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Abstract: Emerging technology selection is crucial for enterprise integration, driving innovation, 

competitiveness, and streamlining operations across diverse sectors like finance and healthcare. 

However, the decision-making process for technology adoption is often complex and fraught with 

uncertainties. Bipolar fuzzy sets offer a nuanced representation of uncertainty, allowing for 

simultaneous positive and negative membership degrees, making them valuable in decision-making 

and expert systems. In this paper, we introduce dynamic averaging and dynamic geometric operators 

under bipolar fuzzy environment. We also establish some of the fundamental crucial features of these 

operators. Moreover, we present a step by step mechanism to solve MADM problem under bipolar 

fuzzy dynamic aggregation operators. In addition, these new techniques are successfully applied for 

the selection of the most promising emerging technology for enterprise integration. Finally, a 

comparative study is conducted to show the validity and practicability of the proposed techniques in 

comparison to existing methods. 



5408 

AIMS Mathematics  Volume 9, Issue 3, 5407–5430. 

 

Keywords: bipolar fuzzy sets; bipolar fuzzy dynamic weighted averaging (BFDWA) operator; 

bipolar fuzzy dynamic weighted geometric (BFDWG) operator; decision making; optimization; 

algorithms 

Mathematics Subject Classification: 90B50, 94D05 

 

1. Introduction 

Multi-attribute decision-making (MADM) challenges emerge across a wide spectrum of 

situations, requiring the assessment and choice of various alternatives, actions, or candidates based 

on predetermined criteria. The adoption of MADM facilitated by aggregation operators is gaining 

prominence due to its adaptability to address practical issues across various domain such as science, 

engineering, environmental sciences, social sciences etc [1–3]. Aggregation operators play a pivotal 

role by amalgamating scattered values into a unique entity in a specified framework, thereby 

enabling the resultant aggregation outcome to represent all individual values. This versatility makes 

MADM through aggregation operators an attractive approach for handling real-world problems. 

Before the introduction of aggregation operators, decisions were usually based on crisp sets, which 

operated on the binary premise that an element either belonged to a set or did not belong to the set. 

This approach has limitations when dealing with the complexities of the real world, where there is 

confusion regarding belongingness in a set. In response to this challenge, Zadeh [4] introduced the 

notion of fuzzy sets (FS). An FS 𝐴 of the universal set 𝑋 is represented by the function 𝜇𝐴: 𝑋 →

[0, 1], called the membership function. Later, many mathematicians conducted various studies on 

this interesting concept. Kahne [5] formulated a decision-making framework to address scenarios 

that demand evaluations of alternatives predicated upon multiple attributes, each characterized by 

distinct degrees of importance. In [6], Jain developed an efficient approach to decision-making. 

Dubois and Prade [7] discussed fuzzy set operations such as union, intersection, and complement. 

Yager [8] presented fuzzy set aggregation operations in 1978. These operations were essential for 

combining fuzzy sets to make decisions or draw inferences using different fuzzy data points.  

In the ongoing evolution of decision-making processes, the need to contend with imprecise, 

ambiguous, and uncertain information remains a constant challenge. In response to this, Atanassov 

proposed the concept of intuitionistic fuzzy sets (IFS) in [9]. An IFS contains both the membership 

function 𝜇𝐴: 𝑋 → [0, 1] and the non-membership function 𝜈𝐴: 𝑋 → [0, 1], which is a robust extension 

of the fuzzy set. References [10] and [11] introduce weighted and order-weighted aggregation 

operators, while reference [12] explores geometric aggregation operators in the intuitionistic fuzzy 

(IF) environment. Xu [13] developed novel averaging operators in the IF framework. To address 

MADM problems in an IF context, generalized aggregation operators were proposed in [14]. 

Subsequently, Xu and Wang [15] introduced induced generalized aggregation operators for IF 

knowledge. Huang’s work [16] explored Hamacher aggregation operators for decision-making 

within IF settings. Additionally, in [17], Bonferroni mean operators designed for intuitionistic fuzzy 

sets (IFS) were introduced. The reference [18] presented a hybrid integrated decision-making 

paradigm for the computing framework that utilized soft and complex intuitionistic fuzzy 

information. Zhang [19] introduced another extension of fuzzy sets known as bipolar fuzzy sets 

(BFS). These BF sets are distinguished by a dual-component structure, with one component 

representing positive membership degrees falling within the range of [0, 1], and the other component 

denoting negative membership degrees within the range of [-1, 0]. BFS is an advanced tool for 



5409 

AIMS Mathematics  Volume 9, Issue 3, 5407–5430. 

 

handling uncertainty in decision science. In 2004, Zhang and Zhang [20] progressed the field by 

applying BFS to bipolar logical reasoning and set theory. BFS has been crucial in computational 

psychiatry, as shown by Zhang et al. in 2011 [21]. It has also proved valuable in medical science 

with contributions from Zhang et al. in 2009 [22]. Moreover, the concept of BFS was successfully 

applied by the authors in the fields of quantum cellular combinatorics in 2013 [23] and 

organizational modeling in 2015 [24]. Gul [25] introduced the concept of bipolar fuzzy aggregation 

operators. Within this framework, he defined two pivotal operators: the bipolar fuzzy weighted 

averaging (BFWA) operator and the bipolar fuzzy weighted geometric (BFWG) operator. In 2017, 

Wei et al. [26] introduced the hesitant bipolar fuzzy weighted averaging and geometric operators. Xu 

and Wei [27] presented Hamacher aggregation operators, and they also investigated the 

characteristics and special cases of these operators. In 2019, Jana [28] introduced Dombi aggregation 

operators designed for BFS. These operators were applied to the development of solutions for 

multi-attribute group decision-making challenges. Jan et al. [29] developed a viable hybrid 

decision-making framework for human-computer interaction in the context of bipolar complex 

picture fuzzy soft sets based on their findings. Mani et al. [30] introduced the concept of 

intuitionistic fuzzy bipolar metric spaces and solved integral equations through this novel notion.  

The technology of emerging enterprises evolves in collaboration with business. Enterprise 

growth promotes innovation and progress within an industry. As they expand, these businesses 

stimulate innovation and progress across industries. Nevertheless, in this era of rapid technological 

advancement, unforeseen challenges cannot be disregarded. Pioneering technological enterprises 

encounter novel challenges and uncertainties in their pursuit of innovation. The dynamic nature of 

the digital realm presents both opportunities and risks. Privacy issues, data intrusions, and 

cybersecurity concerns necessitate vigilant safeguarding and reduction. Flexibility and proactivity 

are critical qualities in the dynamic realm of technological advancement. These organizations remain 

competitive by embracing new technologies and methods and demonstrating agility. By utilizing AI, 

IoT, and blockchain, they may strengthen their position in the market, expedite operations, and 

enhance the experiences of visitors. Similar to how purified water is indispensable for life, 

companies developing new technologies must be innovative and progressive. By implementing 

strategic refinement, process development, and emerging technology, these businesses have the 

potential to flourish and influence entire industries and society. Pursuing excellence in the 

development of technological enterprises is an admirable endeavor. This study presents an 

innovative approach to managing emerging technological challenges in dynamic environments. The 

strategy incorporates evolving data and enhances the precision and assurance of optimal solutions in 

practical situations. 

1.1. Motivation 

The combination of the BF set and the dynamic operators is the basic purpose of this study. The 

primary justification for conducting this research is given below. 

1) In managing ambiguous data, dynamic operators provide exceptional adaptability. 

2) These operators demonstrate outstanding ability to convert inconsistent information into a unified 

value, thereby efficiently tackling the complexities of decision-making in a constantly evolving 

scenario. 

3) Bipolar fuzzy sets are significant due to their capacity to capture both positive and negative 

opinions in the data simultaneously. Bipolar fuzzy sets offer an intricate depiction in dynamic 

environments characterized by constantly changing circumstances. 
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1.2. Research gap, objectives and contributions of the study 

Previous studies have mostly focused on decision-making scenarios when all initial choice data 

is collected at the same time. However, in many decision-making scenarios, it is standard practice to 

collect the relevant data at different periods. The term “time interval” is employed in dynamic 

aggregation operators within the MADM context to assess the decision-maker's information 

preference over time intervals. This is achieved by utilizing a time-dependent function. By 

incorporating variables into the dynamic framework, it becomes possible to monitor the changes in 

membership degrees over time and analyze the fluctuations within specific time intervals. This 

feature enhances the precision of decision-making, offers an understanding of alterations, and 

assesses the dynamics of fuzzy sets. A variety of approaches are required to tackle these issues. The 

use of fuzzy dynamic weighted averaging and geometric operators in decision-making models is 

crucial, as they facilitate dynamic changes and effectively capture intricate interactions within 

systems that are impacted by imprecision and uncertainty. Although these operators have been 

defined for intuitionistic and classical fuzzy environments. These environments are unable to manage 

uncertainty from dual perspectives, encompassing both positive and negative aspects. Therefore, it is 

crucial to describe these operators for bipolar fuzzy sets in order to handle such scenarios and close 

this gap. 

