

Accurately predicting a patient’s hospital disposition is a critical challenge in healthcare that 

impacts treatment plans, resource distribution, and patient outcomes. Therefore, the objective of this 

study is to predict the probable course of a patients’ care after their hospital stay ends by utilizing ML 

algorithms. The methodology used in this work aims to create predictive models by utilizing a wide 

range of patient demographic, clinical, and historical data. Additionally, the methodology aims to 

investigate and assess the predictive accuracy of ML algorithms, such as XGBoost, KNN, RF, LG, 

BRR, and SVR. 

4.2. Study framework 

Six ML algorithms were examined to enhance the accuracy of predicting hospital disposition for 

trauma patients. The overall framework that elaborates the proposed prediction models is shown in 

Figure 1. This framework can be used to predict other healthcare outcomes. Each procedure is 
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described in detail in the subsections and sections that follow. 

 

Figure 1. The framework of the proposed prediction models. 

4.3. Data description 

The database of King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia, trauma was the 

source of the dataset used in this analysis. The database provided comprehensive information about all 

acute trauma patients who arrived at the hospital from January 2000 to January 2018. The KAMC is 

recognized as a specialized trauma center since it offers emergency care daily, thereby enabling access 

to healthcare plans for different services. Moreover, the KAMC is one of the few Saudi Arabian 

medical facilities recognized by the American College of Surgeons as offering specialist training in 

emergency life support. The database provides comprehensive data on trauma patients, including 

details on their age, sex, mode of transportation to the emergency department, vital signs when they 

arrived, and whether or not the trauma code was activated. The ISS and GCS were the severity scales 

utilized in this analysis. The analysis used these input variables for various outcomes, such as the length 

of stay in an ICU, the hospital length of stay, and hospital dispositions. The data consists of 22,212 

patients with 19 different measures, including demographic features, injuries, ED dispositions, 

symptoms, diagnosis, treatment, and patient hospital dispositions. The features measures are 

summarized in Table 1. 
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Table 1. Summary of the categories and data included in the study. 

Category Data 

Demographics Age, weight, gender 

Injury Type of injury, mechanism of injury 

Emergency department Length of stay (hour), disposition 

Symptoms HR, RR, Sys. BP, GCS, ISS 

Diagnosis and treatment Diagnosis, ISS, procedure, trauma team activation 

Hospital Intubation days, ICU. days, hospital length of stay (days), hospital disposition 

5. Data cleaning phase 

A total of 22,212 patients with 19 different measures are available to predict the hospital 

disposition. A cleaning process is performed to prepare the data for analysis and prediction. The 

cleaning process proceeds as follows (see Algorithm 1): 

• Three features were removed from the data, as they could not be used as predictors for forecasting 

the patient hospital disposition as they were available after the Emergency Department stage. 

These features are the incubation period (days), intensive care unit admission period (days), and 

hospital length of stay (days). The feature matrix now becomes of dimension 22,212×15. 

• The target feature (patient hospital disposition) is filtered by removing any patient with a value 

not equal to death or home disposition. Three more values were found, namely “Transfer to 

another hospital” in 275 patients, “DOA” in 589 patients, and “Pending” in 174 patients. This step 

resulted in the discarding of 1038 patients, and the final feature matrix was reduced to 21,174×15, 

with 1113 (5% of the data) patients dying in the hospital and 20,061 (95% of the data) patients 

being disposed-to-home. 

• Remove incomplete features. All features are processed, and if any features miss a value of more 

than 5% of the data, this feature will be removed from the data. This step resulted in removing the 

weight and procedure features, which were found missing in around 69% of patients who died in 

the hospital, and the feature matrix had a dimension of 21,174×13. 

• Remove identical features. Any feature containing the same value will be removed from the data. 

This feature will not add any value to the training process as it lacks the necessary variability. To 

check if a feature has an exact value, the median absolute deviation (MAD) of each feature is 

calculated, and the feature is removed if its MAD is zero. 

• Noise removal. For each patient, if any feature contains a missing value or noise value, such as 

inf or -inf, this patient will be removed. For the accuracy of the data, we preferred to remove 

patients with any missing or noisy data instead of using any missing imputation techniques. This 

step resulted in the discarding of 63 patients. 

• Remove duplicates. In this step, for any two patients who have the same values with the same 

target value, one of them will be removed. This process resulted in removing one patient. 