The following are the primary objectives of the theoretical framework that our research revolves 

around: 

1) To define BF dynamic variable and to develop fundamental laws for these numbers. 

2) To introduce BFDWA and BFDWG operators for these numbers and to formulate their structural 

properties. 

3) To design step by step algorithm for solving MADM problems using these proposed techniques 

and to present an illustration of solving specific MADM problems under framework of BF dynamic 

environment. 

The following are the major key goals of the theoretical framework that our research focuses on: 

1) Two innovative aggregation operators, the BFDWA and BFDWG operators, have been 

introduced for decision-making context to handle bipolar fuzzy information. 

2) A comprehensive exposition is provided on the fundamental attributes of the operators under 

consideration, encompassing their idempotency, monotonicity, and boundedness. 

3) A systematic approach to manage MADM issues using BF dynamic aggregation operators is 

developed. 

4) The proposed approach is implemented to select the most suitable emerging technology enterprise. 

It demonstrates the significance of the developed strategy and proposed operators in the process of 

decision-making. 

5) The proposed methodology is compared to various other approaches described in the literature. As 

demonstrated by the comparison outcomes, the developed methodology is consistent and reliable. 

The following is the manuscript's structure: Basic definitions are presented in Section 2. In 

Section 3, we introduce BF dynamic aggregation operators and examine their basic characteristics. In 

Section 4, a technique for using BF dynamic aggregation operators to solve MADM-related issues is 

presented. In Section 5, the newly introduced operators are utilized to facilitate the process of 

selecting rising technological company. Moreover, we include a comparative analysis that 

demonstrates the usefulness and applicability of these novel strategies in comparison with existing 

methodologies. Section 6 summarizes the key findings of this research. 
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2. Preliminaries 

In this section, we present key definitions that are important for understanding the major content 

of this study. 

Definition 1. ([4]) A fuzzy set of the universe X is defined as 

𝐴 = {⟨𝑥, 𝜇𝐴(𝑥)⟩| 𝑥 ∈ 𝑋}. (2.1) 

Here, 𝜇𝐴: 𝑋 → [0, 1] is called membership function and 𝜇𝐴(𝑥) signifies the degree of membership of 

𝑥 ∈ 𝑋. 

Definition 2. ([27]). The bipolar fuzzy set (BFS) of the universe X is represented as follows: 

𝐵 = {⟨𝑥, 𝜇𝐵
+(𝑥), 𝜈𝐵

−(𝑥)⟩|𝑥 ∈ 𝑋}, (2.2) 

wherein 𝜇𝐵
+: 𝑋 → [0, 1]  and 𝜈𝐵

−: 𝑋 → [−1,0]  are called the positive and negative membership 

functions, respectively. The notation ⟨(𝜇𝐵
+, 𝜈𝐵

−)⟩ is used to represent bipolar fuzzy number (BFN). 

Definition 3. ([28]) Consider a set of bipolar fuzzy numbers (BFNs), denoted as 𝛼𝑘 = (𝜇𝑘
+, 𝜈𝑘

−), 

where 𝑘 = 1,2, … , դ . A BFWA operator is a function BFWA:𝜓դ → 𝜓  defined in the following 

manner: 
𝐵𝐹𝑊𝐴(𝛼1, 𝛼2, … , 𝛼դ) =⊕𝑘=1

դ
ⱳ𝑘. 𝛼𝑘 

= (1 − ∏ (1 − 𝜇𝑘
+)ⱳ𝑘

դ
𝑘=1 , −∏ (|𝜈𝑘

−|)ⱳ𝑘
դ
𝑘=1 ). (2.3) 

Here, ⱳ𝑘 = [ⱳ1, ⱳ2, . . . , ⱳդ]
𝑇 

 represents the associated weight vector of these BFNs for 𝑘 =

1,2, . . . , դ, with the condition that ⱳ𝑘 ∈ [0,1], and the constraint ∑ ⱳ𝑘 = 1
դ
𝑘=1  holds. 

Definition 4. ([28]) Consider a set of bipolar fuzzy numbers (BFNs), denoted as 𝛼𝑘 = (𝜇𝑘
+, 𝜈𝑘

−), for 

𝑘 = 1,2, … , դ. A BFWG operator is a function BFWG:𝜓դ → 𝜓 defined in the following manner: 

𝐵𝐹𝑊𝐺(𝛼1, 𝛼2, … , 𝛼դ) =⊗𝑘=1
դ

𝛼𝑘
ⱳ𝑘 

= (∏ (𝜇𝑘
+)ⱳ𝑘

դ
𝑘=1 , −1 + ∏ (1 + 𝜈𝑘

−)ⱳ𝑘
դ
𝑘=1 ). (2.4) 

Here, ⱳ𝑘 = [ⱳ1, ⱳ2, . . . , ⱳդ]
𝑇

 represents the associated weight vector of these BFNs for 𝑘 =

1,2, . . . , դ, with the condition that ⱳ𝑘 ∈ [0, 1], and the constraint ∑ ⱳ𝑘 = 1
դ
𝑘=1  holds. 

Definition 5. ([27]). Let 𝛼 = (µ𝛼
+, 𝜈𝛼

−) denote a BFN. The score function of α is characterized as 

follows: Š(𝛼) =
1+µ𝛼

++𝜈𝛼
−

2
, where Š(𝛼) ∈ [0, 1] . The accuracy function is determined as: Ă(𝛼) =

µ++𝜈−

2
, where Ă(𝛼) ∈ [0,1]. 

In accordance with the preceding definitions of Š and Ă, the ordering relations between two 

BFNs 𝛼1 and 𝛼2 are delineated as follows: 

i) If Š(𝛼1) < Š(𝛼2) then 𝛼1 ≺ 𝛼2. 

ii) If Š(𝛼1) > Š(𝛼2) then 𝛼1 ≻ 𝛼2. 

iii) When Š(𝛼1) = Š(𝛼2) , further comparison is accomplished through the accuracy function as 

follows: 

a) If Ă(𝛼1) < Ă(𝛼2), then 𝛼1 ≺ 𝛼2. 

b) If Ă(𝛼1) > Ă(𝛼2), then 𝛼1 ≻ 𝛼2. 

c) If Ă(𝛼1) = Ă(𝛼2), then 𝛼1 ∼ 𝛼2. 
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3. Dynamic operations on bipolar fuzzy numbers 

This section introduces BFDWA and BFDWG operators developed for the BFNs. Fundamental 

operational laws are formulated with respect to BF dynamic numbers. Additionally, we examine the 

structural characteristics of the BF dynamic numbers, namely idempotency, boundedness, and 

monotonicity, within the framework of the BFDWG and BFDWA operators. The structural flowchart 

of BFDWA and BFDWG operators is displayed in Figure 1. 

 

Figure 1. Structural flowchart of BFDWA and BFDWG operators. 

Definition 6. For the time variable 𝑡, the BFN is formally represented as follows: 

𝛼𝑡 = (𝜇𝑡
+, 𝜈𝑡

−), where, 𝜇𝑡
+ ∈ [0, 1] and 𝜈𝑡

− ∈ [−1, 0]. 

Furthermore, if 𝑡 = 𝑡1, 𝑡2, … , 𝑡դ, then 𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ signifies դ distinct BFNs, each linked with 

a different time period. 
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Definition 7. Consider two BFNs, 𝛼𝑡1 = 〈(𝜇𝑡1
+ , 𝜈𝑡1

− )〉 and 𝛼𝑡2 = 〈(𝜇𝑡2
+ , 𝜈𝑡2

− )〉. The following are the 

operational laws that govern their relationship: 

i) 𝛼𝑡1 ≤ 𝛼𝑡2 if 𝜇𝑡1
+ ≤ 𝜇𝑡2

+  and 𝜈𝑡1
− ≥ 𝜈𝑡2

− ; 

ii) 𝛼𝑡1 = 𝛼𝑡2 if and only if 𝛼𝑡1 ⊆ 𝛼𝑡2 and 𝛼𝑡2 ⊆ 𝛼𝑡1; 

iii) 𝛼𝑡1
𝑐 = {⟨𝑥, 1 − 𝜇𝑡1

+ , |𝜈𝑡1
− | − 1|𝑥 ∈ 𝑋⟩}. 