• Data pruning. In this step, a distance matrix using the Euclidean distance is calculated between 

all patients. If two patients are found to have the same features with different outputs, the one with 

the majority output will be removed. For example, if two patients have the same values for each 

feature, one disposed to home, and one died in the hospital; the one that was disposed to the home 

will be removed to try to increase the minority. This step is performed to avoid training confusion 

by feeding the machine learning with two exact data inputs and different outputs. No patient was 

removed as a result of this step, and the final feature matrix had a dimension of 21,111×13. 
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Algorithm 1. Data cleaning phase. 

1:  ————Load data———— 

2: Load the data M= 22212×18. 

3: ————Remove non-predictors———— 

4: Remove three features not used in the prediction 

5: F=22212×15 

6: ————Target preparation———— 

7: Set feature hospital disposition as target T 

8: for any value V in T do 

9:      if V not equal to home disposition or death in hospital then 

10:           Remove patient with V 

11: end if 

12: end for 

13: ————Filter features———— 

14: for each column K in M do 

15:        Calculate the missing percentage MK 

16:    Calculate the median absolute deviation DK 

17:    if MK>n% OR DK=0 then 

18:        Remove K 

19:         end if 

20: end for 

21: ————Noise removal———— 

22: for each row R in M do 

23:        if R contains missing or noise data then 

24:           Remove R 

25:        end if 

26: end for 

27: ————Pruning and duplication removal—— 

28: Remove any duplicate in M 

29: Calculate distance matrix D between all rows 

30:  if distance Di,j between row i and row j = 0 then 

31:     if Ti = TJ then 

32:          Remove the row with the target dispose to the home 

33:      end if 

34: end if 

5.1. Data analysis and statistics 

Figure 2 summarizes the basic statistics (mean, standard deviation, and interquartile range (IQR)) 

for each column feature in the whole data and for each target category. The final feature matrix consists 

of 21,112 patients, with an average age of 28.62 and a standard deviation equal to 21.23. Around 95% 

of the patients were disposed from the hospital to home, while only 5% were reported as dead in the 

hospital. The available features are classified into numerical and non-numerical as follows: 
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Figure 2. The statistical characteristic of the input features. 

5.1.1. Numerical features: The data were collected on patients’ admission to the hospital 

1) Demographic data: The range of data, such as age, is between 0.1 to 110 years old, and the IQR=24. 

2) Vital signs: Measurements calculated from the patient upon admission to the hospital, such as heart 

rate (HR), which is reported between 0 and 620 and IQR=31. 

3) Systole blood pressure (Sys. BP): The range is between 0 and 1156, and IQR=29. 

4) Respiratory rate (RR): The range is between 0 and 131, and IQR=4. 

5) Symptoms: GCS is the most common scoring system for traumatized patients’ consciousness levels. 

Its range is between 3 and 15 IQR=0. 

6) ISS: An anatomical scoring system provides an overall score for patients with multiple traumas. 

The range is between 0 and 75 IQR=0. 

7) ER Length of stay (hours): The range is between 0 and 939 hours. 

5.1.2. Non-numerical data 

1) Gender: around 23% of the patients were female, and 77% were found to be males. In patients 

disposed to their homes, 77% of the patients were male, and 85% of the patients who died in the 

hospital were also males. 

2) Trauma team activation: reported as either yes or no and recorded as no in 85% of the patients. In 

the patients disposed to their homes, 87% were reported as no, while found in only 41% of the 

patients died in the hospital from those who reported yes. 

3) Type of injury: It is categorized into 5 classes, namely [“BLUNT”, “BURN/SCALD”, 

“PENETRATING-Gunshot”, “PENETRATING-OTHER”, and “PENETRATING-Stab”], where 

BLUNT was found in 79% of the whole date, 83% of the disposed to home patients, and 84% of 

the patients who died in the hospital. The gunshot came in second place in the type of injury in 8% 

of the whole patients, 8% in patients disposed to home, and 11% of patients who died in the hospital. 

4) Mechanism of injury: It is classified into 13 different classes. Falls came as the first mechanism, 

with 26% due to falling in the whole data, 27% in patients diagnosed at home, and 50% in the 

patients who died at the hospital. 

5) ER Disposition: It is categorized into 5 classes, namely “BURN UNIT”, “ICU”, “OR”, “OTHER”, 

and “WARD”. 62% of the patients have WARD value, and 65% of the patients disposed to home. 
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Approximately 38% of the patients who died at the hospital had an ER disposition value reported 

as the odd ratio (OR). 

6) Diagnosis: There are around 36 different diagnoses found in the data. The main reasons reported 

are broken arm, broken femur, broken lower leg, burns, and head injury. Head injuries were found 

to be the main reason patients died in the hospital, with 59% of the data. 

5.2. Feature selection 

To prepare the feature matrix for training, a feature selection approach is applied to select the best 

features related to the target output. This process started by calculating the univariate LG between each 

feature and the target output. This process resulted in the following: (see Algorithm 2) 

• Calculate the univariate LG between each feature and the target output. 

• The Python function GLM.from_formula is used to establish the relationship. This function is 

imported from the statmodel.api package. As the target output is binary, the binomial model is 

used to build the logistic relationship. 

• Calculate the OR, 95% confidence interval, and the P-value using univariate LG between each 

feature. 

• Any feature with a P-value<0.05 is considered for the training process. 

• Calculate the correlation between all features. 

• If two features are found to be highly correlated, one of them is discarded. 

• The feature with a lower standard deviation is selected to be discarded. 

• The final feature matrix resulting from this process remains the same, and no features were 

discarded, as shown in Table 2. 

Table 2. Univariate LG results. 

Feature OR P-value 

Type of injury 1.2 5.3E-0.6 

Mechanism of injury 0.95 5.8E-05 

Age 0.99 3.8E-15 

Gender 0.57 1.1E-10 

ER. Length of stay (hours) 1 1.8E-3 

HR 1 1.5E-13 

RR 0.99 1.7E-04 

Sys. BP 1 1.1E-12 

GCS 1.4 0 

Trauma team activation 0.1 6.7E-270 

ER. disposition 1.7 1.6E-198 

Diagnosis 0.95 1.3E-59 

ISS 0.8 0 
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Algorithm 2. Feature selection phase. 

1: ————Load data———— 

2: Load the data M=21111×13. 

3: for any feature F in M, do 

4:        Calculate the univariate relation between F and T 

5:         Calculate the P-value PF 

6:        if PF<0.05, then 

7:              Select F in the final matrix 

8:        else 

9:             Discard F 

10:    end if 

11: end for 

12: for any two features, F1 and F2, do 

13:       Calculate the correlation C between F1 and F2 

14:       if C>0.95, then 

15:           Calculate standard deviation of F1 and F2 as S1 and S2 

16:      if S1>S2 then 

17:         Discard F2 

18:      else 

19:              Discard F1 

20:          end if 

21:      end if 

22: end for 

23: Save the final matrix M1 
 

6. Training and testing phase 

The final feature matrix resulting from the feature selection process is used as the input to the ML 

algorithms along with the target output. This process starts by randomly splitting the data into a training 

set (N\% of the data) and a testing test (100-N% of the data). In this study, the data is split into 70% as 

training and the remaining 30% as testing to evaluate the efficiency of the algorithm. Then, the training 

and the testing sets are normalized using a standard scaler to be ready for the training process. The 

normalized training feature is used as the input to the ML algorithm and the target output (the patient 

disposed at home or dead at the hospital) is used as the output. Then, the testing set is used as the input 

to the trained model and the predicted outputs are used in comparison with the available data to 

evaluate the performance of the algorithm, see Algorithm 3. Many ML techniques are employed in this 

experiment as follows: 

• XGBoost: Implemented using the Python function XGBClassifier. 

• KNN: Implemented using the Python function KNNClassifier. 

• RF: Implemented using the Python function RFClassifier. We tested three versions of RF with 

different tuning parameters. 

• LG: Implemented using the Python function LG with Liblinear as a solver. 

• BRR: Implemented using the Python function Bayesian ridge imported from the linear model 

module. 

• SVM: Implemented using the Python function SVM. SVC with probability set to true. 
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Algorithm 3 Training and testing phase.  

1: ————Training phase————  

2: Load the data M1=21111×13 

3: Load the target vector=2111×1 

4: Randomly split M1 into Training TR and testing TS matrices 

5: MR=n%∗M1 

6: MS=(100−N)%∗M1 

7: Split the target T into TR and TS for training and testing 

8: Normalize MR and MS 

9: for each Algorithm R, do 

10: Train R using MR as input and TR as output 

11: Save the trained algorithm R 

12: end for 

13: ———— Testing phase ———— 

14: Load R, MS, TS 

15: for each algorithm, R do 

16: Test R using MS and input 

17: Save the estimated output ER 

18: Compare ER and TS and save the results 

19: end for 

20: Repeat the training/testing process N times 

7. Experiments and results 

7.1. Evaluation metrics 

To evaluate the performance of the ML algorithms, the confusion matrix is calculated, and the 

following metrics are calculated: 