Definition 8. Let us consider three BFNs, 𝛼𝑡 = 〈(𝜇𝑡
+, 𝜈𝑡

−)〉, 𝛼𝑡1 = 〈(𝜇𝑡1
+ , 𝜈𝑡1

− )〉 and 𝛼𝑡2 = 〈(𝜇𝑡2
+ , 𝜈𝑡2

− )〉 

over 𝑋 and 𝜆𝑡𝑘 > 0. We define the following dynamic operations on these BFNs: 

i) 𝛼𝑡1 ⊕ 𝛼𝑡2=(⟨𝜇𝑡1
+ + 𝜇𝑡2

+ − 𝜇𝑡1
+ 𝜇𝑡2

+ , −|𝜈𝑡1
− ||𝜈𝑡2

− |⟩); 

ii) 𝛼𝑡1 ⊗ 𝛼𝑡2 = (〈 𝜇𝑡1
+ 𝜇𝑡2

+ , 𝜈𝑡1
− + 𝜈𝑡2

− − 𝜈𝑡1
−𝜈𝑡2

− 〉); 

iii) 𝜆𝑡𝛼𝑡 = (1 − (1 − 𝜇𝑡
+)𝜆𝑡 , −|𝜈𝑡

−|𝜆𝑡); 

iv) 𝛼𝑡
𝜆𝑡 = (𝜇𝑡

𝜆𝑡 , −1 + |1 + 𝜈𝑡
−|𝜆𝑡). 

We propose dynamic weighted averaging operator for BFNs, referred to as (BFDWA) in the 

following definition. 

Definition 9. Let 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 = 1,2, … , դ, be a collection of BFNs. A BFDWA operator is 

a function 𝐵𝐹𝐷𝑊𝐴:𝜓դ → 𝜓 defined as follows: 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) =⊕𝑘=1
դ

𝜆𝑡𝑘 . 𝛼𝑡𝑘 

= (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘դ
𝑘=1 , −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘դ

𝑘=1 ). 

Here 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇

 is a weight vector linked with 𝑡𝑘  for 𝑘 = 1, 2, . . . , դ , and it 

satisfies the conditions 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . 

Theorem 1. Given a collection of BFNs, denoted as 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 = 1, 2, … , դ, existing at դ 

distinct time periods. Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
 be the associated weight vector of BFNs 𝛼𝑡𝑘, for 

𝑘 = 1,2, … , դ, such that 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 , then the aggregated value obtained through 

the BFDWA operation also constitutes a BFN. Mathematically, this can be expressed as: 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘
դ

𝑘=1
, −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
). 

Proof: The proof of this theorem employs the method of mathematical induction. Specifically, when 

դ = 2, the BFDWA operation is demonstrated as follows: 

𝐵𝐹𝐷𝑊𝐴(𝛼𝑡1 , 𝛼𝑡2) = 𝜆𝑡1𝛼𝑡1 ⊕ 𝜆𝑡2𝛼𝑡2 

= (1 − (1 − 𝜇𝑡1
+ )

𝜆𝑡1 , −(|𝜈𝑡1
− |)

𝜆𝑡1) ⊕ (1 − (1 − 𝜇𝑡2
+ )

𝜆𝑡2 , −(|𝜈𝑡2
− |)

𝜆𝑡2) 

= 〈1 − {(1 − 𝜇𝑡1
+ )

𝜆𝑡1 + (1 − 𝜇𝑡2
+ )

𝜆𝑡2} , − {|𝜈𝑡1
− |

𝜆𝑡1 + |𝜈𝑡2
− |

𝜆𝑡2}〉. 

Consequently, 

𝐵𝐹𝐷𝑊𝐴(𝛼𝑡1 , 𝛼𝑡2) = (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘2
𝑘=1 , −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘2

𝑘=1 ). 

This show that the result is true for դ = 2. Let the result holds for դ =  𝑝, where 𝑝 is a natural 

number. 
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𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡𝑝) =⊕𝑘=1
𝑝

𝜆𝑡𝑘 . 𝛼𝑡𝑘 = (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘
𝑝

𝑘=1
, −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

𝑝

𝑘=1
). 

Next, we investigate the case where դ = 𝑝 + 1: 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡𝑝 , 𝛼𝑡𝑝+1
) =⊕𝑘=1

𝑝
𝜆𝑡𝑘 . 𝛼𝑡𝑘 ⊕ 𝜆𝑡𝑝+1

. 𝛼𝑡𝑝+1
= (1 − ∏ (1 −

𝑝
𝑘=1

𝜇𝑡𝑘
+ )

𝜆𝑡𝑘 , −∏ (|𝜈𝑡𝑘
− |)

𝜆𝑡𝑘𝑝
𝑘=1 ) ⊕ (1 − (1 − 𝜇𝑡𝑝+1

+ )
𝜆𝑡𝑝+1

, − (|𝜈𝑡𝑝+1
− |)

𝜆𝑡𝑝+1
). 

This implies that, 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡𝑝 , 𝛼𝑡𝑝+1
) = (1 − ∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘𝑝+1

𝑘=1 , −∏ (|𝜈𝑡𝑘
− |)

𝜆𝑡𝑘𝑝+1
𝑘=1 ). 

Henceforth, the assertion holds for դ = 𝑝 + 1. Therefore, it can be established that the statement 

is true for all values of natural numbers դ. 

Example 1. Consider a scenario involving four BFNs 𝛼𝑡1 = (0.5, −0.4), 𝛼𝑡2 = (0.6, −0.4), 𝛼𝑡3 =

(0.7, −0.3) and 𝛼𝑡4 = (0.2, −0.3) each assigned a weight vector 𝜆𝑡𝑘 = (0.2, 0.1, 0.3, 0.4)𝑇, Then 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = ⊕𝑘=1
դ

𝜆𝑡𝑘 . 𝛼𝑡𝑘 

= (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘4
𝑘=1 , −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘4

𝑘=1 ) =

(
1 − {(1 − 0.5)0.2 × (1 − 0.6)0.1 × (1 − 0.7)0.3 × (1 − 0.2)0.4},

−{(|−0.4|)0.2 × (|−0.4|)0.1 × (|−0.3|)0.3 × (|0.3|)0.4}
) = (0.4937,−0.3270). 

Theorem 2. (Idempotency Property) Consider a collection of BFNs denoted as 𝛼𝑡𝑘= (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ) for 

𝑘 = 1, 2, … , դ, where all members in this collection are identical, i.e., for all values of 𝑘, 𝛼𝑡𝑘= 𝛼𝑡𝑗 for 

some 𝑗 ∈ {1,2, . . . , դ} , where, 𝛼𝑡𝑗  = (𝜇𝑡𝑗
+ , 𝜈𝑡𝑗

−) . Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇

represents the weight 

vector linked with 𝑡𝑘 , for 𝑘 = 1,2, … , դ, such that 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . Then, it can be 

established that: 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = 𝛼𝑡𝑗. 

Proof: Given that 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 = 1,2, … , դ, and 𝛼𝑡𝑘= 𝛼𝑡𝑗 for some 𝑗. Then, we proceed to 

demonstrate the following equality: 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = ⊕𝑘=1
դ

𝜆𝑡𝑘𝛼𝑡𝑘 

= (1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘
դ

𝑘=1
, −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
) 

= (1 − (1 − 𝜇𝑡𝑗
+)

∑ 𝜆𝑡𝑘
դ
𝑘=1

, − |𝜈𝑡𝑗
−|

∑ 𝜆𝑡𝑘
դ
𝑘=1

) 

= (1 − (1 − 𝜇𝑡𝑗
+) , − |𝜈𝑡𝑗

−|) 

= (𝜇𝑡𝑗
+ , − |𝜈𝑡𝑗

−|) = (𝜇𝑡𝑗
+ , 𝜈𝑡𝑗

−). 

Consequently, 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) =  𝛼𝑡𝑗. 