• Overall accuracy: It counts how many of a model’s predictions are accurate overall. The 

accuracy formula is as follows [31,35]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.        (1) 

• Recall: It measures the algorithm performance per class. For example, if the algorithm predicts 

N patients as going home, then it is the correct percentage of N: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.          (2) 

• Precision (P): It measures the algorithm’s accuracy in predicting each class. For example, if we 

have N patient going home, then it is the percentage of N that the algorithm can predict: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.         (3) 

• F1 score: It measures the balance between P and recall: 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
.        (4) 

• AUC: It calculates that the area under the curve between the actual and the estimated outputs 
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(see [36,37]). The Python function roc_auc_score was used to calculate the AUC. 

Where TP is the true positive, FP is the false positive, TN is the true negative, and FN is the false 

negative. 

7.2. Results 

In this section, the prediction models are compared according to some criteria to examine their 

performance in predicting the hospital disposition of patients. Results of the best forecasting models 

according to P, recall, F1-score, accuracy, and the AUC are listed in Table 3. In addition, Figure 3 

depicts the confusion matrix of the six ML algorithms considered in this study. These ML algorithms 

were chosen over other existing algorithms because of their superior performance in the prediction 

challenge at hand. The XGBoost technique uses an ensemble of decision trees, thus making it 

appropriate for a variety of dataset sizes with high-accuracy prediction results. KNN is simple to build 

and good for classification jobs, whereas the LG algorithm is highly effective in computing and is 

suitable for binary classification applications. On the other hand, BRR incorporates probabilistic 

modeling, which allows for an uncertainty estimation in forecasts. Finally, SVM has successfully dealt 

with complex decision boundaries, making it suitable for classification problems. 

Table 3. Summary Results of the considered ML algorithms. 

Model Label P Recall F1-Score Accuracy AUC 

XGBoost 

Home 98%±0.0005 99%±0.0006 0.99±0.0005 

97%±0.0008 0.98±0.0037 

Dead 83%±0.0118 66%±0.0056 0.73±0.0064 

RF 

Home 98%±0.0007 99%±0.0010 0.99±0.0008 

97%±0.0015 0.96±0.0055 

Dead 84%±0.0197 65%±0.0116 0.73±0.0133 

LG 

Home 97%±0.0005 99%±0.0005 0.98±0.0004 

97%±0.0006 0.96±0.0037 

Dead 77%±0.0109 53%±0.0092 0.63±0.0083 

BR 

Home 97%±0.0079 99%±0.0087 0.98±0.0008 

96%±0.0015 0.96±0.0035 

Dead 73%±0.1102 51%±0.1615 0.57±0.0957 

SVM 

Home 97%±0.0015 99%±0.0011 0.98±0.0009 

97%±0.0016 0.90±0.0105 

Dead 82%±0.0218 50%±0.0208 0.62±0.0133 

KNN 

Home 97%±0.0014 99%±0.0015 0.98±0.0009 

96%±0.0017 0.84±0.0088 

Dead 74%±0.0202 50%±0.0189 0.59±0.0100 

In this study, five independent experiments were conducted for each of the six ML algorithms, 

creating a total of 30 different forecasting models. Table 3 summarizes the average results of five 

experiments of the training and testing process. The average accuracy and the standard deviation were 

recorded to evaluate the performance and stability of the algorithms. 

The available data is very biased towards home disposition (95% of the data), which makes the 

prediction process very challenging. Therefore, we are reporting not only accuracy, but also P, recall, 

and AUC to evaluate the ability of the algorithms to predict within the minority class. 

XGBoost came in first place, with the overall accuracy reaching 97% and a standard deviation 
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close to zero for the five experiments. RF and LG had the same overall accuracy as well, and the 

prediction will be biased toward the majority class. Therefore, the overall accuracy is not a suitable 

metric for evaluating this problem. On the other hand, KNN showed the lowest accuracy results in 

predicting the hospital discharge of patients. 

The five algorithms managed to predict disposition to home very accurately: XGBoost reached 98%, 

RF reached 98% but with a higher standard deviation, and LG reached 97% and came in third place. 

BRR reached 97%, while SVR P results were found to be 97% with 0.0015 standard deviations. 