Theorem 3. (Boundedness property) Consider a collection of BFNs denoted as 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ) for 

𝑘 = 1, 2, … , դ. Let 𝛼𝑡
− =min(𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = (𝜇𝑡

−, 𝜈𝑡
−) , 𝛼𝑡

+ = max (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = (𝜇𝑡
+, 𝜈𝑡

+) 
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and 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
represents the weight vector linked with 𝑡𝑘, for 𝑘 = 1,2, … , դ, such that 

𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 , then 𝛼𝑡

− ≤ 𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝛼𝑡
+. 

Proof: Let 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− )  represent the collection of BFNs. We define 𝜇́𝑡
− = min {𝜇𝑡𝑘

+ } , 𝜈́𝑡
− =

 max{𝜈𝑡𝑘
− }, 𝜇́𝑡

+ = max{𝜇𝑡𝑘
+ } and 𝜈́𝑡

+ = min{𝜈𝑡𝑘
− }. 

Consequently, we can derive the following inequalities: 

𝜇́𝑡
− ≤ 𝜇𝑡𝑘

+ ≤ 𝜇́𝑡
+ 

⇒ 1 − 𝜇́𝑡
− ≥ 1 − 𝜇𝑡𝑘

+ ≥ 1 − 𝜇́𝑡
+ 

⇒ ∏ (1 − 𝜇́𝑡
−)𝜆𝑡𝑘 ≥

դ

𝑘=1
∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘 ≥

դ

𝑘=1
∏ (1 − 𝜇́𝑡

+)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ 1 − ∏ (1 − 𝜇́𝑡
−)𝜆𝑡𝑘 ≤

դ

𝑘=1
1 − ∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘 ≤

դ

𝑘=1
1 − ∏ (1 − 𝜇́𝑡

+)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ 1 − (1 − 𝜇́𝑡
−)∑ 𝜆𝑡𝑘

դ
𝑘=1 ≤ 1 − ∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘

դ

𝑘=1
≤ 1 − (1 − 𝜇́𝑡

+)∑ 𝜆𝑡𝑘
դ
𝑘=1  

⇒ 1 − (1 − 𝜇́𝑡
−) ≤ 1 − ∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘

դ

𝑘=1
≤ 1 − (1 − 𝜇́𝑡

+) 

⇒ 𝜇́𝑡
− ≤ 1 − ∏ (1 − 𝜇𝑡𝑘

+ )
𝜆𝑡𝑘դ

𝑘=1 ≤ 𝜇́𝑡
+. (3.1) 

Moreover, 

𝜈́𝑡
+ ≤ 𝜈𝑡𝑘

− ≤ 𝜈́𝑡
− 

⇒ ∏ (|𝜈́𝑡
+|)𝜆𝑡𝑘 ≤

դ

𝑘=1
∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
≤ ∏ (|𝜈́𝑡

−|)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ ∏ (|𝜈́𝑡
+|)𝜆𝑡𝑘 ≤

դ

𝑘=1
∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
≤ ∏ (|𝜈́𝑡

−|)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ (|𝜈́𝑡
+|)∑ 𝜆𝑡𝑘

դ
𝑘=1 ≤ ∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
≤ (|𝜈́𝑡

−|)∑ 𝜆𝑡𝑘
դ
𝑘=1  

⇒ (|𝜈́𝑡
+|) ≤ ∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘

դ

𝑘=1
≤ (|𝜈́𝑡

−|) 

⇒ (|𝜈́𝑡
−|) ≤ −∏ (|𝜈𝑡𝑘

− |)
𝜆𝑡𝑘 ≤

դ
𝑘=1 (|𝜈́𝑡

+|). (3.2) 

By comparing inequality (3.1) and (3.2) 

𝛼𝑡
− ≤ 𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝛼𝑡

+. 

Theorem 4. (Monotonicity property) Consider 𝛼𝑡𝑘, for 𝑘 = 1,2, … , դ, and 𝛼𝑡𝑘́ , for 𝑘 = 1,2, … , դ, be 

two sets of BFNs. Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇

represents the weight vector linked with 𝑡𝑘 , for 

𝑘 = 1,2, … , դ , such that 𝜆𝑡𝑘 ∈ [0,1]  and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . If 𝜇𝑡𝑘

+ ≤ 𝜇́𝑡𝑘
+  and 𝜈𝑡𝑘

− ≥ 𝜈́𝑡𝑘
−  for all 𝑘 , then 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤  𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1́ , 𝛼𝑡2́ , … , 𝛼𝑡դ́ ). 

Proof: Assuming that 𝜇𝑡𝑘
+ ≤ 𝜇́𝑡𝑘

+  for all 𝑘, then 

(1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘 ≥ (1 − 𝜇́𝑡
+)𝜆𝑡𝑘  
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⇒ ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘
դ

𝑘=1
≥ ∏ (1 − 𝜇́𝑡𝑘

+ )
𝜆𝑡𝑘

դ

𝑘=1
 

⇒ 1 − ∏ (1 − 𝜇𝑡𝑘
+ )

𝜆𝑡𝑘 ≤
դ
𝑘=1 1 − ∏ (1 − 𝜇́𝑡𝑘

+ )
𝜆𝑡𝑘դ

𝑘=1 . 

Similarly, by considering 𝜈𝑡𝑘
− ≥ 𝜈́𝑡𝑘

− , we can derive: 

−∏ (|𝜈𝑡𝑘
− |)

𝜆𝑡𝑘դ
𝑘=1 ≥ −∏ (|𝜈́𝑡𝑘

− |)𝜆𝑡𝑘
դ
𝑘=1 . 

Hence, 

𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤  𝐵𝐹𝐷𝑊𝐴 (𝛼𝑡1́ , 𝛼𝑡2́ , … , 𝛼𝑡դ́ ). 

Definition 10. Let 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 = 1,2, … , դ, be a collection of BFNs. A bipolar fuzzy 

dynamic weighted geometric (BFDWG) operator is a function 𝐵𝐹𝐷𝑊𝐺: 𝜓դ → 𝜓 defined as follows: 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) =⊗𝑘=1
դ

𝛼𝑡𝑘
𝜆𝑡𝑘  

= (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

դ

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
). 

Where 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
 is a weight vector linked with 𝑡𝑘 for 𝑘 = 1, 2, . . . , դ, and it satisfies 

the conditions 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . 

Theorem 5. Given a collection of BFNs, denoted as 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 =  1, 2, … , դ, existing at 

դ distinct time periods. Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
 be the associated weight vector of BFNs 𝛼𝑡𝑘, for 

𝑘 = 1,2, … , դ, such that 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 , then the aggregated value obtained through 

the BFDWG operation also constitutes a BFN. Mathematically, this can be expressed as: 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) =⊗𝑘=1
դ

𝛼𝑡𝑘
𝜆𝑡𝑘  

= (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

դ

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
). 

Proof: We will use the mathematical induction approach to prove this result. Specifically, when դ =
2, the BFDWG operation is demonstrated as follows: 

𝐵𝐹𝐷𝑊𝐺(𝛼𝑡1 , 𝛼𝑡2) = 𝛼𝑡1
𝜆𝑡1 ⊗ 𝛼𝑡2

𝜆𝑡2  

= ((𝜇𝑡1
+ )𝜆𝑡1 , −1 + (1 + 𝜈𝑡1

− )
𝜆𝑡1) ⊗ ((𝜇𝑡2

+ )𝜆𝑡2 , −1 + (1 + 𝜈𝑡2
− )

𝜆𝑡2) 

= 〈{(𝜇𝑡1
+ )𝜆𝑡1 + (𝜇𝑡2

+ )𝜆𝑡2}, −1 {(1 + 𝜈𝑡1
− )

𝜆𝑡1 + (1 + 𝜈𝑡2
− )

𝜆𝑡2}〉. 

Consequently, 

𝐵𝐹𝐷𝑊𝐺(𝛼𝑡1 , 𝛼𝑡2) = (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

2

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

2

𝑘=1
). 

Hence, confirming the validity of the theorem for the case when դ = 2. Let the result be true for 

դ = 𝑝, where 𝑝 ∈ ℕ. 

𝐵𝐹𝐷𝑊𝐺(𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑝) =⊗𝑘=1
𝑝

𝛼𝑡𝑘
𝜆𝑡𝑘  
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= (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

𝑝
𝑘=1 , −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘𝑝

𝑘=1 ). 