In terms of predicting the minority class, XGBoost came in first place, with P reaching 83% and 

standard deviation=0.0118 for the five experiments, its recall reaching 66%, and its AUC was the best 

with 0.98. RF had a slightly better P than XGBoost, but its stability was lower due to a larger standard 

deviation. 

Figure 3 shows a confusion matrix of all the considered algorithms. It is clear that the XGBoost 

algorithm can easily detect and predict disposed-to-home patients: out of 6059 patients going home, 

the algorithm managed to successfully predict 5944 with a percentage reaching 98%. Moreover, the 

algorithm has a high detection accuracy of dead patients, as it correctly predicted 228 patients out of 

the 274 patients that died in the hospital. Overall, the XGBoost algorithm demonstrated a high degree 

of detection and a prediction accuracy for disposed-to-home patients. By utilizing the study’s 

developed framework, medical teams would have an invaluable tool to help them decide on treatment 

plans and allot hospital resources. 

 

Figure 3. The confusion matrix results for the six ML algorithms. 

7.3. Implications of findings and study limitations 

The findings of the research have significant implications for healthcare administration. The ML 

algorithm developed in the current research managed to use many factors that are regularly collected 

in the emergency department to properly predict a patient’s condition while they are in the hospital. 

With the aid of this method, clinical professionals and family members may find it easier to make fast, 

data-driven, and reliable treatment decisions. According to the analysis conducted in this study, there 

are a number of significant predictors that can lead to accurate prediction outcomes, including the GCS, 

ISS, SBP, HR, age, gender, and type of injury. These factors are easily evaluated in the emergency 
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department and can be used to identify individuals who have a high mortality risk. 

Additionally, it was discovered that the XGBoost algorithm was the best at forecasting a patients’ 

hospital outcomes. In terms of classification, P, recall, F1 score, and AUC, XGBoost exhibited the 

highest average success rate. This can be attributed to the fact that the XGBoost technique employs an 

ensemble of decision trees, making it suitable for a wide range of dataset sizes while producing high-

accuracy predictions. This algorithm’s excellent accuracy raises the possibility that it could be applied 

to the creation of clinical decision support systems, which would enable medical professionals to make 

better treatment choices. 

Regarding the potential limitations of this study, there are several research restrictions while 

developing a ML prediction model for hospital disposition. To begin, the integrity and accessibility of 

healthcare data provide hurdles, as errors, insufficient data, or prejudices in the dataset, which can all 

have an impact on the P of the prediction models. Second, it is vital to choose appropriate attributes, 

as omitting critical variables could affect the model’s predictive ability. Furthermore, the model’s 

generalizability to various healthcare environments and patient demographics may be hampered, thus 

limiting its wider application. Finally, the shifting nature of healthcare procedures, legal issues over 

the confidentiality of patient information, and the interpretability of complicated models all add to the 

potential constraints. Hence, overcoming these challenges is critical to ensure the model’s reliability 

and usefulness in real-world medical applications. 

8. Conclusions and future work 

In this study, the performance of six machine learning algorithms, including XGBoost, KNN, RF, 

LG, BRR, and SVM, were examined to predict the hospital disposition for trauma patients, mainly 

whether a patient will be safely discharged from the hospital or not. In addition, a univariate LG was 

used to acquire the set of features that provide highly accurate prediction outcomes. To evaluate the 

developed models, different evaluation metrics were utilized to assess the prediction accuracy. The 

evaluation metrics were accuracy, recall, P, F1 score, and AUC. By examining the outputs of the best 

forecasting model and the efficiency of the estimate algorithms, the XGBoost algorithm demonstrated 

a high degree of detection and prediction accuracy for disposed-to-home patients: of the 6059 patients 

that were sent home, XGBoost correctly predicted 5944 patients, or 98% of the total. Furthermore, the 

XGBoost algorithm accurately predicted 228 out of 274 hospital deaths, thus demonstrating its 

superior detection accuracy of deceased patients. 

Finally, by utilizing the study’s developed framework, medical teams would have an invaluable 

tool to help them decide on treatment plans and allot hospital resources. Moreover, insurance 

companies can utilize this data to project treatment costs and make appropriate plans. For future work 

and to enhance patient outcomes, our work emphasizes the potential of ML in healthcare, as well as 

the significance of creating trustworthy prediction models. Future studies can expand the dataset to 

include more varied patient populations and explore how this approach might be applied to other 

healthcare outcomes. In addition, this study investigated the performance of different machine learning 

algorithms, and other studies can further examine the performance of deep learning algorithms, such 

as long-term short memory and convolution neural networks. 
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