Next, we investigate the case where դ = 𝑝 + 1: 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡𝑝+1
) =⊗𝑘=1

𝑝
𝛼𝑡𝑘

𝜆𝑡𝑘 ⊗ 𝛼𝑡𝑝+1

𝜆𝑡𝑝+1  

= (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

𝑝

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

𝑝

𝑘=1
) 

⊗ ((𝜇𝑡𝑝+1

+ )
𝜆𝑡𝑝+1 , −1 + (1 + 𝜈𝑡𝑝+1

− )
𝜆𝑡𝑝+1

). 

This implies that, 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡𝑝+1
) = (∏ (𝜇𝑡𝑘

+ )𝜆𝑡𝑘
𝑝+1
𝑘=1 , −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘𝑝+1

𝑘=1 ). 

Henceforth, the assertion holds for դ = 𝑝 + 1. Thus, the result is true for all դ ∈ ℕ. 

Example 2. There are four BFNs 𝛼𝑡1 = (0.7,−0.3), 𝛼𝑡2 = (0.6, −0.4), 𝛼𝑡3 = (0.6, −0.5) and 𝛼𝑡4 =

(0.1, −0.2) and 𝜆𝑡𝑘 = (0.2, 0.1, 0.3, 0.4)𝑇 are weight vectors for these BFNs 𝛼𝑡𝑘, then, 

= (∏ (𝜇𝑡𝑘
+ )𝜆𝑡𝑘

4

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

4

𝑘=1
) 

= (
{(0.7)02 × (0.6)0.1 × (0.6)0.3 × (0.1)0.4},

−1 + {(1 − 0.3)0.2 × (1 − 0.4)0.1 × (1 − 0.5)0.3 × (1 − 0.2)0.4}
) 

= (0.3021,−0.3427). 

Theorem 6. (Idempotency Property) Consider a collection of BFNs denoted as 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ) for 

𝑘 = 1, 2, … , դ, where all members in this collection are identical, i.e., for all values of 𝑘, 𝛼𝑡𝑘= 𝛼𝑡𝑗 for 

some 𝑗 ∈ {1,2, . . . , դ} , where, 𝛼𝑡𝑗  = (𝜇𝑡𝑗
+ , 𝜈𝑡𝑗

−) . Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇

represents the weight 

vector linked with 𝑡𝑘, for 𝑘 = 1,2, … , դ, such that 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . Then,  

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = 𝛼𝑡𝑗. 

Proof: Given that 𝛼𝑡𝑘 = (𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ), for 𝑘 = 1,2, … , դ, and 𝛼𝑡𝑘= 𝛼𝑡𝑗 for some 𝑗. Then, we have 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) =⊗𝑘=1
𝑝

𝛼𝑡𝑘
𝜆𝑡𝑘  

= (∏ (𝜇𝑡𝑘
+ )

𝜆𝑡𝑘
դ

𝑘=1
, −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
) 

= ((𝜇𝑡𝑗
+ )∑ 𝜆𝑡𝑘

դ
𝑘=1 , −1 + (1 + 𝜈𝑡𝑗

−)
∑ 𝜆𝑡𝑘

դ
𝑘=1

) 

= (𝜇𝑡𝑗
+ , −1 + (1 + 𝜈𝑡𝑗

−)) = (𝜇𝑡𝑗
+ , 𝜈𝑡𝑗

−). 

Consequently, 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = 𝛼𝑡𝑗. 
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Theorem 7. (Boundedness property) Consider a collection of BFNs denoted as 𝛼𝑡𝑘=(𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ) for 

𝑘 = 1, 2, … , դ. Let 𝛼𝑡
− =min(𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = (𝜇𝑡

−, 𝜈𝑡
−) , 𝛼𝑡

+ = max (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) = (𝜇𝑡
+, 𝜈𝑡

+) 

and 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
represents the weight vector linked with 𝑡𝑘, for 𝑘 = 1,2, … , դ, such that 

𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 , then 𝛼𝑡

− ≤ 𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝛼𝑡
+. 

Proof: Let 𝛼𝑡𝑘 =(𝜇𝑡𝑘
+ , 𝜈𝑡𝑘

− ) be collection of BFNs. We define 𝜇́𝑡
− =min{𝜇𝑡𝑘

+ }, 𝜈́𝑡
− =max{𝜈𝑡𝑘

− }, 𝜇́𝑡
+ =

 max{𝜇𝑡𝑘
+ } and 𝜈́𝑡

+ =min{𝜈𝑡𝑘
− }. 

Consequently, we can derive the following inequalities: 

(𝜇́𝑡
−)𝜆𝑡𝑘 ≤ 𝜇𝑡𝑘

+ ≤ (𝜇́𝑡
+)𝜆𝑡𝑘  

⇒ ∏ (𝜇́𝑡
−)𝜆𝑡𝑘

դ

𝑘=1
≤ ∏ (𝜇𝑡𝑘

+ )
𝜆𝑡𝑘

դ

𝑘=1
≤ ∏ (𝜇́𝑡

+)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ (𝜇́𝑡
−)∑ 𝜆𝑡𝑘

դ
𝑘=1 ≤ ∏ (𝜇𝑡𝑘

+ )
𝜆𝑡𝑘դ

𝑘=1 ≤ (𝜇́𝑡
+)∑ 𝜆𝑡𝑘

դ
𝑘=1 . 

Hence, 

(𝜇́𝑡
−) ≤ ∏ (𝜇𝑡𝑘

+ )
𝜆𝑡𝑘

դ

𝑘=1
≤ (𝜇́𝑡

+). (3.3) 

Moreover, 

𝜈́𝑡
+ ≤ 𝜈𝑡𝑘

− ≤ 𝜈́𝑡
− 

⇒ 1 + 𝜈́𝑡
+ ≤ 1 + 𝜈𝑡𝑘

− ≤ 1 + 𝜈́𝑡
− 

⇒ ∏ (1 + 𝜈́𝑡
+)𝜆𝑡𝑘 ≤

դ

𝑘=1
∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘 ≤

դ

𝑘=1
∏ (1 + 𝜈́𝑡

−)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ ∏ (1 + 𝜈́𝑡
+)𝜆𝑡𝑘 ≤ +

դ

𝑘=1
∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
≤ ∏ (1 + 𝜈́𝑡

−)𝜆𝑡𝑘

դ

𝑘=1
 

⇒ (1 + 𝜈́𝑡
+)∑ 𝜆𝑡𝑘

դ
𝑘=1 ≤ ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
≤ (1 + 𝜈́𝑡

−)∑ 𝜆𝑡𝑘
դ
𝑘=1  

⇒ 1 + 𝜈́𝑡
+ ≤ ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
≤ 1 + 𝜈́𝑡

− 

⇒ 𝜈́𝑡
− ≤ −1 + ∏ (1 + 𝜈𝑡𝑘

− )
𝜆𝑡𝑘 ≤

դ
𝑘=1 𝜈́𝑡

+. (3.4) 

Inequalities (3.3) and (3.4) provide a conclusion 

𝛼𝑡
− ≤ 𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝛼𝑡

+. 

Theorem 8. (Monotonicity property) consider 𝛼𝑡𝑘, for 𝑘 = 1,2, … , դ, and 𝛼𝑡𝑘  ́ for 𝑘 = 1,2, … , դ, be 

two sets of BFNs. Let 𝜆𝑡𝑘 = [𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇

represents the weight vector linked with 𝑡𝑘 , for 

𝑘 = 1,2, … , դ, such that 𝜆𝑡𝑘 ∈ [0,1] and ∑ 𝜆𝑡𝑘 = 1
դ
𝑘=1 . If 𝜇𝑡𝑘

+ ≤ 𝜇́𝑡𝑘
+  and 𝜈𝑡𝑘

− ≥ 𝜈́𝑡𝑘
−  for all 𝑘, then 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1́ , 𝛼𝑡2́ , … , 𝛼𝑡դ́ ). 

Proof: Since 𝜇𝑡𝑘
+ ≤ 𝜇́𝑡𝑘

+  for all 𝑘, then 
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∏ (𝜇𝑡𝑘
+ )

𝜆𝑡𝑘դ
𝑘=1 ≤ ∏ (𝜇́𝑡𝑘

+ )𝜆𝑡𝑘
դ
𝑘=1 . 

Next, assuming that 𝜈𝑡𝑘
− ≥ 𝜈́𝑡𝑘

− , we derive: 

1 + 𝜈𝑡𝑘
− ≥ 1 + 𝜈́𝑡𝑘

−  

⇒ ∏ (1 + 𝜈𝑡𝑘
− )

𝜆𝑡𝑘 ≥
դ

𝑘=1
∏ (1 + 𝜈́𝑡𝑘

− )
𝜆𝑡𝑘

դ

𝑘=1
 

⇒ −1 + ∏ (1 + 𝜈𝑡𝑘
− )

𝜆𝑡𝑘դ
𝑘=1 ≤ −1 + ∏ (1 + 𝜈́𝑡𝑘

− )
𝜆𝑡𝑘𝑝

𝑘=1 . 

Hence, 

𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1 , 𝛼𝑡2 , … , 𝛼𝑡դ) ≤ 𝐵𝐹𝐷𝑊𝐺 (𝛼𝑡1́ , 𝛼𝑡2́ , … , 𝛼𝑡դ́ ). 

4. Mathematical mechanisms for solving MADM problems in bipolar fuzzy dynamic 

environment 

Here, we introduce an innovative MADM method for bipolar fuzzy information. This method 

uses bipolar fuzzy dynamic weighted aggregation operators. The following steps outline the 

suggested approach's framework: 

Step 1: Consider a discrete set of alternatives Ẩ = {Ẩ1, Ẩ2, . . . , Ẩ𝑚}. 
Step 2: Consider a set Ң = {Ң1, Ң2, . . . , Ң𝑛} consisting of attributes and ⱳ = [ⱳ1, ⱳ2, . . . , ⱳ𝑛]𝑇 is 

weight vectors where 𝑤𝑗 ≥ 0 and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1. 

Step 3: There are դ  different periods 𝑡𝑘 , for  𝑘 = 1,2, … , դ , whose weight vector is 𝜆𝑡𝑘 =

[𝜆𝑡1 , 𝜆𝑡2 , … , 𝜆𝑡դ]
𝑇
, where 𝜆𝑡𝑘 ∈ [0,1], and ∑ 𝜆𝑡𝑘

դ
𝑘=1 = 1. 

Step 4: Suppose that 𝑅(𝑡𝑘) = [𝑟𝑖𝑗(𝑡𝑘)]𝑚 × 𝑛 = ⟨(𝜇𝑖𝑗(𝑡𝑘)
+ , 𝜈𝑖𝑗(𝑡𝑘)

− )⟩ 
𝑚×𝑛

is the bipolar fuzzy decision 

matrix at periods 𝑡𝑘 where 𝜇𝑖𝑗(𝑡𝑘)
+  indicates the degree that the alternative Ẩ𝑖 satisfies the attribute Ң𝑖 

at periods 𝑡𝑘 and 𝜈𝑖𝑗(𝑡𝑘)
−  indicates the degree that the alternative Ẩ𝑖 doesn’t satisfy the attribute Ң𝑖 at 

periods 𝑡𝑘, such that 

𝜇𝑖𝑗(𝑡𝑘)
+ ∈ [0,1], 𝜈𝑖𝑗(𝑡𝑘)

− ∈ [−1,0], where 𝑖 = 1,2, . . . , 𝑚 and 𝑗 = 1,2, . . . , 𝑛. 

We develop two procedures based on BFDWA and BFDWG operators to rank the alternatives 

based on the decision information.  

4.1. Procedure for BFDWA 

Step 1. The BFDWA operator is used to aggregate a set of bipolar fuzzy decision matrices into a 

collective decision matrix 𝑅. 

𝑟𝑖𝑗(𝑡𝑘) = (𝜇𝑖𝑗(𝑡𝑘)
+ , 𝜈𝑖𝑗(𝑡𝑘)

− ) =  𝐵𝐹𝐷𝑊𝐴 (𝑟𝑖𝑗(𝑡1), 𝑟𝑖𝑗(𝑡2), . . . , 𝑟𝑖𝑗(𝑡դ)) 

= (1 − ∏ (1 − 𝜇𝑖𝑗(𝑡𝑘)
+ )

𝜆𝑡𝑘դ
𝑘=1 , −∏ (|𝜈𝑖𝑗(𝑡𝑘)

− |)
𝜆𝑡𝑘դ

𝑘=1 ). 

Step 2. The BFWA operator is implemented to calculate the cumulative preference values 𝑟𝑖 for the 

alternative Ẩ𝑖 , with 𝑖  ranging from 1  to 𝑚 . In this context, ⱳ = [ⱳ1, ⱳ2, . . . , ⱳ𝑛]𝑇 represent the 

weight vectors of the attribute. 
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𝑟𝑖 = (𝜇𝑖
+, 𝜈𝑖

−) =  𝐵𝐹𝑊𝐴(𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑛𝑇) 

= (1 − ∏ (1 − 𝜇𝑖
+)𝑤𝑗𝑛

𝑗=1 , −∏ (|𝜈𝑖
−|)𝑤𝑗𝑛

𝑗=1 ). 

Step 3. Determine the scores Š(𝑟𝑖) of the overall bipolar fuzzy preference values 𝑟𝑖 in order to rank 

all alternatives Ẩ𝑖 by using Definition 5. 

Step 4. In accordance with Š(𝑟𝑖) the alternatives Ẩ𝑖 will be ranked and the best one will be selected. 

The step-by-step procedure for the suggested technique is visually depicted in Figure 2. 

 

Figure 2. Flow chart of the algorithm for solving MADM problems using BFDWA operator. 

4.2. Procedure for BFDWG 

Step 1. The BFDWG operator is used to aggregate a set of bipolar fuzzy decision matrices into a 

collective decision matrix 𝑅. 

𝑟𝑖𝑗(𝑡𝑘) = (𝜇𝑖𝑗(𝑡𝑘)
+ , 𝜈𝑖𝑗(𝑡𝑘)

− ) = 𝐵𝐹𝐷𝑊𝐺 (𝑟𝑖𝑗(𝑡1), 𝑟𝑖𝑗(𝑡2), . . . , 𝑟𝑖𝑗(𝑡դ)) 

= (∏ (𝜇𝑖𝑗(𝑡𝑘)
+ )𝜆𝑡𝑘

դ
𝑘=1 , −1 + ∏ (1 + 𝜈𝑖𝑗(𝑡𝑘)

− )
𝜆𝑡𝑘դ

𝑘=1 ). 
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Step 2. The BFWG operator is implemented to calculate the cumulative preference values 𝑟𝑖 for the 

alternative Ẩ𝑖 , with 𝑖  ranging from 1  to 𝑚 . In this context, ⱳ = (ⱳ1, ⱳ2, . . . , ⱳ𝑛)𝑇 represent the 

weight vectors of the attribute. 

𝑟𝑖 = (𝜇𝑖𝑗
+ , 𝜈𝑖𝑗

−) = 𝐵𝐹𝑊𝐺(𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑛) 

= (∏ (𝜇𝑖𝑗
+)𝜆𝑘𝑛

𝑗=1 , −1 + ∏ (1 + 𝜈𝑖𝑗
−)

𝜆𝑘𝑛
𝑗=1 ). 

Step 3. Determine the scores Š(𝑟𝑖) of the overall bipolar fuzzy preference values 𝑟𝑖 in order to rank 

all alternatives Ẩ𝑖 by using Definition 5. 

Step 4. In accordance with Š(𝑟𝑖) the alternatives Ẩ𝑖 will be ranked and the best one will be selected. 

Figure 3 provides an illustrative flowchart of the suggested process. 

 

Figure 3. Flow chart of the algorithm for solving MADM problems using BFDWG operator. 
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5. A numerical example for selecting the optimal emerging technology enterprise under 

bipolar fuzzy dynamic weighted aggregation settings 

In this section, we successfully implement the suggested approaches to select appropriated 

emerging technology enterprise under BF environment. 

Since bipolar fuzzy sets explicitly handle positive and negative information, they are able to 

depict uncertainty more subtly than IFS, q-ROF and IVIFS. They exhibit remarkable competence in 

scenarios involving decision-making that necessitate meticulous evaluation of both favorable and 

unfavorable aspects, therefore enhancing the comprehensibility of the results. While IFS and IVIFS 

can handle uncertainty, they could not be as precise as is needed to represent bipolarity correctly. 

With its unique mathematical properties, q-ROF is an appropriate choice for particular applications. 

5.1. Case study 

Enterprise systems represent a confluence of software applications, modular extensions, and 

comprehensive databases, constituting the foundational framework underpinning an organization’s 

operational activities, procedural workflows, and strategic decision-making processes [31,32]. The 

widespread adoption of enterprise systems by enterprises is attributed to their innate capability to 

seamlessly integrate disparate functional domains and business processes, operating efficaciously at 

both intra-organizational and inter-organizational echelons. Enterprise systems consistently 

outperform organization-wide information systems (IS) due to advances in information technology, 

the growing prevalence of technological solutions, and the accessibility of diverse system paradigms, 

including people-centric and transaction-centric models. 

The development of enterprise systems can be scrutinized through a five-stage framework, as 

articulated by Wang et al. [33] in 2013. In the initial stage, designated as the first phase, these 

systems assume an application-centric character. They comprise localized subsystems that facilitate 

data processing and decision-making by harnessing database technology. These systems offer 

support to organizational departments endeavoring to assimilate legacy systems. Notably, they serve 

as repositories for structured item data, notably evident in systems like Material Resource Planning 

(MRP), which are tailored for production planning. Subsequently, in their second lifecycle stage, 

enterprise systems pivot towards a data-centric orientation. Enterprise systems such as Enterprise 

Resource Planning, leverage client-server architecture to optimize efficiency by integrating data 

across the entire organization. In the third stage of development, these systems assume a process-

centric approach, extending their reach to multiple sites. They enhance efficiency and support the 

supply chain by utilizing Internet technology and drawing upon integrated data from a spectrum of 

stakeholders, including colleagues, suppliers, clients, and horizontal collaborators within the supply 

chain. 

Transitioning to the fourth stage, enterprise systems adopt a human-centric focus. In the fifth 

stage, they shift to object-centric configurations, emphasizing resilience through real-time data and 

cloud computing. At this juncture, things-centric systems, underpinned by smart objects and cloud-

connected sensors, form the foundation for generating and analyzing vast volumes of data, as 

elaborated by Panetto et al. [34]. These technologies are purposefully designed for universal 

deployment within fifth-generation (5G) broadband cellular networks, characterized by significantly 

augmented capacity to facilitate concurrent communication across multiple devices. They function as 

plug-and-play devices, underscoring their paramount emphasis on internet connectivity and seamless 

interoperability. Firms employ these systems with the objective of “managing and leveraging all 
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potential networked connections involving individuals, processes, data, objects, and services to attain 

strategic objectives”. To achieve this, companies necessitate the acquisition of appropriate 

technological tools and resources. Enterprise systems have emerged as indispensable constituents of 

organizational infrastructure, serving dual roles as repositories for organizational data and collectors 

of pertinent information. In addition to their integrative functions, these systems are instrumental in 

archiving valuable organizational data. Previously subjected to rudimentary analysis, this data, 

although fundamental, held limited potential for managerial decision-making. With the advent of 

advanced technology, the processes of data collection and analysis have evolved, growing in both 

complexity and diversity. Consequently, there have been substantial improvements in the quality of 

information accessible to management for the purposes of strategic planning and decision-making. 

Furthermore, the influence of technology that augments human expertise has reshaped the manner in 

which managers harness and apply this information to further enhance decision-making processes. 

5.2. Illustration 

The significance of choosing an emerging technology enterprise has grown exponentially due to 

the swift evolution and ubiquitous integration of information technology. This section aims to 

identify optimal performance among various emerging technology business entities, thereby 

presenting a quantitative outcome that substantiates the prospective evaluation of technology 

commercialization using bipolar fuzzy information. A committee is tasked with the selection of five 

potential emerging technology enterprises, denoted as Ẩ𝑖 for 𝑖 = 1, 2, … , 5, from a pool of available 

alternatives. 

In this study, we employ a comprehensive framework to assess the performance of five 

prominent emerging technology enterprises. The evaluation is based on four pivotal criteria: Ң1, 

“Technical Advancement”, which scrutinizes their innovations and contributions to cutting-edge 

technologies; Ң2, “Potential Market and Market Risk”, evaluating market size, growth potential, and 

associated risks; Ң3, “Financial Conditions, Industrialization Infrastructure and Human Resources” 

appraising their operational infrastructure, workforce, and financial stability; and Ң4, “Employment 

Creation and Development of Science and Technology”, gauging their impact on job creation and 

contributions to scientific and technological progress. These criteria collectively provide a 

comprehensive view of their performance in the dynamic landscape of emerging technologies. 

Let 𝜆𝑡𝑘 = (0.39,0.28,0.33)  denote the weight vectors corresponding to three distinct time 

periods, denoted as 𝑡1 ,  𝑡2  and 𝑡3 , representing the years 2020, 2021 and 2022, respectively. 

Additionally, let (0.32,0.24,0.16,0.28)𝑇 be the associated weight vector assigned to the attributes. 

The evaluation of five potential alternatives is to be conducted using bipolar fuzzy information, 

as provided by the decision maker, within the context of the four attributes outlined above, and 

across the aforementioned time periods. These assessments are documented in Tables 1, 2 and 3. 

Table 1. Decision matrix 𝑅(𝑡1). 

[
 
 
 
 
(0.2, −0.1) (0.4, −0.2) (0.5, −0.3) (0.6,−0.3)
(0.6, −0.4) (0.4, −0.1) (0.6, −0.4) (0.4,−0.5)
(0.2, −0.3) (0.5, −0.2) (0.4, −0.1) (0.2,−0.6)
(0.7, −0.4) (0.3, −0.4) (0.3, −0.4) (0.7,−0.5)
(0.6, −0.2) (0.4, −0.1) (0.6, −0.5) (0.3,−0.2)]
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Table 2. Decision matrix 𝑅(𝑡2). 

[
 
 
 
 
(0.6, −0.2) (0.5, −0.2) (0.4, −0.2) (0.4,−0.1)
(0.3, −0.1) (0.3, −0.1) (0.5, −0.2) (0.6,−0.2)
(0.4, −0.2) (0.2, −0.4) (0.3, −0.4) (0.3,−0.5)
(0.7, −0.3) (0.7, −0.4) (0.6, −0.3) (0.4,−0.2)
(0.5, −0.2) (0.4, −0.2) (0.5, −0.4) (0.4,−0.5)]

 
 
 
 

 

Table 3. Decision matrix 𝑅(𝑡3). 

[
 
 
 
 
(0.6, −0.2) (0.7, −0.2) (0.3, −0.5) (0.4,−0.2)
(0.3, −0.1) (0.4, −0.2) (0.5, −0.2) (0.7,−0.3)
(0.2, −0.4) (0.2, −0.3) (0.2, −0.6) (0.3,−0.1)
(0.4, −0.5) (0.2, −0.1) (0.3, −0.2) (0.3,−0.1)
(0.5, −0.2) (0.5, −0.4) (0.6, −0.1) (0.4,−0.3)]

 
 
 
 

 

The MADM problem that has been presented is addressed in relation to the BFDWA and 

BFDWG operators. In order to tackle this complex decision problem, we provide an analysis of the 

results and methodologies of two distinct approaches. 

5.3. Method I (BFDWA operator) 

Step 1. The initial phase involves the application of the BFDWA operator to consolidate a set of 

bipolar fuzzy decision matrices into a unified decision matrix 𝑅1, as displayed in Table 4. 

Table 4. Unified decision matrix 𝑅1 evolved through BFDWA operator 

[
 
 
 
 
(0.4758,−0.1526) (0.5464,−0.2000) (0.4120,−0.3170) (0.4878,−0.1929)
(0.4373,−0.1717) (0.3735,−0.1257) (0.5417,−0.2621) (0.5739,−0.3268)
(0.2619,−0.2945) (0.3339,−0.2776) (0.3111,−0.4573) (0.2626,−0.3156)
(0.6229,−0.3972) (0.4230,−0.2532) (0.4015,−0.2936) (0.5182,−0.2275)
(0.5417,−0.2000) (0.4350,−0.1919) (0.5742,−0.2761) (0.3628,−0.2955)]

 
 
 
 

 

Step 2. Subsequently, we employ BFWA operator to compute the cumulative preference values 𝑟𝑖 

for the alternative Ẩ𝑖, with 𝑖 ranging from 1 to 5. 

ř1 = (0.4876,−0.1955), ř2 = (0.4831,−0.2041), ř3 = (0.2879,−0.2913) 

ř4 = (0.5184,−0.2906), ř5 = (0.4777,−0.2326). 

Step 3. Next, we determine the scores Š(𝑟𝑖) of the overall bipolar fuzzy preference values 𝑟𝑖 in order 

to rank Ẩ𝑖. 

Š(ř1) = 0.6488, Š(ř2) = 0.6395, Š(ř3) = 0.5057 

Š(ř4) = 0.6139, Š(ř5) = 0.6226. 

Step 4. Finally, based on the scores Š(𝑟𝑖), we rank the alternatives Ẩ𝑖 , with the best one being 

selected. The ranking of the emerging technology enterprises is as follows: 
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Ẩ1 ≻ Ẩ2 ≻ Ẩ5 ≻ Ẩ4 ≻ Ẩ3. 

The aforementioned process is visually illustrated in Figure 4, which displays the numerical 

values of the alternatives derived by the BFDWA operator. 

 

Figure 4. Ranking of alternatives using BFDWA. 

5.4. Method II (BFDWG operator) 

Step 1. The BFDWG operator is applied to amalgamate a set of bipolar fuzzy decision matrices into 

a unified decision matrix 𝑅2, as displayed in Table 5. 

Table 5. Unified decision matrix 𝑅2 evolved through BFDWA operator 

[
 
 
 
 
(0.3909,−0.1624) (0.5122,−0.2000) (0.3968,−0.3497) (0.4685,−0.2151)
(0.3931,−0.2316) (0.3690,−0.1343) (0.5368,−0.2849) (0.5390,−0.3627)
(0.2428,−0.3094) (0.2859,−0.2937) (0.2936,−0.3852) (0.2561,−0.4436)
(0.5820,−0.4101) (0.3327,−0.3141) (0.3643,−0.3111) (0.4525,−0.3076)
(0.5368,−0.2000) (0.4306,−0.2383) (0.5701,−0.3611) (0.3575,−0.3289)]

 
 
 
 

 

Step 2. Subsequently, we employ BFWG operator to compute the cumulative preference values 𝑟𝑖 

for the alternative Ẩ𝑖. 

ř1 = (0.4391,−0.2188), ř2 = (0.4446,−0.2582, ř2 = (0.2642,−0.3585), 

ř4 = (0.4400,−0.3442), ř5 = (0.4588,−0.2739). 

Step 3. Next, we determine the scores Š(𝑟𝑖)  of the overall bipolar fuzzy preference values 𝑟𝑖 in order 

to rank Ẩ𝑖. 

Š(ř1) = 0.6102, Š(ř2) = 0.5932, Š(ř3) = 0.4528, 

Š(ř4) = 0.5479, Š(ř5) = 0.5925. 

Step 4. Finally, based on the scores Š(𝑟𝑖), we rank the alternatives Ẩ𝑖 , with the best one being 

selected. The ranking of the emerging technology enterprises is as follows: 

Ẩ1 ≻ Ẩ2 ≻ Ẩ5 ≻ Ẩ4 ≻ Ẩ3. 
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Consequently, the most favorable emerging technology enterprise identified is Microsoft 

Corporation. 

The process described above is graphically illustrated in Figure 5, where the numerical values 

of the alternatives generated by the BFDWA operator are presented. 

 

Figure 5. Ranking of alternatives using BFDWG. 

5.5. Comparative analysis 

Here, we compare the efficacy of our proposed approaches to MADM strategies presented in [27] 

and [35]. In [27] Wei et al. introduce BF Hamacher aggregation operators (BFHWA and BFHWG) for 

MADM problems. Similarly, in [35] Jana et al. introduce BF Dombi aggregation operators (BFDoWA 

and BFDoWG) for MADM problem. We apply BFDoWA and BFHWA to 𝑅1 and BFDoWG and 

BFHWG to 𝑅2 and calculate the aggregated values. Table 6 displays the aggregated values derived 

from the implementation of BFDoWA and BFDoWG operators, while Table 7 delineates the 

aggregated values obtained through the utilization of BFHWA and BFHWG operators. The rankings 

of the existing operators for BFNs are compared to those of the suggested operators in Table 8. 

Table 6. Aggregated values derived from the implementation of BFDoWA and BFDoWG operators. 

Alternative BFDoWA BFDoWG 

Ẩ1 (0.5051,−0.2830) (0.4970,−0.6642) 

Ẩ2 (0.5285,−0.2658) (0.5014,−0.6391) 

Ẩ3 (0.5442,−0.3914) (0.3659,−0.5289) 

Ẩ4 (0.4376,−0.3073) (0.4247,−0.4172) 

Ẩ5 (0.4538,−0.3147) (0.4347,−0.6025) 

Table 7. Aggregated values derived from the implementation of BFHWA and BFHWG operators. 

Alternative BFHWA BFHWG 

Ẩ1 (0.5023,−0.2264) (0.5003,−0.4858) 

Ẩ2 (0.5201,−0.2255) (0.5133, −0.4811) 

Ẩ3 (0.4639,−0.2663) (0.4157,−0.4714) 

Ẩ4 (0.4327,−0.2275) (0.4294,−0.3729) 

Ẩ5 (0.4464,−0.2390) (0.4416,−0.4708) 
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Table 8. Hierarchical ranking of alternatives utilizing various BF operators. 

Methods Ranking order 

BFDoWA [35] Ẩ2 ≻ Ẩ1 ≻ Ẩ3 ≻ Ẩ5 ≻ Ẩ4 

BFDoWG [35] Ẩ4 ≻ Ẩ2 ≻ Ẩ3 ≻ Ẩ1 ≻ Ẩ5 

BFHWA [27] Ẩ2 ≻ Ẩ1 ≻ Ẩ5 ≻ Ẩ4 ≻ Ẩ3 

BFHWG [27] Ẩ4 ≻ Ẩ2 ≻ Ẩ1 ≻ Ẩ5 ≻ Ẩ3 

Proposed BFDWA Ẩ1 ≻ Ẩ2 ≻ Ẩ5 ≻ Ẩ4 ≻ Ẩ3 

Proposed BFDWG Ẩ1 ≻ Ẩ2 ≻ Ẩ5 ≻ Ẩ4 ≻ Ẩ3 

Due to the absence of time intervals in the aggregation operators described in [27,35], a 

substantial amount of data is lost. The suggested aggregation operators are dynamic, and information 

is gathered from three separate time periods. The proposed operators possess the capacity to deal this 

sort of data whereas the operators introduced in [27,35] cannot tackle such situations. Therefore, this 

quality renders the proposed dynamic operators more adaptable than traditional time-independent 

aggregating operators. 

5.6. Advantages and disadvantages of the work 

BF dynamic aggregation operators are capable of processing data containing both favorable and 

unfavorable opinions. In addition, BF dynamic aggregation operators facilitate effective management 

of time-varying scenarios. However, the proposed operators unable to deal the information involving 

non-membership or neutral aspect of the situation. 

6. Conclusions 

In this study, we have delved into the realm of multi-attribute decision-making, harnessing the 

potential of BF dynamic information. We have developed two novel aggregation operators, the 

BFDWA and BFDWG, designed to address the complexities of MADM problems. We have also 

established fundamental properties, namely, Idempotency, monotonicity and boundedness of these 

operators. In addition, we have presented a step by step mechanism to solve MADM problems under 

BF dynamic aggregation operators. Moreover, we have demonstrated the practical utility of these 

operators through the formulation of strategies aimed at addressing real-world MADM challenges. 

As an illustrative example, we have considered the task of selecting an emerging technology for 

enterprise systems, highlighting how BFDWA and BFDWG can facilitate informed decision-making 

in such contexts. 

Bipolar fuzzy sets can capture the uncertainty expressed in positive and negative membership 

values lying in [0, 1] and [-1, 0], respectively. The uncertain data, which require complex number 

positive and negative membership values for their complete description, lies outside the scope of 

bipolar fuzzy environments. Moreover, if the positive and negative pinions are described in the form 

of intervals rather than a single number, we need to use interval-valued bipolar fuzzy sets. These are 

some limitations of the proposed work. 

The primary purpose of future study will be to rectify the above mention limitations by 

introducing these strategies to complex BF dynamic and interval values BF dynamic environment. 

Another objective of future work will be to develop a comprehensive decision-analysis aid using BF 

dynamic aggregation operators, with the aim of maximizing its significance and effectiveness. The 
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proposed approaches in this article will be versatile and applicable to various scenarios, including the 

development of more adaptable financial strategies, real-time monitoring of online social media 

activities, dynamic assessment of military management, dynamic and confidential shortlisting 

processes, tackling the energy crisis in developing nations and resolving time-dependent MADM 

problems. 
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